Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общие теоремы динамики точки и системы

ГЛАВА 5. ОБЩИЕ ТЕОРЕМЫ ДИНАМИКИ ТОЧКИ И СИСТЕМЫ  [c.253]

Глава 11. ОБЩИЕ ТЕОРЕМЫ ДИНАМИКИ точки И СИСТЕМЫ  [c.106]

Первый метод решения данной задачи несколько быстрее ведет к цели, но правильный выбор той или иной общей теоремы динамики существенно зависит от содержания задачи и требует некоторого навыка. Второй путь — составление уравнений Лагранжа — несколько более длинный, но является универсальным способом, применимым к любым системам, подчиненным идеальным голономным связям.  [c.594]


По сравнению с предыдущим изданием (2-е изд. в 1967 г.) расширены следующие разделы Плоскопараллельное движение , Сложное движение , Дифференциальные уравнения движения , Общие теоремы динамики , Колебания точки и системы , Уравнения Лагранжа увеличено число решаемых типовых задач.  [c.2]

Глава XXI . Общие теоремы динамики материальной тонки и системы 573  [c.573]

Глава ХХП. Общие теоремы динамики материальной тонки и системы 579 104.ТЕОРЕМА О ДВИЖЕНИИ ЦЕНТРА МАСС МЕХАНИЧЕСКОЙ СИСТЕМЫ  [c.579]

Глава ХХП. Общие теоремы динамики материальной точки и системы 583  [c.583]

Мы видели, что дифференциальное уравнение (84) относительного движения материальной точки имеет тот же вид, что и дифференциальное уравнение движения точки относительно неподвижной системы отсчета различие между этими уравнениями состоит лишь в том, что в уравнение относительного движения, кроме заданных сил и реакций связей, входят еще переносная и кориолисова силы инерции. С другой стороны, в главе 21 мы видели, что все общие теоремы динамики точки (теорема о количестве движения, теорема о моменте количества движения, теорема о кинетической энергии) являются следствием основного дифференциального уравнения динамики точки, выражающего второй закон Ньютона. Отсюда следует, что все эти обпще теоремы применимы и к относительному движению точки, но понятно, что, применяя эти теоремы к относительному движению, мы должны принять во внимание переносную и кориолисову силы инерции. В частности, при решении задач, относящихся к относительному движению точки, нередко приходится пользоваться теоремой о кинетической энергии. Нри составлении уравнения, выражающего эту теорему в относительном движении, необходимо принять во внимание работу переносной и кориолисовой сил инерции на относительном перемещении точки. Но так как ускорение Кориолиса Н7д всегда перпендикулярно к относительной скорости v , то следовательно, работа кориолисовой силы инерции в относительном движении равна нулю, и эта сила в уравнение теоремы о кинетической энергии не войдет. Поэтому это уравнение в дифференциальной форме будет иметь следующий вид  [c.456]


Динамика системы материальных точек сначала излагается для случая, когда движение стеснено произвольными дифференциальными связями. Из принципа Даламбера-Лагранжа (общее уравнение динамики) с использованием свойств структуры виртуальных перемещений [68] выводятся общие теоремы динамики об изменении кинетической энергии (живой силы), кинетического момента (момента количеств движения), количества движения. Изучается динамика системы переменного состава [1]. На основе принципа Гаусса наи-меньщего принуждения выводятся уравнения Аппеля в квазикоординатах. Получены также уравнения Воронца и, как их следствие, уравнения Чаплыгина. Установлено, что воздействие неголономных связей включает реакции, имеющие гироскопическую природу [44].  [c.12]

Такого рода соотношения между измеиеинями во времени суммарных Л1ер движения системы материальньзх точек и суммарными мерами действия приложенных к точкам совокупности сил выражают общие теоремы динамики системы материальны.х точек, применяемые как для отдельных точек и их систем, так и для сплошных сред.  [c.104]


Смотреть страницы где упоминается термин Общие теоремы динамики точки и системы : [c.2]    [c.571]    [c.575]    [c.589]    [c.605]    [c.623]    [c.653]   
Смотреть главы в:

Курс теоретической механики 1974  -> Общие теоремы динамики точки и системы

Курс теоретической механики 1983  -> Общие теоремы динамики точки и системы

Техническая механика  -> Общие теоремы динамики точки и системы



ПОИСК



Введение в динамику системы материальных точек со связями. Общие теоремы динамики и их применение

ДИНАМИКА Динамика точки

ДИНАМИКА Общие теоремы динамики

Динамика системы точек

Динамика системы точки 165 —Теоремы

Динамика точки

Замечания о применении общих теорем динамики системы материальных точек

О неидеальных связях Принцип Даламбера-Лагранжа и общие теоремы динамики системы материальных точек со связями

Общая динамика

Общие теоремы

Общие теоремы динамики материальной точки и механической системы

Общие теоремы динамики систем. материальных точек

Общие теоремы динамики системы

Общие теоремы динамики точки

Отдел четвертый ОБЩИЕ ТЕОРЕМЫ ДИНАМИКИ Теорема об изменении количества движения системы материальных точек

Приложение. Упрощенный вывод общих теорем динамики системы материальных точек в абсолютном движении (для студентов, изучающих теоретическую механику по неполной программе)

Система точек

Системы Динамика

Теорема динамики точки

Теорема динамики точки системы

Теорема системы

Теоремы динамики

Теоремы динамики общие

Теоремы динамики системы

Теоремы динамики системы динамики точки



© 2025 Mash-xxl.info Реклама на сайте