Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозионная агрессивность конденсата

КОРРОЗИОННАЯ АГРЕССИВНОСТЬ КОНДЕНСАТА  [c.85]

Определить верхний предел допустимой концентрации СОг в паре, не содержащем щелочных соединений, с точки зрения коррозионной агрессивности конденсата.  [c.14]

Газовый конденсат. По диэлектрическим свойствам газовый конденсат близок к нефти, однако при наличии сероводорода, углекислого газа, кислорода, воды он становится коррозионно-активным. В отличие от нефти он не содержит природных компонентов, обладающих защитными свойствами, поэтому его коррозионная агрессивность проявляется особенно интенсивно.  [c.166]


Для оценки коррозионной агрессивности воды в условиях действия тепловой нагрузки обычно применяется железная проволока диаметром 0,5 мм и длиной 5 м. Проволоку зачищают наждачной бумагой (зернистостью 400), обезжиривают, наматывают на оправку для получения спирали, активируют в 18-%-ной хлористо-водородной кислоте, промывают конденсатом и спиртом, высушивают с точностью до 0,0002 г и устанавливают в прибор.  [c.159]

Температура конденсата может колебаться в значительных интервалах, достигая в открытых системах 100 и в закрытых 200 °С и более. В результате коррозии теплоиспользующей аппаратуры и трубопроводов производственный конденсат загрязняется гидроксидом железа (III), концентрация которого достигает 0,1 — 1,0 мг/л. Несмотря на существенное увеличение концентрации ионов водорода при нагревании конденсата (рН<7,0), он по коррозионной агрессивности не может быть приравнен к раствору кислоты, имеющему такое же значение pH конденсат менее агрессивен. Такое различие объясняется тем, что при нагревании в конденсате появляется дополнительное количество не только ионов Н+, но и ионов ОН-, которые способствуют  [c.15]

В некоторых случаях применяют особо чистую воду, которую получают из конденсата очисткой его ионитами и механической очисткой от продуктов коррозии фильтрованием через фильтры тонкой очистки. В такой воде. почти отсутствуют посторонние ионы, она имеет очень низкую электропроводимость. Очистку конденсата от ионов проводят на ионитных фильтрах смешанного действия. Коррозионную агрессивность воды высокой чистоты можно оценить по формуле [21  [c.21]

Довольно часто конденсат применяют без дополнительной очистки. Его коррозионная агрессивность обусловлена в первую очередь содержанием растворенных диоксида углерода и кислорода, а также сульфатов, хлоридов, нитратов и гидроксида железа (III), появляющегося в результате коррозии трубопроводов, причем концентрация его может быть от 0,1 до 1,0 мг/л.  [c.22]

Радиолиз воды в реакторах кипящего типа приводит к загрязнению пара кислородом и водородом, а следовательно коррозионной агрессивности среды. Причина этого — появление кислорода и опасность взрыва в выхлопных трубопроводах эжекторов, отсасывающих указанные газы (вместе с воздухом) из конденсаторов турбин. Конечная скорость образования продуктов радиолиза определяются его скоростью, зависящей только от характера и интенсивности излучения, и скоростью рекомбинации, на которую влияет, как уже указывалось, ряд других факторов. В производственных условиях указанный конечный эффект определяется по концентрации кислорода на 1 л конденсата пара. Скорость радиолиза воды  [c.306]


Кислород и углекислота попытают коррозионную агрессивность пара в зонах, где начинается его конденсация. Присутствие аммиака, наоборот, снижает интенсивность углекислотной коррозии черных металлов, но несколько усиливает коррозию меди и ее сплавов. При совместном присутствии в паре углекислоты и аммиака принципиально возможно образование отложений, состоящих из бикарбоната аммония в элементах парового тракта, в которых длительное время сохраняется конденсат. Такими элементами на одном из заводов оказались импульсные трубки парамеров и манометров. При длительном контакте конденсата с паром, содержащим аммиак и углекислоту, происходило постепенное насыщение ими жидкой фазы. За счет диффузии концентрация образующегося углекислого аммония во всем объеме жидкости, заполняющей трубку, достигла состояния насыщения, что привело к выпадению из раствора кристаллов двууглекислого аммония, имеющего меньшую растворимость, нежели карбонат аммония. Иногда это влекло за собой полную закупорку сечения трубок. Введение систематической продувки импульсных трубок приборов устранило это явление.  [c.155]

Большая часть коррозионных повреждений оборудования промышленных котельных приходится на долю тракта питательной воды, где металл работает в наиболее тяжелых условиях. Причиной этому является коррозионная агрессивность химически очищенной воды, конденсата и их смеси.  [c.93]

Приведенные в первых главах книги сведения о коррозионной агрессивности природной (морской и речной), химически очищенной и обессоленной вод, а также конденсата и насыщенного пара, используемых в химическом производстве, должны содействовать решению задачи по выбору оптимальных средств противокоррозионной защиты, начиная со стадии проектирования.  [c.5]

Высокая коррозионная агрессивность химически обработанной воды и конденсата определяет повышенные требования к эффективности методов противокоррозионной защиты.  [c.109]

Для защиты от коррозии оборудования, эксплуатирующегося в контакте с водными средами, в частности с химически обработанной водой и конденсатом, используют две группы методов. Первая включает методы, направленные на уменьшение коррозионной агрессивности среды. К ним относятся декарбонизация и деаэрация (обескислороживание) химически очищенной воды и конденсата. Вторая группа методов способствует повышению коррозионной стойкости самого металла оборудования, например легированием и нанесением защитных покрытий.  [c.109]

На оборудование газовых промыслов воздействуют среды высокой коррозионной агрессивности, имеющие конденсат с большим (до 270 г/л) содержанием хлоридов, попадающих при перебросе пластовой воды, и влажный газ с НгЗ и СОг при температурах до 50—80°С [87].  [c.53]

Значительная часть коррозионных повреждений оборудования тепловых электростанций приходится на долю тракта питательной воды, где металл находится в наиболее тяжелых условиях, причиной чего является коррозионная агрессивность соприкасающихся с ним химически обработанной воды, конденсата, дистиллята и смеси их.  [c.160]

Дозирование ЭДТА и ее солей в конденсат недопустимо вследствие их коррозионной агрессивности. Место для ввода комплексона должно быть защищено специальной рубашкой. Должен быть введен повышенный контроль за коррозионным состоянием металла тракта и котла при данном режиме.  [c.169]

С ростом температуры увеличивается степень диссоциации угольной кислоты, что обусловливает повышение кислотности воды и резкое возрастание ее коррозионной агрессивности при одновременном снижении стойкости защитной пленки. Недопустимые размеры коррозии железа под действием воды, содержащей свободную углекислоту в отсутствие кислорода, наблюдаются при температуре выше 60—70 °С и значительной концентрации СО2. Подобная коррозия может иметь место в системе регенеративного подогрева питательной воды, особенно при плохом удалении неконденсирующихся газов. Присутствие в воде свободной углекислоты может явиться причиной коррозии медных и латунных труб. Эта коррозия сопровождается обесцинкованием последних и обогащением конденсата турбин ионами меди и цинка.  [c.45]

Значительная часть коррозионных повреждений оборудования тепловых электростанций приходится на долю тракта питательной воды, где металл находится в наиболее тяжелых условиях, причиной чего является коррозионная агрессивность соприкасающихся с ним химически обработанной воды конденсата, дистиллята и смеси их. На паротурбинных электростанциях основным источником загрязнения питательной воды соединениями меди является аммиачная коррозия конденсаторов турбин и регенеративных подогревателей низкого давления, трубная система которых выполнена из латуни.  [c.47]


Коррозия вызывается главным образом жидкими агрессивными средами — электролитами газообразные вещества, а также агрессивные порошковые материалы оказывают коррозионное действие в присутствии адсорбируемой ими влаги, которая обусловливает электрохимический характер коррозии. В сухом состоянии газообразные продукты и агрессивные порошковые вещества при нормальной (до 25 °С) и повышенной (до 80 °С) температуре практически не вызывают коррозии строительных и других материалов. Однако при эксплуатации зданий и сооружений химической промышленности в воздухе помещений (особенно в осенне-зимний период) всегда имеется влага в количестве, достаточном для образования агрессивного конденсата, способного вызывать коррозию материалов в конструкциях.  [c.8]

Как показал опыт эксплуатации оборудования ОШЗ, коррозионное состояние аппаратов, контактирующих с кислыми газами при температурах выше 100 °С, определяется в основном частотой их остановок. При остановках в аппаратах конденсируются кислые среды различного состава, содержащие НгЗ, СОг SO2, вызывающие интенсивную коррозию оборудования. Основной причиной коррозии оборудования установок производства серы, эксплуатирующегося при высоких температурах, является отсутствие или недостаточно эффективная продувка его инертным газом при остановках, что приводит к образованию агрессивного конденсата.  [c.48]

Кроме того, существенное влияние на коррозионную активность продуктов транспортирования по шлейфовым трубам может оказывать режим газожидкостного потока. При наличии в газе углеводородного конденсата наиболее предпочтительным является кольцевой режим транспорта газа. Агрессивность  [c.182]

В зависимости от марки резины или эбонита и принятого метода крепления резиновых обкладок к металлу вулканизацию осуществляют следующими способами в вулканизационных котлах под давлением — острым паром или горячим воздухом в гуммируемом аппарате под давлением — горячим воздухом или острым паром в гуммируемом аппарате без давления — паром,, горячей водой И/1И горячим раствором хлористого кальция. Продолжительность процесса вулканизации для каждого способа зависит от состава и толщины резиновых обкладок, формы и толщины стенок аппаратов, вида теплоносителя. В качестве теплоносителя наибольшее применение находит насыщенный пар, имеющий строго определенную температуру конденсации при данном давлении, выдерживаемую в течение всего процесса однако образующийся конденсат частично вымывает отдельные составляющие резиновой смеси, что ухудшает физико-механические показатели и химическую стойкость покрытия. При вулканизации горячим воздухом коррозионная стойкость и срок службы гуммированного покрытия повышаются на 20—25 % по сравнению с вулканизацией насыщенным паром, что весьма важно при эксплуатации в агрессивных средах при повышенных температурах.  [c.205]

Сетевые подогреватели должны быть плотными, т.е. не допускать попадания сетевой воды в паровое пространство подогревателей, а из него — в конденсатно-питательный тракт котла и затем в виде пара с агрессивными примесями в турбину. Хотя сетевая вода существенно чище, чем охлаждающая вода конденсаторов, повышенные температуры в подогревателях интенсифицируют коррозионные процессы, приводящие к появлению трещин и язв в стенках трубок и к прогрессирующим присосам сетевой воды. Дополнительным источником присосов являются неплотности вальцовочных соединений. Учитывая эти обстоятельства, постоянно производится контроль качества конденсата сетевых подогревателей.  [c.370]

Более эффективна защита от коррозии турбин и подогревателей на участках влажного пара с помощью циклогексиламипг и морфо-лина. По мнению ряда авторов жирные высокомолекулярные амины образуют на поверхности металла гидрофобную пленку, изолирующую его от коррозионно агрессивного конденсата кроме того, эти авторы утверждают, что пленкообразующие амины якобы способны эффективно разрыхлять старые отложения продуктов коррозии.  [c.4]

В установках подготовки нефти при получении товарной нефти из сырой нефти выделяется несколько фаз нефтяной газ, газовый конденсат, сточная вода. Коррозионное воздействие этих фаз различается по характеру и степени интенсивности. Интенсивность коррозионного разрушения оборудования растет в результате ввода в нефть в процессе ее обезвоживания и обессолнвання деэмульгаторов— дисолвана 4411, Серво, ОП-7, ОП-10 и др. Усиление коррозии под влиянием деэмульгаторов связано с их сильным гидрофилнзирующим и моющим действием, в рез льтате чего на поверхности металла образуется тонкая пленка воды. Коррозионная агрессивность фаз, выделяющихся в процессе подготовки нефти, зависит от их состава н других факторов.  [c.166]

Потенциально кислые соединения, опасные своим разрушающим действием на металл оборудования в зонах образования первичногол конденсата, периодически определяют при отборе проб конденсата из проточной части турбин. При этом концентрация коррозионно-агрессивных соединений на два порядка выше в этих зонах, чем в конденсате турбин (pH снижается до 4,0— 5,0). При химическом анализе отложений на лопатках, разрушенных в результате коррозии, находят до 12 % хлоридов (остальное — соединения кремния и натрия).  [c.184]

Попадание кислых соединений наиболее опасно на энергоблоках СКП, работающих при нейтрально-окислительном режиме вследствие безбуферности среды. Для гидразино-аммиачного режима за счет частичного перехода аммиака в первичный конденсат возникают существенно менее опасные условия по коррозионной агрессивности.  [c.186]

Использование хозяйственно-бытовых сточных вод в парогенерирующих установках, в частности в испарителях, вызывало опасение, что присутствующие в них органические вещества могут ухудшать коррозионно-агрессивные и накипеобразующие свойства концентрата. Эти опасения были связаны с опытом использования для питания парогенерирующих установок природных вод или производственного конденсата, загрязненных кислыми или потенциально кислыми органическими соединениями. Присутствие их  [c.205]


Способы подготовки и обработки воды. Учитывая строгие нормы к содержанию в питательной и котловой водах коррозионно-агрессивных агентов (хлоридов, кислорода, избыточной щелочи), для предупреждения коррозионного растрескивания металла парогенераторов должны быть выбраны способы химического обессоливания (при среднем давлении) и полного химического обессоливания (при высоком давлении) добавочной воды, проводимые таким же образом, как и на обычных тепловых электростанциях. В отдельных случаях целесообразно применять обессоливание конденсата турбин. При реализации этого способа обработки воды, особенно для прямоточных котлов и парогенераторов, следует обращать серьезное внимание на то, чтобы при включении в работу анионитовых фильтров они тщательно отмывались от щелочи с учетом того, что нелетучая щелочь, даже в связанном с угольной кислотой виде, для аустенитных сталей недопустима. В барабанных парогенераторах (и котлах) должны быть также применены совершенные способы сепарации и промывки пара, обеспечивающие полное отсутствие в нем нелетучей щелочи хлоридов, которые в настоящее время достаточно хорошо разработаны. Чтобы предупредить образование накипи вследствие присосов охлаждающей воды в конденсаторах турбин, в парогенераторах следует поддерживать режим чисто фосфатной щелочности по методу, изложенному в 1У-5и 1У-6. Для обоих типов парогенераторов необходима совершенная термическая деаэрация питательной воды и дополнительная обработка ее гидразином. Кроме того, должно быть предупреждено чрезмерное загрязнение ее продуктами стояночной коррозии.  [c.348]

Деаэрация воды и типы деаэраторов. Удовлетворительное коррозионное состояние пароводяного тракта электростанции обеспечивается правильным соблюдением водного режима и удалением коррозионно-агрессивных газов из питательной воды и конденсата. Питательная вода, например, паровых котлов ТЭС сверхкритических параметров пара согласно Правилам технической эксплуатации электростанций (ПТЭ) должна иметь жесткость не более 0,2 мкг-экв/кг, содержать кислорода менее 10 мкг/кг, а ее удельная электрическая проводимость должна быть менее 0,3 мкСм/см.  [c.121]

Из конденсатов, циркулирующих в цикле ТЭЦ, наиболее загрязненным является возвратный конденсат технологических (промышленных) потребителей пара. При большом различии аппаратов промышленного пароиспользования возникающие загрязнения, переходящие в конденсат, представлены широкой гаммой различных веществ нефтепродуктов, химических веществ различных типов, минеральных примесей воды и др. Из-за присосов воздуха в вакуумной части технологической аппаратуры возвратный конденсат может загрязняться атмосферными газами. Большая протяженность конден-сатопроводов, соединяющих ТЭС с промышленными предприятиями, и загрязненность конденсата коррозионно-агрессивными примесями, в частности О2 и СО2, приводят к интенсивной коррозии металла конденсатопроводов и соответствующему загрязнению конденсата продуктами коррозии железа. Таким образом, несмотря на относительно невысокое суммарное загрязнение возвратного производственного конденсата примесями (менее 10 мг/дм ) возможность его очистки и дальнейшего использования должна решаться в каждом конкретном случае на основе технико-экономического анализа.  [c.33]

Температура конденсата может колебаться в значительных интервалах, достигая в открытых системах 100 °С и закрытых — 200 °С и более. В результате коррозии теплоиопользующей аппаратуры и трубопроводов производственный конденсат загрязняется гидроксидом железа(III), концентрация которого достигает 0,1—1,0 мг/л. Несмотря на существенное увеличение концентрации ионов водорода при нагревании конденсата (pH 7,0), он по коррозионной агрессивности не может быть приравнен к раствору кислоты, имеющему такое же значение pH конденсат менее агрессивен. Такое различие объясняется тем, что при нагревании в конденсате появляется дополнительное количество не только ионов Н+, но и ионов ОН , которые способствуют пассивации металла. Таким образом, повышение температуры, с одной стороны, способствует развитию процесса коррозии в результате сдвига потенциала водородного электрода в положительную область (примерно на 70 мВ), а с другой стороны, затрудняет протекание процесса из-за усиления пассивируемости металла ионами ОН . Подобное свойство воды проявляется лишь в отсутствие примесей.  [c.85]

При налнчии кислорода и угольной кислоты агрессивность конденсата определяется преимущественно концентрацией этих коррозионных агентов. Концентрация кислорода определяется согласно закону Генри  [c.85]

На практике при эксплуатации конденсатных систем для снижения коррозионной агрессивности необходимо нейтрализовать угольную кислоту в конденсате аммиаком при совместном присутствии этих соединений в водном растворе устанавливается равновесие между ионами НН4+, Н+, ОН , НСОз ,. а также недиссоциированными молекулами ННз-НгО и Н2СО3. Получены номограммы для расчетов концентрации этих компонентов данной равновесной системы [46].  [c.86]

Наблюдаемое на практике загрязнение конденсатов анионами различного состава оказывает существенное влияние на его коррозионно-агрессивные свойства. Нитриты, хроматы и другие кислители, как правило, снижают общую коррозию, но могут вызывать ее локализацию при недостаточной концентрации для полной пассивации металла.  [c.87]

По данным ЦКТИ, при исследовании распределения коррозионно-агрессивных газов в конденсаторе блока 300 МВт ЛМЗ с трубкамй из сплава МНЖ-5-1 максимальная концентрация меди была установлена на входе потока отработавшего пара в конденсатор. Концентрация меди в конденсаторе в зависимости от исходной концентрации аммиака в остром паре имеет минимум (6 мкг/кг) в интервале концентраций аммиака 500—1500 мкг/кг. При безаммиачном режиме, т. е. при полном отсутствии аммиака в остром паре, содержание меди в данной точке возросло до 24 мкг/кг. При повышенвой концентрации аммиака в остром паре (до 2000—3000 мкг/кг) концентрация соединений меди составляла 40—60 мкг/кг. В пробах конденсата из. зоны охлаждения воздуха концентрация меди составляла 1,5—3 мкг/кг. Незначительное повышение концентрации меди отмечалось лишь при содержании аммиака в остром паре более 2000 мкг/кг. Максимальная концентрация меди (199 мкг/кг) в конденсате а входе потока отработавшего пара в конденсатор турбин наблюдалась в период пуска блока при содержании меди в паре 5,8 мкг/кг. При содержании аммиака в остром паре до 2000 мкг/кг и коэффициенте концентрирования в зоне воздухоохладителя до 10 коррозия конденсаторных трубок из сплава МНЖ-5-1 была незначительна.  [c.224]

Величина pH явлется одним из основных показателей коррозионной агрессивности среды. Поддержание значения pH в питательной воде в пределах 9,1 0,1 способствует подавлению коррозии подогревателей высокого давления и питательных трубопроводов и позволяет в сочетании с другими корректирующими добавками обеспечить выполнение норм ПТЭ по концентрации соединений железа. Достигается это дозированием аммиака в питательный тракт после деаэратора или за последним ПНД. Нормами ПТЭ допускается очень ограниченное отклонение показателя pH от заданного значения ( 0,1). Это объясняется следующим. Снижение показателя pH до значения менее 9 будет способствовать активизации корро-. зии стали и приведет к повышению содержания соединений железа в питательной воде. Поддержание показателя pH выше значения 9,2 опасно с точки зрения коррозии латуни при использовании в качестве корректирующего реагента аммиака н при наличии повышенного против норм ПТЭ содержания кислорода в конденсате. Кратковременные колебания pH питательной воды в пределах 0,1 также не желательны, так как при этом нарушается стабильность защитных пленок и увеличивается вынос соединений железа в парогенератор [22.32].  [c.263]


Присутствие аммиака в конденсате и в питательной воде по-разному отражается на их коррозионной агрессивности по отношению к углеродистым сталям и медным сплавам. Аммиак, повышая pH воды, парализует отрицательное дей твие свободной углекислоты на углеродистую сталь, подавляет коррозионные процессы с водородной деполяризацией и предотвращает обогащение питательной воды продуктами коррозии стали. Агрессивность коррозионного воздействия аммиака на медные сплавы зависит от содержания кислорода в питательной воде и в конденсирующемся паре. При обеспечении допустимого содержания кислорода по водо-конденсатно-му тракту можно, дозируя аммиак, поддерживать pH питательной воды на уровне 9,0 2,0, чтобы уменьшить обогащение ее окислами железа. При содержании кислорода в конденсате по тракту ТЭС более 20 мкг/кг Ог поддержание постоянного режима аминирования питательной воды следует проводить из расчета отсутствия свободного аммиака по водо-конденсатному тракту, что достижимо при дозировке аммиака в питательную воду не выше 500 мкг/кг ЫНз (рН = 8,8- 9,0).  [c.142]

В некоторых случаях из-за частых выходов из строя паровых подогревателей воды, подаваемой на ВПУ (удары пара, сильная вибрация, коррозия стальных трубок, высокая минерализованность и коррозионная агрессивность воды), получаемый конденсат нельзя использовать без очистки. Поэтому приходится после расхолаживания холодной водой сбрасывать его в канализацию. В подобных случаях целесообразнее заменять поверхностные подогреватели — смещивающими (тарельчатыми, с соплами Кертинга, с дырчатыми трубами и др.). Это позволяет терять вместе с промывочными и регенерационными водами ВПУ только 10— 15% конденсата.  [c.33]

Аппараты ОГПЗ подвержены в основном язвенной коррозии, имеются также отказы вследствие ВР основного металла и СР сварных соединений аппаратов. Коррозионное состояние аппаратов, контактирующих с кислыми газами при температурах выше 100 С, определяется в основном частотой их остановок. При остановках в аппаратах конденсируются кислые среды различного состава, содержащие НгЗ, СО2, 80г, вызывающие интенсивную коррозию оборудования. Основной причиной коррозии оборудования установок производства серы, эксплуатирующегося при высоких температурах, является отсутствие или недостаточно эффективная продувка его инертным газом при остановках, что приводит к образованию агрессивного конденсата. Трубные пучки теплообменного оборудования выходят из строя при забивке межтрубного пространства солевыми отложениями и сквозной коррозии металла. Причиной язвенной коррозии ребойлеров регенераторов является агрессивность гликолевого раствора, обусловленная разложением его при температуре выше 100 °С и накоплением в растворе органических кислот. Язвенная коррозия в области раздела жидкой и паровой фаз ребойлеров регенераторов аминового раствора обусловлена разложением при температуре выше 121 °С аминового раствора с увеличением его коррозионной активности. Отказы насосов обусловлены в основном разрушением подшипников поршневых компрессоров - разрушением штоков по резьбе в месте крепления поршня шпилек фланцевых соединений -  [c.69]

Трубопроводы для конденсата. Конденсат часто оказывается одним из наиболее агрессивных в коррозионном отношении растворов, что в сочетании с высокой температурой и неблагоприятным показателем pH создает определенные трудности при работе с ним. На рис. 5 показан трубопровод для конденсата из армированного пластика, изготовленный намоткой, после четырех лет эксплуатации. Эта фотография трубопровода часто появлялась на страницах курналов различных фирм. В тех же условиях эксплуатации такой трубопровод значительно долговечнее трубопроводов из меди, железа, стали или стали со свинцовой облицовкой.  [c.329]

В первую очередь от сероводородной коррозии стр)адаю г. газо-, нефтедобывающая и нефтеперерабатывающая отрасли промышленности. При добыче нефти и газа буровая вода и водный конденсат содержат агрессивные коррозионные агенты (углекислый газ, органические и неорганические кислоты, соли, сероводород), которые вызывают интенсивную коррозию металлического оборудования, изготовленного из черных металлов [ 4-8]. Во многих гаэо-и нефтедобывающих скважинах (так называемые киолые скважины ) присутствует сероводород. Коррозия в таких скважинах уже давно является весьма серьезной проблемой На некоторых нефтепромыслах течь в насооно-ком-пре кх пв 1х трубах появляется в среднем каждые 30 дней [4]. Скорость коррозии малоуглерЬдистой стали в жидкости из нефтяной скважины, насыщенной сероводородом, в 6 раз выше, чем в отсутствие сероводорода [ 7 ].  [c.47]

На Черепетской ГРЭС (номинальные рабочие параметры пара перед турбиной — давление 170 ат, температура 550° С) с котлами ТП-240 барабанного типа коррозионные повреждения под напряжением также наблюдались в конвективной части пароперегревателей котлов № 1 и № 2 в первый период эксплуатации. Конвективные пароперегреватели были изготовлены из стали 1 Х14Н14В2М(ЭИ257) в виде труб размером 32 X 5,5 мм. Изгибы труб радиусом 55 мм и 105 мм после холодной деформации термообработке не подвергались. На котле № 1 за период 1863 час эксплуатации было зарегистрировано четыре случая разрушений, на котле № 2 за 767 час — 59 случаев. Разрушения происходили исключительно в нижних изгибах малого радиуса (г = 55 мм). Трещины появлялись главным образом на внутренней поверхности труб. Металлографическое исследование показало, что трещины сначала имели межкристаллитный характер, а затем они развивались как по границам, так и по телу зерен. В этот период изгибы труб, как указано выше, не были аусте-низированы кроме того, при термической обработке они не могли свободно перемещаться. Было произведено 50 пусков котла № 1 за период 1863 час испытаний и 22 пуска котла №2 за период 757 час, что способствовало появлению повышенных механических напряжений в металле и упариванию воды в изгибах (недренируемого перегревателя). Перед первым пуском котлы № 1 м № 2 длительно промывали щелочью, а пар из барабана со значительной концентрацией щелочей конденсировался в вертикальных петлях перегревателя. После проведения аустенизации изгибов труб радиусом 55 Л1м с нагревом по методу электросопротивления разрущений такого характера уже не наблюдалось. В процессе эксплуатации не было также случаев повреждения сварных соединений труб пароперегревателей, изготовленных контактным способом. При исследовании двух контрольных стыков паропровода, не прошедших стабилизации, в одном из них, проработавшем 3500 час, была обнаружена трещина глубиной 5,1 мм у корня шва — на расстоянии примерно 5 мм от наплавленного металла. Авторы работы считают, что причина возникновения этой трещины — повышение концентрации солей и их агрессивность при упаривании конденсата между трубой и подкладным кольцом в периоды останова и пуска котла. Разрушения межкристаллит-ного характера отмечены в нескольких случаях, в том числе и в дренажных трубках и в сварных соединениях труб (размеры 219 X X 27 мм) в месте контакта поверхности трубы с подкладным кольцом. В трубе размером 133 X 18 мм, находившейся в течение года в кон-  [c.342]

В заключение следует отметить, что здесь рассмотрены некоторые возможные варианты возникновения разрушений металлов в турбоустановках в процессе образования и испарения частиц конденсата в узкой зоне сте пеней влажности. Сегодня еще недостаточно данных об этих процессах солеотлон 0ния и появления микротрещин в турбоустановках АЭС для полного рассмотрения имеющихся аварий в турбинах и СПП. Последние результаты исследований МЭИ [7.18] и ряда зарубежных фирм [7.19, 7.20] показывают, что требуется дальнейшее изучение образования микротрещин, коррозии и вибрационно-коррозионного растрескивания элементов проточных частей турбоустановок. Решение этой проблемы требует наряду с улучшением технологии подготовки воды строгого выполнения требований по показателю pH, по предельно допустимому содержанию наиболее агрессивных примесей, а также нового подхода при проектировании проточных частей турбин АЭС.  [c.308]

Изготовление коррозионностойкого химического оборудования является, по-видимому, второй по масштабу областью применения тантала. Помимо прочности и по существу полно11 инертности к воздействию сильно агрессивных нещелочных сред при обычных температурах (за исключением р2, HF и свободного SOa), тантал характеризуется чрезвычайно высокими коэф( )ициентами теплопередачи. Последнее обстоятельство позволяет применять конструкции с тонкими стенками для химического оборудования в случае отсутствия коррозии и пленок продуктов коррозии на поверхности, пузырькового типа парообразования па поверхности при нагревании большинства жидкостей и образования каплеобразного конденсата на паровом или конденсирующей стороне теплообменника. Из всех металлов тантал больше других напоминает по коррозионной стойкости стекло, и его часто используют в химическом машиностроении в сочетании со стеклом, футерованной стеклом сталью и другими неметаллическими материалами.  [c.740]


Прежде всего, одним из главных определяющих факторов является агрессивность среды. Все коррозионные разрушения дисков происходят в зоне расширения пара, близкой к фазовому переходу. Здесь действуют те же механизмы концентрирования агрессивных примесей, которые рассматривались выше (см. 16.4) появление первых насыщенных агрессивными веществами капель конденсата, циклическое подсушивание и увлажнение отложений в застойных зонах (зазорах в шпоночных пазах, хвостовых соединениях и т.д.). Чем выше концен-трацш агрессивных примесей, тем менее коротким является инкубационный период и тем быстрее развивается возникшая коррозионная трещина. Очень большое влияние на инкубационный период оказывают напряжения, с ростом которых инкубационный период также сокращается. На рис. 17.16 показано совместное влияние агрессивности среды и напряжений на время до появления трещины коррозии под напряжением для роторных сталей ЦНД. В водном растворе NaOH в количестве 28—35 % инкубационный период снижается примерно в 10 раз по сравнению с испытаниями в чистом паре.  [c.488]


Смотреть страницы где упоминается термин Коррозионная агрессивность конденсата : [c.31]    [c.53]    [c.160]    [c.10]   
Смотреть главы в:

Кислородная коррозия оборудования химических производств  -> Коррозионная агрессивность конденсата



ПОИСК



Конденсат

Конденсат коррозионная. агрессивност

Конденсат коррозионная. агрессивност

С агрессивная



© 2025 Mash-xxl.info Реклама на сайте