Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сопротивление циклическому пластическому деформированию

Сопротивление циклическому пластическому деформированию  [c.77]

В процессе испытаний при длительном малоцикловом нагружении осуществляется сочетание процессов ползучести (релаксации) и накопления длительных статических повреждений, с одной стороны, и процессов циклического пластического деформирования и накопления усталостных повреждений, с другой, причем эти процессы могут влиять друг на друга. Поэтому изучение сопротивления длительному малоцикловому деформированию и разрушению (длительной малоцикловой прочности) должно основываться на закономерностях ползучести и длительной статической прочности и на закономерностях малоцикловой усталости и сводится к установлению закономерностей этого взаимного влияния.  [c.211]


Значения размахов упругопластических и пластических деформаций для корпусов типов I и II примерно одинаковы на всем протяжении цикла, что объясняется несущественным различием сопротивлений циклическому упругопластическому деформированию при-  [c.232]

Расчеты элементов конструкций на малоцикловую усталость базируются на экспериментальных данных изучения закономерностей сопротивления деформированию и разрушению при циклическом упруго-пластическом деформировании, а также исследованиях кинетики неоднородного напряженно-деформированного состояния и  [c.618]

Жесткое нагружение. Как уже указывалось, весьма распространенным методом изучения сопротивления материалов циклическому упруго-пластическому деформированию являются испытания  [c.622]

Разрушение при циклическом упруго-пластическом деформировании. Сопротивление разрушению при циклическом деформировании существенно зависит от характера нагружения (мягкое или жесткое) и циклических деформационных свойств материала.  [c.623]

Расчеты элементов конструкций на малоцикловую усталость базируются на экспериментальных данных изучения закономерностей сопротивления деформированию и разрушению при циклическом упруго-пластическом деформировании, а также исследованиях кинетики неоднородного напряженно-деформированного состояния и накопления повреждений в зонах концентрации — местах вероятного разрушения. Ниже приведены основные понятия и некоторые результаты изучения кинетики деформирования и разрушения материалов при циклическом упруго-пластическом деформировании.  [c.683]

Сопротивление материалов циклическому упруго-пластическому деформированию обычно изучают при однородном напряженном состоянии, используя два основных вида нагружения. При первом в процессе циклического деформирования постоянной сохраняется амплитуда напряжений, при втором — амплитуда деформации. Эти виды соответственно называют мягким и жестким нагружением.  [c.683]

Разрушение при циклическом упруго-пластическом деформировании. Сопротивление разрушению при циклическом деформировании материала существенно зависит от характера нагружения  [c.687]

Одним из наиболее эффективных и технологически простых средств существенного повышения сопротивления усталости деталей и уменьшения их чувствительности к концентрации напряжений при циклическом деформировании является поверхностное пластическое деформирование (ППД), которое в настоящее время успешно применяют при изготовлении деталей из различных металлических материалов (сталь, чугун, сплавы алюминия, титана, магния, бронзы и латуни, сверхтвердые сплавы и др.). При этом пределы выносливости деталей в зависимости от свойств материалов и применяемых для их обработки режимов поверхностного наклепа могут увеличиваться в 2 раза и более, а долговечность — на порядок и более.  [c.138]


При относительно небольших временах выдержки и числах циклов (что соответствует небольшим накопленным временам до 30— 50 час) в силу процессов деформационного старения стали типа 18-8 наблюдается уменьшение циклических пластических деформаций (см. рис. 9) и увеличение сопротивления этим деформациям (рис. 10 и И). С накоплением суммарного времени деформирования начинает проявляться роль циклических деформаций ползучести, и сопротивление неупругим деформациям уменьшается. Следствием этого является уменьшение сопротивления разрушению при мягком нагружении по сравнению с жестким для одинаковых деформаций пулевого полуцикла (см. рис. 4 и 6).  [c.111]

Исследование циклического разрушения в упруго-пластической области, имеющего актуальное значение для энергетического, транспортного, строительного оборудования и ряда других отраслей, основывались прежде всего па изучении кинетики напряженного состояния по мере накопления числа циклов на основе свойств диаграмм циклического деформирования. Были установлены в силовом и деформационном выражении условия возникновения либо усталостного, либо квазистатического разрушения, предложены соответствующие схемы расчета для эластичного и жесткого нагружения. Показаны особенности влияния циклических пластических свойств на эффект концентрации напряжений для этого случая сопротивления усталостному разрушению. Применительно к циклическому деформированию от повторного нагрева и охлаждения малоцикловое термоусталостное разрушение бы.ло описано соответствующими кривыми усталости в деформационном выражении, полученными для данного температурного перепада, показана применимость критерия октаэдрических напряжений для плоского напряженного состояния в этом случае.  [c.42]

При расчете сопротивления циклическому нагружению, а также при наличии напряжений компенсации, когда приведенные условные упругие максимальные напряжения превышают предел текучести, определение величин (ст )пр производится по компонентам деформаций, устанавливаемым экспериментально или из упругопластического расчета (при первом случае возникновения пластических деформаций используется диаграмма статического растяжения при расчетной температуре). Если размахи напряжений превышают удвоенный предел текучести, определение амплитуд напряжений (п р)а производится экспериментально или расчетом по величинам деформаций, устанавливаемым по диаграмме циклического деформирования. При отсутствии диаграмм циклического упругопластического деформирования в расчет вводится условная диаграмма циклического деформирования, получаемая удвоением величин деформаций и напряжений кривой статического растяжения при расчетной температуре.  [c.221]

Таким образом, приведенные данные показывают, что двух-частотность процесса нагружения оказывает существенное влияние на сопротивление материалов мягкому малоцикловому деформированию и особенно в условиях проявления температурно-временных эффектов. Наличие выдержек в полуциклах на экстремальных уровнях напряжений с наложением в течение них высокочастотной составляющей напряжений вызывает дополнительную деформацию ползучести, величина которой зависит от условий нагружения и свойств материала. Вследствие этого суммарная ширина петли гистерезиса (полная циклическая пластическая дефор.мация) оказывается большей по сравнению с одночастотным нагружением при одних и тех же уровнях максимальных напряжений. Эти обстоятельства находят свое отражение и в уравнениях состояния, описывающих указанные процессы.  [c.104]

Весь сложный комплекс явлений, составляющих существо процесса накопления повреждений при циклических нагрузках, объединяют общим термином — механическая усталость или просто усталость материала. В настоящее время принято считать, что усталостные повреждения на начальной стадии их развития связаны с пластическими деформациями в отдельных зернах поликристаллического агрегата, каким является каждый конструкционный металл или сплав. Указанные пластические деформации возникают лишь в отдельных зернах, ориентированных таким образом, что их плоскости наименьшего сопротивления скольжению близки к плоскостям действия максимальных касательных напряжений. Ориентированные таким образом зерна пластически деформируются еще на ранней стадии нагружения, на которой весь массив кристаллитов в целом ведет себя как упругое тело. Полагают, что соответствующий уровень напряжений составляет примерно 0,6... 0,7 от условного предела текучести То,2. Пластическое деформирование сначала в одном, а затем в обратном направлении сопровождается некоторыми разрушениями, происходящими в микроскопических объемах материала. Возникающие при этом микротрещины постепенно растут и частично сливаются от цикла к циклу. Более длинные трещины растут быстрее, а значительная часть наиболее мелких трещин прекращает свой рост вскоре после своего зарождения. В итоге слияния нескольких микротрещин раньше или позже возникает магистральная трещина, которая вначале видна лишь под микроскопом, а затем по мере развития — невооруженным глазом. Иногда образуется сразу несколько магистральных трещин.  [c.334]


Циклическое упруго-пластическое деформирование при высоких температурах имеет значение при рассмотрении несуш ей способности элементов конструкций энергетического машиностроения, ракетостроения, химического аппаратостроения и т. п. В этих конструкциях может осуществляться повторное нагружение, причем цикл может включать в себя выдержку под нагрузкой. Особенность этого слу-, чая нагружения связана с тем, что необходимо учитывать, наряду с циклическим деформированием, температурно-временные факторы как в связи с сопротивлением деформированию, так и в связи с разрушением. Несущая способность в этом случае определяется сопротивлением длительным циклическим нагрузкам.  [c.199]

Влияние концентрации напряжений на сопротивление усталости при повышенных температурах связано с упруго-пластическим перераспределением напряжений, чему способствует ослабление сопротивления пластическим деформациям -с ростом температуры. Используя циклические диаграммы деформирования для различного накопленного числа циклов, можно построить кривые усталости в истинных напряжениях и показать для сталей с выраженной циклической пластичностью, что эти кривые при растяжении-сжатии и переменном изгибе как  [c.224]

Исследования барьерной роли микронапряжений и составляющих деформационной субструктуры позволили установить, что с ростом пластической деформации эффективность указанных барьеров по остановке трещин увеличивается. Используя взаимосвязь критического напряжения хрупкого разрушения S с сопротивлением материала развитию микротрещин, т. е. с барьерами различной природы, предложен подход к аналитическому прогнозированию S в статически и циклически деформированном материале. Оказалось, что S независимо от истории нагружения монотонно увеличивается с ростом накопленной деформации, мерой которой может служить параметр Одквиста.  [c.147]

Тип функции Fi(k) зависит от особенностей сопротивления металлов циклическим деформациям. Ширина петли гистерезиса меняется от цикла к циклу. Уменьшение ширины петли характеризует повышение сопротивления циклическим пластическим деформациям, т. е. циклическое упрочнение, а увеличение ширины петли — уменьшение этого сопротивления, т. е. циклическое разупрочнение. Циклические свойства металлов подробно изучались Р. М. Шнейдеровичем и А. П. Гусенковым. Изучение изменения диаграмм циклического деформирования по экспериментальным данным позволяет при упрочнении функцию Fi(k) выразить в форме  [c.77]

На рис. 1.8 приведена наиболее простая механическая модель, впервые использованная А. Ю. Ишилинским [13, 86], объясняющая эффект Баушингера с феноменологических позиций, но вместе с тем отражающая в очень схематизированной форме вероятную физическую причину этого явления. Развитие микро-пластических деформаций в дискретных и различно ориентированных полосах скольжения, принадлежащих отдельным зернам, должно сопровождаться возникновением поля остаточных напряжений, снижающих сопротивление материала пластическому деформированию при изменении его направления. Упругое звено 1 работает параллельно со звеном сухого трения 2 в виде ползунка. Кроме того, имеется еще одно упругое звено 5, соединенное последовательно с первыми двумя. Диаграмма циклического деформирования (рис. 1.9) элемента гипотетического материала с механическими свойствами, отвечающими данной модели, строится на основании элементарного расчета. При а < С , где — предельное сопротивление проскальзыванию в звене 2, происходит только линейно-упругая деформация звена 2 по закону е = = Oi/Ei (линия О А на рис. 1.9). При ст > Са деформацию, приобретающую характер упругопластической, претерпевают звенья 2 и /. Закон деформирования (линия АВ) приобретает такой вид  [c.16]

Следует отметить, что накопление повреждений будет происходить и при условии, когда напряжения еще не достигают циклического предела текучести 5т, так как в этом случае идут процессы микротекучести. Тем не менее повреждаемость материала в условиях микротекучести будет достаточно малой и поэтому скоростью развития трещины при оценке AKth можно пренебречь (dL/dN Q). Строго говоря, при расчете НДС в окрестности вершины трещины нужно использовать параметр ат" < От, характеризующий сопротивление материала микро-пластическому деформированию. Однако известно, что в этом случае большинство положений теории пластичности не приемлемо [195, 206, 379]. Выходом из этого положения является анализ НДС в рамках теории пластичности (в расчет вводится параметр От), но и при анализе накопления повреждений учитывается повреждаемость от упругих (с макроскопических позиций) деформаций (см. раздел 2.3).  [c.214]

Как уже указывалось, весьма распространенным методом изучения сопротивления материалов циклическому упруго-пластическому деформированию являются испытания при постоянных амплитудах деформации — жесткое нагружение (рис. 601 а — сплав В96, б — сталь 1Х18Н9Т). При таких испытаниях за счет перераспределения упругой и пластической составляющих деформации максимальные напряжения от цикла к циклу могут изменяться.  [c.687]

В соответствии с этим представляется целесообразным располагать данными по ползучести, длительной прочности и разрушающим деформациям при соответствующих уровнях постоянных напряжений в широком диапазоне времени до разрушения, в том числе и для кратковременной ползучести. С другой стороны, было бы важно получить данные о сопротивлении циклическому деформированию и разрушению без учета в.пияния времени для того, чтобы оценить деформацию ползучести и циклическую пластическую деформацию, а также соответствующие им повреждения. Такие данные получить непосредственно из опыта представляет известные трудности, поскольку время цикла и общее время до разрушения в этом случае должны быть достаточно малы, чтобы не происходило развития деформаций ползучести и падения во времени пластичности и прочности. Следует заметить, что приемлемые в этом смысле частота и время до разрушения существенно зависят от температуры.  [c.211]


Исследования процесса деформирования [22, 27, 48, 67] свидетельствуют о наличии ряда специфических эффектов, свойственных методике испытаний на термическую усталость это, одной стороны, существенная локализация пластической деформации в наиболее нагретой части образца, и с другой — при более высоких параметрах термомеханического воздействия — интенсивное формоиз1менение [27] (появление ряда гофров ), проявляющееся из-за нестационарности процесса циклического унрутопластического деформирования разных зон образца в связи с возникновением продольного градиента температур. Эти эффекты вызывают значительные трудности в расшифровке действительной картины процесса упругопластического деформирования и вносят существенные пограшности в оценку сопротивления термической усталости.  [c.25]

В работах [3, 19, 24—27] показано, что чем выше прочность конструкционных сплавов и чем больше сопротивление пластическому деформированию, тем меньше у сплавов резервы к упрочнению и тем больше они склонны к разупрочнению при циклическом нагружении, при этом неважно, чем достигается высокая прочность сплава наклепом, предварительной деформацией, низким отпуском после закалки или понилсением температуры испытаний.  [c.242]

Задача об определении сопротивления малоцикловому разрушению при температурах более высоких, чем указанные, когда циклические пластические деформации сочетаются с деформациями ползучести, существенно усложняется. В настояш,ее время осуществляются интенсивные экспериментальные исследования уравнений состояния и критериев разрушения при длительном цикличес-ком нагружении в условиях однородных напрян енных состояний при жестком и мягком нагружении. Результаты этих исследований освещены в трудах конференций в Киото (1971), Каунасе (1971), Будапеште (1971), Филадельфии (1973) [1, 3, 6, 7], а также конференций в Лондоне (1963, 1967, 1971), Сан-Франциско (1969), Брайтоне Х1969), Дельфте (1970) и др. Однако несмотря на большой объем экспериментальных работ, пока не удалось разработать общепринятые предложения по кривым длительного циклического деформирования и разрушения это не позволяет перейти к расчетной оценке напряженных и деформированных состояний в элементах конструкций для определения их прочности и долговечности на стадии образования трещин и тем более на стадии их развития.  [c.100]

Результаты экспериментов позволили выявить характерные особенности сопротивления термоусталостному деформированию сплавов ХН75МБТЮ-ВД, ХН56МВТЮ. Процесс упругопластического деформирования материала протекает в неконтролируемых (по напряжениям или деформациям) условиях, при которых реализуется промежуточный между мягким и жестким режим малоциклового нагружения. Полученные результаты (рис. 2.16) характеризуют кинетику циклических пластических деформаций в полуциклах нагрева е (сжатие) и охлаждения е°(растяжение), напряжений растяжения ар и сжатия  [c.37]

Другим важным вопросом обеспечения прочности и ресурса атомных реакторов, не получавшим отражения в традиционных расчетах энергетических установок по уравнениям (2.1) —(2.3), являлся анализ сопротивления деформациям и разрушению при циклическом нагружении [2,5-7,16]. Как следует из данных гл. 1, в процессе эксплуатации атомных реакторов число циклов нагружения на основных режимах изменяется в достаточно широких пределах - от (2- 5) 10 при гидроиспытаниях до (1 2) Ю при программных изменениях мощности и до 10 —10 с учетом вибро-нагруженности. Систематические исследования прочности в этом диапазоне числа циклов были начаты применительно к энергетическим установкам в середине 50-х годов, а в середине 60-х годов были сформулированы основные (преимущественно деформационные) критерии разрушения и свойства диаграмм циклического деформирования [17,18 и др.]. По опытным данным, полученным на лабораторных образцах, было показано, что при числе циклов до 10 циклические пластические деформации оказываются сопоставимыми (в диапазоне числа циклов 10 —10 ) или существенно большими (в диапазоне числа циклов 10 -5 10 ), чем циклические упругие деформации. При этом в зависимости от типа металлов и условий нагружения (с заданными амплитудами деформаций или напряжений) пластические деформации по мере увеличения числа циклов могут возрастать (циклически разупрочняющиеся металлы), уменьшаться (циклически упрочняющиеся металлы) или оставаться постоянными (циклически стабильные металлы). Указанные особенности поведения металлов при циклическом упругопластическом деформировании обусловливают нестационар-ность местных напряжений и деформащ1Й в зонах концентрации при стационарных режимах внешних нагрузок. Для малоцикловой области уравнения кривых усталости и сами кривые усталости при числах циклов 10 —Ю представлялись не в амплитудах напряжений (как для обычной многоцикловой усталости при числах циклов 10 —10 ), а в амплитудах упругопластических деформаций.  [c.40]

На рис. 88 приведены результаты исследования усталости и коррозионной усталости стали 13Х12Н2ВМФ после обкатки. Эти результаты находятся в соответствии с данными других исследователей и показывают, что ППД гладких образцов повышает их предел выносливости на 20— 30 %. По влиянию обкатки на коррозионную усталость сталей нами получены чрезвычайно важные с практической точки зрения результаты, четко указывающие на ограниченность защитного действия поверхностного пластически деформированного слоя. Действительно, при базе до 5-10 -10 10 цикл нагружения выносливость стали после ППД в 3 %-ном растворе Na I мало отличается от выносливости в воздухе, т.е. подтверждается высокая эффективность ППД как метода повышения сопротивления коррозионно-усталостному разрушению. Однако увеличение базы испытания выше указанной привело к неожиданным результатам — резкому снижению уровня разрушающих циклических нагрузок. В довольно узком диапазоне долговечности разрушающее напряжение у обкатанных образцов в коррозионной среде снизилось с 550—600 МПа до 200— 240 МПа, т.е. в 2—3 раза. Условный предел коррозионной выносливости образцов, подвергнутых ППД  [c.161]

Необходимость исследования закономерностей сопротивления циклического деформирования материалов в условиях малоциклового, длительного циклического и неизотермического нагружений определяется, как было рассмотрено выше (см. гл. 1), прежде всего потребностями разработки экспериментально обоснованных уравнений состояния, позволяющих определять поцикловое напряженно-деформированное СОСТОЯ , ие и анализировать кинетику деформаций в наиболее напряженных зонах (амплитуды местных упругопластических деформаций и величины односторонне накопленных пластических деформаций). Это в свою очередь позволяет рассмотреть процесс накопления циклических повреждений с целью расчетной оценки прочности и долговечности элементов конструкций.  [c.25]

В зависимости от типа материала процесс измепеттия напряжений и деформаций с числом циклов еопровонгдается увеличением (или уменьшением) сопротивления циклическому деформированию при жестком нагружении и снижением (иди ростом) величин необратимых пластических деформаций при мягком нагружении.  [c.27]


Циклическая анизотропия свойств материалов характеризует собой явление неодинакового сопротивления циклическому деформированию в направлении четных и нечетных полуциклов нагружения, что может объяснять наряду с другими причинами (различие исходных диаграмм растяжение—сжатие, асимметрия цикла напряжений) возникновение у некоторых материалов преимущественного одностороннего накопления пластических деформаций. Хотя большинство материалов является циклически изотропными, циклическая анизотропия может быть присуща ряду материалов — как циклически разупрочняющимся (сталь ТС), так и стабилизирующи.мся (В-95) и упрочняющимся (В-96, АК-8). Экспериментальное изучение зависимости ширины петли гистерезиса в первом полуцикле нагружения (считая исходное нагружение за нулевой полуцикл) от степени исходного деформирования при симметричном и асимметричном мягком нагружении устанавливает линейную связь между этими характеристиками (рис. 2.4) во всем диапазоне исследованных деформаций (до 10 е .). При построении зависимости для несимметричного цикла от амплитудных значений деформаций ёа в исходном нагружении экспе-  [c.29]

Кривые изменения максимальных напряжений о щах и ширины петли пластического гистерезиса б в процессе нагружения для данных режимов приведены на рис. 5.15. При одночастотном нагружении с заданной амплитудой максимальной упругопластической деформации Сатах, как видно из рис. 5.15, а, на начальной стадии (до МШр 0,15) происходит интенсивное упрочнение материала, выражающееся в повышении амплитуды напряжений в циклах и уменьшении циклической пластической деформации б, а затем наступает стадия их стабилизации, продолжающаяся вплоть до появления микротрещины размером 2—3 мм,, когда начинается резкое падение нагрузки. Из полученных данных следует, что сопротивление деформированию стали Х18Н10Г при жестком одночастотном нагружении и Г = 650° С, характеризуемое в первую очередь кинетикой циклической пластической деформации, на начальной стадии подобно мягкому нагружению материала в аналогичных условиях. С увеличением доли относительной долговечности наблюдается некоторое их различие, выражающееся в увеличении при мягком нагружении величины б (переход материала к разупрочнению), что связано, по-видимому, с наличием квазистатического повреждения, которое отсутствует при жестком нагружении, когда б после стабилизации остается постоянной.  [c.189]

Коэффициент подобия а, в циклах с заданными границами по деформации зависит лишь от напряжения а , при котором имеет место реверс эта зависимость близка к линейной. Интересно отметить, что форма последующей кривой деформирования А В) практически нечувствительна к условиям ползучести, при которых достигнута точка реверса диаграммы (рис. АЗ.32) это может быть чистая ползучесть (а), чистая релаксация (с) илИ промежуточный процесс (Ь). В свою очередь предварительная пластическая деформация оказывает влияние на скорость ползучести при последующей выдержке. Так, процесс упрочнения при циклическом быстром деформировании приводит к повышению сопротивления ползучести, процесс разупрочнения — к обратному эффекту. В жестких циклах, включающих этап ползучес-  [c.110]

Особенно интенсивно эти эффекты проявляются в области малоцикловой усталости. Пластически деформированный объем в вершине трещины работает именно в этих условиях и снижает в результате циклического воздействия свое сопротивление разрушению. Таким образом, хрупкое разрушение пластически деформируемого циклическим нагружением объема металла в вершине трещины присходит при нагрузках ниже, чем при монотонном пластическом деформировании его. Трещина, пройдя поврежденный циклическим воздействием объем, попадает в неповрежденный материал вне зоны пластической области, подвергнутой циклическим деформациям, у которого сопротивление хрупкому разрушению выше. Затем описанный процесс повторяется до нового скачка трещины. При хрупком разрушении пластически деформированной циклической нагрузкой области в вершине трещины происходит резкое увеличение скорости деформации и трещина может затормозится в неповрежденном циклической пластической деформацией объеме только при условии, что коэффициент интенсивности напряжений будет ниже динамического критического коэффициента интенсивности напряжериш.  [c.326]

Сопротивление хрупкому разрушению стали 16Г2АФ зависит от длительности предшествующего циклического нагружения (рис. 4.17). После нагружения при = 450 МПа до N =1% критическая температура хрупкости Tjg понижается на 25% по сравнению с исходным состоянием, что обусловлено генерированием подвижных дислокаций. Атомы углерода и азота не успели закрепиться и тем самым проявить эффект деформационного старения. Дальнейшее циклическое нагружение приводит к существенному повышению Уже при N =10% она на 10°С выше, чем у стали в исходном состоянии. В интервале числа циклов нагружения N =10-ь 70% наблюдается некоторое повышение для обеих амплитуд нагружения. В целом циклическая деформация стали в этом интервале вызывает охрупчивание почти в такой же степени, как естественное и искуственное старение при 250°С пластически деформированной на 10% стали (рис. 4.17).  [c.154]

Изменение деформационных характеристик материала в данных условиях испытаний является следствием проявления интенсивно протекающих процессов деформационного старения, которые еще более активизируются дри наличии высокочастотной составляющей напряжений в течение временных выдержек (двухчастотный режим). В первую очередь эти процессы, как показали результаты микроструктурных исследований, проведенных на испытанных в настоящей работе образцах [81, проявляются в выделении микродисперсных частиц, количество и размер которых зависят от условий, уровня и времени нагружения. Большое их число в сочетании с относительно малыми размерами обусловливает повышение сопротивления деформированию материала, выражающееся в уменьшении активной составляющей циклической пластической деформации. Дальнейшая коагуляция выпавших частиц и перераспределение их к границам зерен приводит к ослаб-  [c.90]

Исследованиями сопротивления деформкрованию различных конструкционных материалов при циклическом упругопластическом деформировании было установлено, что поведение материала определяется его структурным состоянием [1, 2]. В зависимости от характера изменения ширины петли пластического гистерезиса материалы делят на упрочняюш иеся, разупрочняюш иеся и циклически стабильные. Для указанных типов материалов ширина петли гистерезиса с ростом числа циклов нагружения при постоянной амплитуде нагрузки соответственно либо уменьшается, либо увеличивается, либо остается практически неизменной большую долю обш ей долговечности образца.  [c.130]

Ограничение степени пластической деформации в сочетании с понижением сопротивления развитию трещины наблюдается при циклическом нагружении, так как в этих условиях образуется усталостная трещина, вызывающая значительную концентрацию напряжений. При этом объем пластически деформированного металла ограничивается ближайп]ими окрестностями дна надреза. Разупрочнение металла понижает напряжение, дости-гаелюе в точках с предельной местной деформацией.  [c.278]

Однако применение упрочняющей обработки поверхностным пластическим деформированием (ППД), например, пескоструйной обработки, алмазного выглаживания, вибронаклепа, позволяет практически полностью устранить влияние хромирования на сопротивление усталости высокопрочных сталей. Упрочняющая обработка ППД создает сжимающие напряжения в поверхностном слое и изменяет геометрию микрорельефа поверхности путем значительного увеличения радиуса микронеровностей. Для хромированных деталей упрочнение поверхностного слоя ППД необходимо для того, чтобы препятствовать распространению трещин, образовавшихся в хроме при циклических нагрузках, в основной металл. Это благоприятно сказы- вается на повышении сопротивления усталости хромированной стали (табл. 19).  [c.52]


Смотреть страницы где упоминается термин Сопротивление циклическому пластическому деформированию : [c.115]    [c.592]    [c.218]    [c.93]    [c.137]    [c.317]    [c.96]    [c.86]    [c.231]   
Смотреть главы в:

Несущая способность и расчеты деталей машин на прочность Изд3  -> Сопротивление циклическому пластическому деформированию



ПОИСК



Деформирование пластическое

Деформирование циклическое

Пластическая сопротивление

Сопротивление деформированию

Шаг циклический



© 2025 Mash-xxl.info Реклама на сайте