Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теоремы динамики точки переменной массы

Теоремы динамики точки переменной массы  [c.66]

Читателю, интересующемуся выводом уравнений Мещерского, рекомендуем книгу А. А. Космодемьянского [47]. Там же доказаны основные теоремы динамики точки переменной массы.  [c.708]

В заключение выведем три общие теоремы динамики точки переменной массы для уравнения Мещерского типа (52.3).  [c.172]

В первые годы основное содержание курса было посвящено изложению общей теории движения тел переменной массы (уравнение Мещерского, задачи Циолковского, основные теоремы, уравнения типа Эйлера, Лагранжа и Гамильтона, частные задачи) позднее (с 1945/46 учебного года) в курс были включены вариационные задачи динамики точки переменной массы в беге времени значение оптимальных режимов полета все возрастало, и в шестидесятых годах курс получил сильный крен в эту сторону. Некоторое представление о моих взглядах на механику тел переменной массы и значении этого раздела современной механики для авиа- и ракетостроения можно получить из второй части моего курса теоретической механики.  [c.215]


Механика тел переменной массы (динамика точки переменной массы, общие теоремы, уравнения типа Лагранжа и Г амильтона).  [c.3]

Приведем основные теоремы об изменении для динамического описания точки переменной массы в традиционном изложении, опираясь при этом, главным образом, на работу [177]. Говоря о теоремах изменения, следуя традиции, будем иметь в виду важнейшие теоремы динамики об изменении количества движения, кинетического момента и кинетической энергии точки переменной массы, поскольку именно в этих теоремах сконцентрированы характерные свойства движения и законы сохранения кинетических величин.  [c.66]

Завершим обзор основных теорем динамики упоминанием о теореме изменения кинетической энергии. Пусть, как обычно, кинетическая энергия точки переменной массы М определяется соотношением Т = Му /2.  [c.70]

Второй том настоящего курса рассчитан на студентов технических вузов с полной программой по теоретической механике По сравнению с традиционными курсами в книге более подробна рассматриваются общие теоремы динамики системы, движение материальной точки в центральном силовом поле, динамика тела переменной массы, теория гироскопов, некоторые вопросы аналитической механики, а также теории колебаний.  [c.8]

Если рассматривать излучающий центр и систему отброшенных частиц как единую механическую систему, то основные теоремы динамики для точки переменной массы не будут отличаться от соответствующих теорем динамики системы материальных точек постоянной массы. При такой постановке задачи для изучения движения излучающего центра необходимо знать законы движения (историю движения) всех отброшенных частиц. Рассмотрения подобного рода чрезвычайно сложны в теоретическом отношении и мало интересны для практики. Достаточно указать, что классическая задача небесной механики, так называемая задача трех тел , при произвольных начальных условиях до настоящего времени не решена.  [c.76]

Построение общей теории движения тел переменной массы можно выполнить при помощи основных теорем механики теоремы об изменении количества движения, теоремы об изменении кинетического момента и теоремы об изменении кинетической энергии. Такой путь изучения движения тел переменной массы является наиболее простым и естественным. К формулировкам основных теорем механики для тел, масса которых изменяется с течением времени, можно идти различными путями. Мы будем следовать методу, широко применяемому в механике тел постоянной массы, рассматривая тело переменной массы как совокупность точек переменной массы, движение которых определяется уравнением Мещерского. Зная уравнения движения точки переменной массы и рассматривая тело как совокупность точек, можно получить простые формулы, выражающие основные теоремы динамики для тела переменной массы. Ограничимся в этой главе рассмотрением таких тел переменной массы, для которых излучение (отбрасывание) частиц происходит с некоторой части поверхности тела, причем частицы, не имеющие относительной скорости по отношению к системе осей координат, связанной с телом, считаются принадлежащими телу, а частицы, имеющие относительную скорость, телу не принадлежат и никакого влияния на его движение не оказывают. Реактивные силы и моменты понимаются во всем дальнейшем как результат контактного взаимодействия отбрасываемых частиц и тела в момент их отделения от основного тела.  [c.89]


На схемах 19 и 20 приведены основные теоремы динамики точки и динамики системы точек переменной массы. Ввиду того, что структуры этих схем аналогичны ранее изученным (см. схемы 7, 11), ограничимся краткими замечаниями.  [c.173]

Общие теоремы динамики системы точек переменной массы Преобразования  [c.175]

Из уравнений движения выведем все теоремы динамики. Они дают возможность решить и обе основные задачи динамики точки. В прямой задаче, когда кинематические уравнения движения (5) даны, решение сводится к дифференцированию этих уравнений умножив на массу вторую производную от координаты по времени, получим проекцию силы. В обратной задаче, когда заданы проекции силы X, У и Z, а нужно определить координаты точки х, у, и z как функции времени, решение сводится к интегрированию трех совместных дифференциальных уравнений, где независимым переменным является время.  [c.116]

На основании теоремы об изменении кинетического момента в форме (32) можно получить динамические уравнения движения для тела переменной массы, имеющего одну неподвижную точку. Эти уравнения будут естественным обобщением уравнений Эйлера, хорощо известных в динамике твердого тела постоянной массы. Если твердое тело имеет одну закрепленную  [c.106]

Теорема об изменении кинетической энергии точки. Пусть материальная точка массы т под действием переменной по модулю и направлению силы Р движется по некоторой криволинейной траектории (рис. 352). Согласно второму закону динамики получаем  [c.618]

Завершает вторую главу 2.3, посвяш енный важнейшим законам динамики точки переменной массы. В первом разделе представлены теоремы об изменении количества движения, кинетического момента и кинетической энергии, а во втором дается беглое описание вариационного принципа Гамильтона в связи с его исходной, основополагаюш ей ролью для составления уравнений движения Лагранжа в обобш енных криволинейных координатах.  [c.47]

Метод вывода уравнений движения системы точек Агостинелли по существу является точечным , т. е. уравнение Леви-Чивиты, записанное для одной точки переменной массы, суммируется по всем точкам системы. Как и в динамике системы постоянных масс, он приходит к общему уравнению динамики системы (к уравнению Даламбера — Лагранжа). Из этого уравнения при дополнительных частных предположениях получается ряд теорем и свойств движения тела переменной массы. Например, теорема о движе-  [c.240]

Настоящий курс рассчитан на студентов технических вузов с полной программой по теоретической механике. По сравнению с традиционными курсами в книге более подробно рассматриваются общие теоремы динамики систе.мы, движение материальной точки в центральном силовом поле, динамика тела переменной массы, теория гироскопов, некоторые вопросы аналитической механики и теории колебаний. При построении курса авторы стремились к единству иепользуемых методических приемов и учитывали фактический объем известных студенту втуза сведений, в частности, в курсе последовательно использован аппарат векторной алгебры.  [c.6]

Нам представляется неудачным термин гидравлика переменной массы , широко используемый Г. А. Петровым и некоторыми другими авторами. При установившемся движении масса жидкости в каждом неподвижном отсеке потока (эйлеровы переменные) остается постоянной. Поэтому такого типа течения, на наш взгляд, лучше называть потоками с переменным по пути расходом. Гидравлическая теория таких потоков лшжет быть построена на основе законов механики о движении тела переменной массы. В то же время такая интерпретация явления имеет смысл лишь прк гидравлическом (одномерном) его описании. Попытки отдельных авторов (А. С. Кожевников и др.) строить основные дифференциальные уравнения гидродинамики, базируясь на теореме Мещерского динамики материальной точки переменной массы, строга говоря, лишены основания, так как в гидродинамической постановке учет изменения расхода потока вследствие присоединения или отделения части расхода по длине требует лишь соответствующего назначения граничных условий.  [c.719]


По сравнению с многочисленными традиционными курсами, п назначенными для технических вузов, в предлагаемой читателям ге в двух томах более подробно рассматриваются общие теоремы намики системы, движение материальной точки в центральном с вом поле, динамика тела переменной массы, теория гироскопов, н торые вопросы аналитической механики, а также теории линейн нелинейных колебаний. Большое число подробно рассмотренных дач помогает усвоению теорий некоторые задачи имеют самос тельное значение.  [c.9]

Кроме работ по механике переменных масс, И. В. Мещерскому принадлежит ряд работ но общей маханике. Такова, например, статья Дифференциальные связи в случае одной материальной точки (1887), в которой рассматривается движение точки, подчиненной неголономной связи причем связь не является идеальной и линейной. Статья О теореме Пуассона при существовании условных уравнений (1890) посвящена интегрированию уравнений динамики. В работе Гидродтгаамическая аналогия прокатки (1919) предпринята чрезвычайно интересная попытка теоретического освещения процессов, происходящих во время прокатки, при помощи уравнений движения вязкой жидкости.  [c.250]

В 1948 г. Л. Г. Лойцянский и А. И. Лурье включили в свой Курс теоретической механики главу Динамика точки и тела переменной массы . Тем же по существу методом, что и Космодемьянский, они выводят основные уравнения динамики системы и твердого тела переменной массы. Однако в качестве интересной иллюстрации применения теоремы количества движения к сплошным средам авторы курса возрождают также подход Л. Эйлера к вычислению реактивной силы водометного судна (и реактивного момента гидравлической турбины), примененный им в середине XVHI в. Изложение теоремы Эйлера в современной векторной форме привело авторов к формулировке главные векторы объемных и поверхностных сил и векторы количества движения масс жидкости, входящих и выходящих сквозь два каких-нибудь сечения трубы в единицу времени, направленные внутрь выделенного объема, образуют замкнутый многоугольник. Совершенно таким же методом, как в свое время Эйлер определял реактивную силу водомета, авторы получили для реактивной силы свободного снаряда выражение  [c.242]

Обобщим полученные ранее результаты на случай гипердвижения тел переменной массы. Лля этого, пользуясь методологией, развитой в работе [177], сформулируем, прежде всего, основные теоремы динамики об изменении количества движения, кинетического момента и кинетической энергии. Рассматривая тело как совокупность точек, движение которых определяется гиперреактивными уравнениями, можно получить формулировки основных теорем гипердинамики твердых тел переменной массы.  [c.206]

Оживленную дискуссию вызвали сообщения К дискуссии о силах 1шерции , Об общих теоремах динамики системы материальных точек , Методика изложения динамики переменной массы , О новой программе по математике в средней школе и ее отражение на преподавакии курса теоретической механики в вузе .  [c.120]


Смотреть страницы где упоминается термин Теоремы динамики точки переменной массы : [c.203]    [c.12]    [c.2]   
Смотреть главы в:

Гиперреактивная механика  -> Теоремы динамики точки переменной массы



ПОИСК



ДИНАМИКА Динамика точки

Динамика ела переменной массы

Динамика точки

Динамика точки с переменной массой

Масса переменная

Масса точки

Основные теоремы динамики точки переменной массы Теорема об изменении количества движения (теорема импульсов)

Теорема динамики точки

Теоремы динамики

Точка с переменной массой



© 2025 Mash-xxl.info Реклама на сайте