Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Структура пластических деформаций в вершине трещины

Структура пластических деформаций в вершине трещины  [c.74]

Влияние температуры на распределение трещиностойкости различных зон сварного соединения проявляется (рис. 3.2, 3.3) в том, что при понижении температуры неоднородность трещиностойкости уменьшается. Это связано с локализацией областей пластических деформаций в вершине трещины и уменьшением влияния макронеоднородности соединений. Различия в трещиностойкости зон в области низких температур в основном определяются особенностями структуры металла (величиной зерна, плотностью дислокаций и т.п.).  [c.81]


Созданию высокой химической активности в вершине трещины содействует и механический фактор. Как известно, механические напряжения в вершине трещины очень высоки. Даже при низких значениях интенсивности напряжений материал в вершине трещины находится под действием напряжений, близких к пределу текучести. Это создает благоприятные условия для прохождения в вершине трещины локальных деформаций, в результате чего на кромках ступеней сдвига (в местах выхода дислокаций на поверхность) плотность анодного тока может резко увеличиваться. Оба фактора не только способствуют повышению плотности анодного тока, но и содействуют в этом друг другу. Например, если структура и состав сплава таковы, что в нем имеются выделения по границам зерен, отличающиеся по электрохимическим характеристикам от матрицы, то потенциальная чувствительность к межкристаллитной коррозии может быть реализована путем прохождения в вершине трещины пластических деформаций, разрушения пассивной пленки и активации анодных процессов по границам зерен. Это же положение относится в полной мере и к сегрегациям внутри твердого раствора, когда суще-  [c.57]

Таким образом, свойством кристаллической решетки поддерживать свою устойчивость без формирования свободной поверхности является способность реализовывать последовательность тех процессов эволюции ее дефектной структуры, которые ей присущи по ее природе и которые могут быть пропущены в процессе эволюции в результате условий нагружения. Реализуемые условия воздействия могут влиять на более быстрое и менее полное протекание процесса пластической деформации, например, в силу сильной локализации этого процесса и ограничения его протекания по условиям стеснения деформации в вершине распространяющейся усталостной трещины.  [c.144]

Еще одно преимущество крупнозернистой структуры в том, что ей соответствуют более высокие значения К, открывающие стадию II, а стадия I оказывается более продолжительной. Было показано [53], что с переходом к стадии II наступает 2—3-кратное увеличение da/dN. Это можно истолковать, как результат снижения обратимости сдвиговой деформации. Устойчивые полосы скольжения, действующие на стадии I, таковы, что деформация у вершины трещины совершается с малым деформационным упрочнением. В режиме стадии II пластическая зона трещины обнимает большее количество зерен, и аккомодация деформации между ними требует под-  [c.363]


Формирование свободной поверхности связано с предварительным созданием в материале определенной фрагментированной структуры, которая в той или иной мере отражает динамику процессов пластической деформации. Они локализованы в вершине распространяющейся усталостной трещины в пределах возникающей при нагружении зоны пластической деформации и реализуются на разных масштабных уровнях [36-40, 55-68].  [c.142]

Для такой системы поток энтропии dS за интервал времени dt характеризуется суммой потока в результате обмена с окружающей средой dSp и производства энтропии внутри самой системы dSj (внутри зоны пластической деформации) [72, 73]. Применительно к формированию зоны пластической деформации принципиальное значение имеет скорость протекания процесса, которая полностью зависит от частоты приложения нагрузки. Поэтому далее будем иметь в виду поток энтропии за интервал времени dN, понимая, что реализуемая последовательность диссипативных структур будет зависеть не только от длины трещины и способа подвода энергии к вершине трещины (условия нагружения), но и от скорости при.ложения нагрузки.  [c.147]

Таким образом, точка пересечения кинетических кривых близка к среднему размеру максимальной ячейки дислокационной структуры 2-10 м, формирующейся перед вершиной усталостной трещины в зоне пластической деформации, с точностью разброса экспериментальных данных. Эта величина разделяет два масштабных подуровня — мезо I и мезо II. Поэтому существование в середине кинетической диаграммы особой точки для сплавов на различной основе является общим синергетическим признаком нарушения принципа однозначного соответствия, когда происходит усложнение механизма поглощения энергии у вершины усталостной трещины, и это вызывает изменение кинетического процесса в случае реализуемого нагружения материала с постоянной нагрузкой. Именно в этот момент происходит изменение в закономерности роста усталостной трещины, которое определяется изменением формирования параметров рельефа излома и переходом от линейной к нелинейной зависимости скорости роста трещины или шага усталостных бороздок от длины трещины. Многочисленные измерения кинетических параметров роста трещины в виде шага уста-  [c.195]

Развивая свой подход к единому описанию роста трещин в рамках использования зоны пластической деформации как характеристики прироста трещины в цикле нагружения Лю с соавт. конкретизировал структуру коэффициента пропорциональности уравнения (5.18) и заменил предел текучести при монотонном растяжении на циклический <3ус предел текучести [62, 63]. Он исходил из условия пропорциональности скорости роста усталостной трещины раскрытию в ее вершине. Дополнение к модели получил принцип дискретного продвижения трещины, учитывающий факт дискретного подрастания трещины за счет  [c.239]

Поскольку зона разрушения сконцентрирована в малом объеме у вершины трещины, т. е. всегда более локальна, чем предшествующая разрушению пластическая деформация, процесс разрушения особенно чувствителен к локальным свойствам и. тонкой структуре материала.  [c.12]

Под действием переменных напряжений в деталях механизмов и металлоконструкций ПТМ происходит постепенное накопление повреждений. Этот процесс называется усталостью, а способность деталей сопротивляться усталости — циклической прочностью или выносливостью. В начальной стадии накопления циклических повреждений происходят пластические деформации отдельных кристаллов, из которых состоит металл. Эти пластические деформации вызывают перераспределение напряжений, и на поверхности ряда кристаллов возникают линии сдвига. Пластическое деформирование сопровождается упрочнением отдельных зон кристаллов и одновременно разрыхлением структуры в области внутрикристаллических дефектов. Под действием переменных напряжений, превышающих определенный уровень, начинают образовываться из линий сдвига микротрещины. Развиваясь, микротрещины переходят в макротрещины. Последние приводят к уменьшению прочностного сечения детали, и после того как размер трещины достигает предельного значения, наступает хрупкое разрушение детали. Таким образом, процесс усталостного разрушения можно разделить на две стадии [27]. Первая стадия — до начала образования макротрещины, вторая — от момента ее образования до разрушения детали. В настоящее время еще нет достаточно апробированных общих оценок закономерностей распространения трещин в деталях ПТМ сложной конфигурации. В связи с этим расчеты циклической прочности как до образования макротрещин, так и до полного разрушения носят идентичный характер [20]. Известно, что пределы выносливости, определенные по условию образования трещины и по условию оконча тельного разрушения, совпадают при коэффициентах концентрации аа < 2 -Ь 3. При высоких коэффициентах концентрации количество циклов, при которых происходит развитие макротрещины с момента ее образования до разрушения сечения, составляет 70—80 % от общего ресурса детали. Развитие усталостной трещины происходит в результате циклических деформаций в области вершины трещины. Установлено, что в общем случае распространение макротрещины от появления до полного разрушения детали можно разделить на три этапа [27], Первый этап характеризуется малой скоростью распространения трещины вдоль полос скольжения. На втором (основном) этапе трещина растет с примерно постоянной скоростью. На третьем этапе, когда трещина имеет уже большие размеры, скорость роста увеличивается и происходит мгновенное хрупкое разрушение (долом) детали. В то же время экспериментальные и теоретические исследования так же, как и эксплуатационные наблюдения, свидетельствуют о том, что не всегда появление трещины усталости приводит к разрушению детали (образца) [27]. В ряде случаев возникают нераспространяющиеся трещины или трещины с весьма малой скоростью роста. Очевидно, что разработка и использование возможностей уменьшения  [c.121]


Рассмотрим твердое тело с кристаллической структурой произвольной формы и конечных размеров, Пусть в теле имеется несплошность начальной длины /о в направлении последующего роста усталостной трещины. Тело нагружают случайным спектром нагрузок в области упругости. В результате внешнего нагружения тело может находиться в состоянии покоя или движения. В вершине несплошности на удалении от поверхности тела реализуется объемное напряженное состояние материала. Оно может быть одинаковым по величине характеризуемой степенью стеснения пластической деформации, для различных условий внешнего нагружения. Поэтому в дальнейшем будем характеризовать процесс роста трещины последовательностью величин (Оэ)ь являющихся последовательностью эквивалентных напряжений каждого цикла внешнего силового нагружения. В своем развитии от начального размера /о до критической длины 1с, начиная с которой наступает окончательное разрушение твердого тела без подвода энергии извне, трещина совершает конечное число приращений Ьс  [c.248]

Структура троостита при испытаниях в воздухе обладает наибольшей сопротивляемостью развитию усталостной трещины (см. рис. 44). Однако при наводороживании трещина растет гораздо быстрее, скорость ее роста в низкоамплитудной области повышается примерно в 15 раз по сравнению с ее значением в воздухе. Поверхность разрушения образцов в воздухе в этой области имеет ячеистое строение. При наводороживании трещина распространяется по границам зерен. По мере роста А.К на поверхности излома при разрушении в воздухе появляются признаки, присущие разрушению сдвигом и сколом на некоторых участках видны зоны с неравномерно расположенными усталостными полосами. Под влиянием водорода характер межзеренного разрушения выражается более четко, чем в низкоамплитудной области. При больших значения Д/С на поверхности разрушения данной структуры в воздухе впадины становятся менее удлиненными, что свидетельствует об изменении уровня пластической деформации в вершине трещины. Водород в этой области не оказывает существенного влияния ни на скорость роста трещины, ни на процесс разрушения.  [c.93]

Разрушение, возникающее под действием циклически изменяющихся напряжений, называется с/иалостоб/о. Усталостью сегодня определяется степень долговечности почти всей техники. Это основной путь разрушения фюзеляжей, вагонов, мостов, шестерен, тросов, рельсов, подшипников и т.д. Усталость - следствие необратимых изменений дислокационной структуры, накапливаемых при циклической пластической деформации в вершине трещины. Циклические напряжения являются знакопеременными, т.е. растяжение сменяется сжатием. Число циклов напряжения до возникновения разрушения зависит от приложенного напряжения. Многие металлы имеют предел выносливости, т.е. при напряжении ниже предела выносливости металл не подвержен усталостному разрушению.  [c.163]

Рассмотрим зону пластической деформации в вершине распространяющейся усталостной трещины, формирующейся в каждом цикле приложения внешней нагрузки, как открытую систему, эволюция которой происходит самоорганизованно и упорядоченно путем формирования некоторой последовательности диссипативных структур в процессе непрерывного обмена энергией с окружающей средой. Предпосылкой для такого рассмотрения является не только неоднородность процесса деформации в пределах указанной зоны при ее расположении непосредственно у свободной поверхности образца или элемента конструкции, но и формирование поверхности разрушения внутри зоны в результате исчерпания пластической деформации в каждом цикле приложения нагрузки.  [c.147]

Измерения микротвердости в нержавеющей стали 304L позволили определить размеры двух зон пластической деформации перед вершиной трещины. В результате этого удалось скорость роста трещины (шаг усталостных бородок) описать уравнением типа (5.33), но с более сложной структурой коэффициента пропорциональности [124]. Полученный результат отражает тот факт, что скорость развития усталостной трещины прямо пропорциональна размеру зоны пластической деформации.  [c.248]

Снижение амплитуды переменных нагрузок, сопровождающееся снижением СРТ ниже 5-10 м/цикл, может проявлять структурную чувствительность материала, что, очевидно, связано с малыми размерами зоны пластической деформации в вершине усталостной трещины. Выражается структурная чувствительность в зарождении и росте трещины по границам раздела щ- и (3 ,-фаз [87, 83]. Очаг разрушения при этом представляет фасетку излома с выраженной двухфазовой пластинчатой структурой материала, наблюдаемой обычно при исследовании материала в плоскости шлифа.  [c.362]

Вязкость разрушения. Разрушение наступает, когда поле напряжения у вершины трещины достигает критической величины, т. е. К становится равным Кс — вязкости разрушения материала. Подобно пределу текучести величина Кс является механическим свойством материала, которое зависит от температуры, скорости нагружения и структуры. Однако Кс также зависит и от степени развития пластической деформации у вершины трещины. Если область пластической деформации мала по сравнению с размерами образца и длиной трещины, Кс имеет минимальное значение и рассматиравается как константа Kj — вязкость разрушения в условиях плоской деформации.  [c.14]

Таким фактором является интенсивная пластическая деформация у вершины трещины, где, в том числе в условиях плоской деформации, развивается ячеистая или субзереная структура [29, 163]. Образование подобной структуры у вершины усталостной трещины - процесс в достаточной степени общий для многих материалов особенно с высокой энергией дефектов упаковки [29].  [c.253]


В настоящее время ясно, что закономерности РУТ связаны с процессами, происходящими в зоне пластической деформации у вершины трещины. Изменение размеров зоны пластической деформации у вершины усталостной трещины на первой и второй стадиях периода распространения трещины во взаимосвязи со структурным состоянием материала хорошо иллюстрирует рис. 4.19. В этой зоне пластической деформации распространяющейся трещины происходит вторичная эволюция дислокационной структуры сформированной в периоде зарождения усталостных микротрещин. Так, непосредственно у кончика трещины, в ряде случаев обнаружена небольшая бездислокационная зона (например, у образцов из Мо и W), размер которой превышает среднее расстояние между дислокациями в пластической зоне [56, 57]. При большом удалении от вершины трещины наблюдаются дислокационные скопления, появление которых предсказывает теоретическая модель Билби-Коттрелла-Свиндена (B S-теория) [58] Они связаны с зарождением сдвиговых трещин [28, 56, 58]. При циклическом деформировании фольги из железа, непосредственно у вершины трещины, была обнаружена зона с мелкоячеистой субструктурой с размером ячеек 0,2-0,3 мкм, а на расстоянии от вершины трещины 20 мкм раз-  [c.134]

Металлографическое изучение деформации биметаллов целесообразно проводить с использованием комплексной методики экспериментирования, основанной на применении автоматических телевизионных анализаторов изображения. Это позволяет осуществлять количественную оценку накопления пластической деформации по числу полос скольжения в анализируемых участках материала, измерять длину трещин и площадь пластической деформации в их вершинах. Наряду с анализом деформационной структуры методика предусматривает проведение микрорентгеноспектраль-ного анализа и фрактографическое изучение изломов с помощью растровой электронной микроскопии. Ниже приведены примеры исследования процесса накопления пластической деформации в переходных зонах образцов биметалла Ст. 3+Х18Н10Т, подвергнутых циклическому нагружению на установке ИМАШ-10-68. Подсчет числа полос скольжения производится с помощью телевизионного анализатора изображения на площади, заключенной в рамку сканирования (рис. 1). Образец, размещенный на предметном столике автоматического количественного микроскопа РМС , перемещался по заданной программе вдоль выбранной базы измерения, ширина которой была равна высоте, а длина соответствовала ширине рамки сканирования, умноженной на число перемещений столика.  [c.90]

Основой механосинтеза является механическая обработка твердых смесей, при которой происходят измельчение и пластическая деформация веществ, ускоряется массоперенос, а также осуществляется перемешивание компонентов смеси на атомарном уровне, активируется химическое взаимодействие твердых реагентов [103—105]. В результате механического воздействия в приконтактных областях твердого вещества создается поле напряжений. Релаксация его может происходить путем выделения тепла, образования новой поверхности, возникновения различных дефектов в кристаллах, возбуждения химических реакций в твердой фазе. Преимущественное направление релаксации зависит от свойств вещества, условий нагружения (мощности подведенной энергии, соотношения между давлением и сдвигом), размеров и формы частиц. По мере увеличения мощности механического импульса и времени воздействия происходит постепенный переход от релаксации путем выделения тепла к релаксации, связанной с разрушением, диспергированием и пластической деформацией материала и появлением аморфных структур различной природы. Наконец, каналом релаксации поля напряжений может быть химическая реакция, инициируемая разными механизмами, такими как прямое возбуждение и разрыв связи, которые могут реализоваться в вершине трещины, локальный тепловой разогрев, безызлучательный распад экситонов и др.  [c.38]

Для объяснения осЬбенностей поведения малых трещин необходимо рассмотреть изменение напряженно-деформированного состояния и дислокационной структуры в зоне циклической пластической деформации у вершины этих треи ин в процессе их роста.  [c.168]

Отсутствие зон ускорения и торможения трещины при выбранных условиях программного нагружения очевидно можно объяснить тем, что напряжение течения в этом случае в 2-3 раза выше предела текучести при однобоном растяжении. Это обусловлено тем, что в вершине трещины возникает объемное напряженное, состояние [409L в Также тем, что скорость деформации при циклическом нагружении больше, чем при статическом деформировании. Приложение напряжений в этих y flOBHHjt приводит, по-видимому, к образованию впереди растущей трещины пластической зоны настолько малой протяженности, что и создаваемое повреждение структуры металла не оказывает заметного влияния на кинетику роста трещины при последующем цикле нагружения.  [c.350]

Имеются указания относительно того, что когда процесс коррозионного растрескивания связан с наличием активных участков, тогда влияние напряжений на растрескивание состоит в создании пластической деформации, и поэтому такой вид разрушения будет наиболее вероятен для пластичных металлов пониженной прочности. Когда механизм растрескивания обусловлен охрупчиванием металла в вершине трещины, тогда становится значимой величина работы деформации, а это означает, в соответствии с уравнением (5.1), что прн разрушении пластическая деформация должна быть минимальной, а упругая энергия — максимальной. Такие условия наиболее часто удовлетворяют материалам с высокими значениями предела текучести. С большой достоверностью установлено, что водородное охрупчивание сталей становится наиболее заметным прн повышеинн предела текучести, хотя изменения структуры илн состава, которые способствуют изменению значения предела текучести илн вязкости разрушения, также могут оказывать влияние иа электрохимические характеристики и диффузию водорода. Изменения этих параметров могут оказывать такое же значительное влияние на коррозионное растрескивание, как и изменения прочностных характеристик.  [c.239]

Итак, сопротивление разрушению твердых тел определяется диссипативными процессами, в течение которых в материале происходит формирование зон поверхностных переходных слоев - зоны скопления дислокаций и аморфной зоны с фрактально пористой структурой. Показателем диссипативных свойств материала при самоподобном разрушении является фрактальная размерность, учитывающ.ая вклад в диссипацию энергии двух основных механизмов пластической деформации (образование зоны скопления дислокаций) и образования иесппошностей (образованиие аморфной зоны и переходного слоя вблизи вершины трещины).  [c.131]

Процесс пластической деформации материала, реализующийся у кончика трещины с формированием нескольких зон, подтверждается результатами прямого наблюдения параметров дислокационной структуры у кончика трещины и под поверхностью излома [36-40]. В непосредственной близости к вершине трещины имеет место дискретное изменение плотности дислокаций на границе циклической зоны и зоны процесса. Измерения твердости на сталях под поверхностью излома после усталостного разрушения в области много-и малоцикловой з сталости [33, 35, 41, 42] показывают, что в результате пластической деформации материала в вершине распространяющейся усталостной трещины его наклеп по мере удаления от излома характеризуется двумя зонами. Выпол-  [c.138]


Характеристический размер масштаба протекания пластической деформации определяется (ограничен сверху) объемом, рднрродно заполненным дислокациями. При нагружении возникают мезодефекты — конфигурации неоднородных дисг локаций. В ансамбле дислокаций в силу неоднородности реализуемого процесса деформации по мере удаления от вершины усталостной трещины и вдоль фронта трещины, а также в силу различий, связанных с разными ветвями нагружения и разгрузки, возникают ротационные моды. Частичные дисклинации фрагментируют зону на ряд разориентированных областей с увеличением размера фрагмента вплоть до 2,10 м [57, 58, 65]. Этр представление о процессе накопления дефектов в пределах зоны пластической деформации подтверждается статистическим анализом размеров ячеек дислокационной структуры [78]. Результаты нализа распределения размеров ячеек дислокационной структуры по размерам после выполненных испытаний сплава Fe-Si с постоянной деформаг цией показали, что средний размер ячейки близок  [c.148]

Переход на вторую стадию разрушения в мезотуннелях приводит к регулярному упругому раскрытию вершины трещины в каждом цикле приложения нагрузки, что сопровождается каскадом событий, связанных с формированием усталостных бороздок от дислокационных (единичных) трещин в полуцикле разгрузки материала в результате ротаций объемов материала в пределах зоны пластической деформации. Разрушение перемычек при этом может происходить путем сдвига и путем ротаций объемов материала. На начальной стадии формирования усталостных бороздок ротации в перемычках маловероятны, поскольку масштабный уровень для реализации этого процесса является еще недостаточным, чтобы возможно было формирование сферических частиц. Однако по мере продвижения трещины и нарастания скорости ее роста в результате увеличения коэффициента интенсивности напряжений возникает ситуация, когда формирование сферических частиц становится возможным. Этот переход происходит при достижении следующего масштаба параметров дефектной структуры внутри зоны, разграничивающего мезоуровни I и П.  [c.180]

Ахенбах с соавторами [6] рассмотрел примерно ту же задачу, по с учетом инерционных эффектов. Предполагалось, что напряжения и деформации можно представить в виде произведения функции, каждая из которых зависит только от одной из полярных координат системы с центром в вершине, причем зависимость от радиальной координаты имеет вид г . Полученные результаты относятся к исследованию поведения показателя у. Установлено, что показатель у растет, начиная со значения —1/2, с убыванием текущего касательного модуля от его начального упругого значения исследована также зависимость компонентов напряжений в окрестности вершины трещины от угловой координаты. Установлено, что в общем случае результаты намного сильнее зависят от величины упрочнения в зоне пластического течения, нежели от скорости движения трещины. Точно так же, как и в работе Амазиго и Хатчинсона, найдено, что асимптотика поля содержит множитель, структура которого не зависит от условии нагружения вдали от вершины трещины,  [c.96]

В лабораторных условиях замедленное разрушение удается воспроизвести, если исследуемый материал (образец) имеет нестабильную или неоднородную структуру или если неоднородны исходные условия испытаний, к которым можно отнести нарушение оптимальных условий термической обработки (перегрев, отсутствие отпуска и др.), наводороживание, местную пластическую деформацию, воздействие жидких сред, в том числе коррозионно-нейтральных, наличие хрупких слоев на поверхности, а также неоднородность поля напряжений (перекос, внецентренность и др.) и т. д. Общим для всех этих состояний и условий является понижение пластической энергоемкости тела в целом (образца). При переходе к испытаниям тех же материалов, но в условиях или состояниях, способствующих равномерному распределению деформации по объему во времени, склонность материала к замедленному разрушению исчезает или уменьшается. Так, например, С. С. Шуракову [24] удалось наблюдать временную зависимость прочности при испытании образцов из стали ЗОХНЗА только в закаленном без отпуска состоянии (рис. 19.7). Я. М. Потак [17] установил временную зависимость прочности стали ЗОХГСА в закаленном без отпуска состоянии при осевом растяжении только у надрезанного образца на гладком образце из стали в том же состоянии склонность к замедленному разрушению не проявилась. Удалось воспроизвести замедленное разрушение на образцах из стали ЗОХГСА в структурностабильном состоянии, после закалки и отпуска при 510° С, но в условиях резкой исходной неоднородности поля напряжений. Образцы имели острые кольцевые надрезы, в вершине надрезов были созданы предварительным нагружением трещины, испытание проводили путем растяжения с перекосом на податливых испытательных машинах.  [c.151]


Смотреть страницы где упоминается термин Структура пластических деформаций в вершине трещины : [c.249]    [c.71]    [c.143]    [c.448]    [c.132]    [c.132]    [c.321]    [c.305]    [c.53]    [c.233]    [c.213]    [c.149]    [c.168]    [c.580]    [c.126]    [c.287]   
Смотреть главы в:

Неодномерные упругопластические задачи  -> Структура пластических деформаций в вершине трещины



ПОИСК



Вершина

Деформация пластическая

Пластическая деформаци

Пластическая деформация у вершины трещины



© 2025 Mash-xxl.info Реклама на сайте