Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства механической энергии

СВОЙСТВА МЕХАНИЧЕСКОЙ ЭНЕРГИИ  [c.65]

Отметим два важных свойства механической энергии, которые широко используются в современных методах расчета конструкций при любых деформациях растяжении, кручении, изгибе и т. д.  [c.65]

О других свойствах механической энергии будет сказано далее, в соответствующих параграфах курса.  [c.67]

Свойства механической энергии  [c.57]

Отметим важное свойство механической энергии, широко используемое в рас-чета.х элементов конструкций  [c.63]


Волны передают механическую энергию, а скорость их перемещения определяется лишь свойствами колеблющейся среды и равна  [c.126]

Для передачи механической энергии за счет сил упругости в период деформации или для поглощения ударных нагрузок, вибраций, возникающих в процессе работы механизмов, применяются пружины. Пружины подразделяются на винтовые и невинтовые. Винтовые пружины выполняются из проволоки круглого сечения, но могут иметь в поперечном сечении прямоугольную форму. Проволока круглого сечения по механическим свойствам подразделяется на проволоку I, П, И1 классов, а по точности изготовления — на проволоку нормальной и повышенной точности — И класса. В графе основной надписи, где указывается материал детали, перечисленные параметры приводятся совместно со ссылкой на соответствующий стандарт. Тип проволоки П1 класса нормальной точности, диаметром 2,0 мм обозначается  [c.124]

Изменение конструкции объекта. Можно указать два способа снижения колебаний, общих для всех механических систем. Первый способ состоит в устранении резонансных явлений. Если объект обладает линейными свойствами, то задача сводится к соответствующему изменению его собственных частот. Для нелинейных объектов должны выполняться условия отсутствия резонансных явлений. Второй способ заключается в увеличении диссипации механической энергии в объекте. Этот способ виброзащиты, называемый демпфированием, будет рассмотрен ниже.  [c.278]

При доказательстве теоремы Лагранжа об устойчивости консервативной системы и только что доказанной теоремы об асимптотической устойчивости диссипативной системы мы нигде не использовали того факта, что функция Е имеет смысл механической энергии системы. При доказательстве теоремы Лагранжа были использованы лишь следующие три свойства функции Е  [c.232]

С одной стороны, это означает системность самой структуры математической модели ЭМУ, что связано с необходимостью учета всей совокупности различных его внутренних физических процессов. Основное по значимости и функциональному назначению энергетическое преобразование в ЭМУ (из электрической в механическую энергию или наоборот) неизменно сопровождается сопутствующими преобразованиями, рассеянием энергии — созданием теплового поля, силового поля вибраций, магнитного поля рассеяния. Именно совместное проявление взаимосвязанных физических процессов — электромагнитных, тепловых, силовых формирует в итоге рабочие свойства ЭМУ и определяет во многих случаях их функциональную пригодность. Поэтому для строгого решения задач в общем случае ЭМУ должно рассматриваться как система с неоднородными, различающимися по физической сущности процессами, в которой существуют дополнительные каналы преобразования энергии, зависимые в энергетическом плане от основного, т.е. существующие за счет его энергетической не-идеальности.  [c.97]


Тепловой расчет. Конструктивно силовые червячные передач выполняют обычно в закрытом исполнении (редукторы). При длительной работе червячного редуктора происходит значительное-тепловыделение. Температура масла, залитого в редуктор, повышается, вязкость масла падает, и оно в значительной мере теряет свои смазывающие свойства. Для обеспечения нормальной работы передачи необходимо, чтобы количество теплоты, выделяющееся в результате превращения механической энергии в тепловую, не превышало количества теплоты, отводимой от передачи естественным или искусственным путем. Поэтому, кроме геометрического и прочностного расчетов, для червячных редукторов обязательным яв.тя-ется тепловой расчет его задача состоит в том, чтобы температура масла в картере редуктора не превышала допускаемого значения 1Д] = 80. .. 90 С.  [c.485]

Тепловой расчет и смазка червячных передач. Механическая энергия, потерянная в передачах, переходит в тепловую, вызывающую нагрев деталей и масла. Ввиду невысокого к.п.д. червячные передачи работают с большим тепловыделением. Однако нагрев масла до температуры свыше 95° приводит к резкому снижению его вязкости и защитных свойств и, следовательно, к появлению опасности заедания передачи.  [c.177]

Критериальные зависимости (7.7) для термодинамических свойств могут быть получены применением расширенного закона соответственных состояний к превращениям энергии при различных процессах изменения состояния тела (при нагревании тела, при фазовом переходе, при изменении поверхности тела, при диссипации механической энергии, при распространении или передаче теплоты и т. п.) или же, как это было показано на примере т , из анализа размерностей.  [c.218]

Смешанные способы возбуждения возмущений. В тех случаях, когда требуется получить и сохранить возмущения малой амплитуды, используются электрические и электронные способы возбуждения. В этих способах для приведения в действие преобразователя, превращающего электрическую энергию возбуждающего тока в механическую энергию волны напряжений в теле, используется переменный ток, частота волн при этом лежит между 20 кГц и 50 мГц. С помощью соответствующих контуров можно получать или непрерывный ряд волн, или импульсы, состоящие из коротких серий волн высокой частоты, повторяющихся регулярно с низкой частотой. Для этого используются преобразователи, принцип действия которых основан на магнитострикционном или пьезоэлектрическом эффектах. Материалами для пьезоэлектрических преобразователей кроме кристаллов кварца служат искусственные ферроэлектрические кристаллы (в частности, титанат бария в виде поликристаллической керамики), имеющие по сравнению с естественными кристаллами большую чувствительность и меньшее сопротивление. Однако температура Кюри искусственных кристаллов сравнительно низка (при нагревании выше этой температуры пьезоэлектрические свойства пропадают). Материалами для магнитострикционных преобразователей служат ферромагнитные элементы и сплавы. Максимальные деформации в обоих случаях определяются механическими свойствами материала тела. Для возбуждения слабых импульсов напряжений используют искровой способ, предложенный Кауфманом и Ревером [52]. Преимущество этого способа состоит в том, что искра действует как точечный источник, тогда как пьезоэлектрический преобразователь, благодаря дифракции, дает сложную волновую картину.  [c.17]

Закон сохранения энергии выражается в постоянстве суммы механической энергии наблюдаемого движения и энергии молекулярного движения. Оба вида энергии можно рассматривать как составляющие различных видов механической энергии. Если пренебречь внутримолекулярными силами, то свойство вязкости определяется средними кинематическими характеристиками состояния молекулярного движения и свойством инерции молекул жидкости.  [c.154]

При движении жидкости в трубе происходит потеря механической энергии, следовательно, должны быть области, в которых влияние вязкости существенно. Вследствие прилипания жидкости к стенкам трубы мгновенная и средняя скорости жидкости на стенках равны нулю. Поэтому в непосредственной близости у стенок трубы не может быть интенсивного перемешивания жидкости. Это служит основанием для вывода, что непосредственно около стенок резкое изменение скорости должно определяться свойством вязкости жидкости и что около стенок должен существовать слой с ламинарным движением. Опытные данные хорошо подтверждают этот вывод.  [c.155]


Получение регулярных потоков с малыми потерями при торможении в диффузорах — задача гораздо более трудная, чем получение ускоренных потоков с малыми потерями в соплах. В диффузорах идеальные обратимые движения нарушаются за счет тех же причин и свойств среды, что и в соплах, однако при торможении потоков влияние перечисленных выше факторов проявляется в более сильной степени. В диффузорах из-за движения против возрастающего давления условия отрыва потока от стенок более благоприятны, чем в соплах, в которых движение ускоряется — частицы стремятся двигаться по потоку за счет падения давления. Для избежания отрывов на контурах диффузоров в дозвуковой части они должны быть плавными, без стыков и изломов и без слишком больших углов расширения. В сверхзвуковых диффузорах поток газа на входе сверхзвуковой и поэтому, как правило, у входа в диффузор образуются скачки уплотнения, в которых возникают большие потери механической энергии.  [c.95]

Теорема Ляпунова дает достаточные условия устойчивости движения. Применение этой теоремы требует знания функции F, обладающей вполне определенными свойствами. Общих методов построения таких функций нет. Однако во многих практически важных случаях функцию V можно построить, если известны первые интегралы уравнений возмущенного движения. Например, при доказательстве теоремы Лагранжа об устойчивости положения равновесия консервативной системы в качестве функции V годилась полная механическая энергия системы Е.  [c.518]

Если принять основные воззрения механической теории теплоты, то самое выдающееся свойство тепловой энергии будет заключаться в том, что, хотя в нагретом теле непрестанно имеет место быстрое движение мельчайших частиц, однако, несмотря на это, мы не замечаем никаких изменений во внешне воспринимаемом состоянии тела, в то время как обычно, когда какое-либо тело движется, мы ясно видим непрерывное изменение состояния тела с течением времени.  [c.470]

Обезжиривание с помощью ультразвука. Обезжиривание растворителями, щелочными и эмульсионными моющими составами ускоряется при проведении процесса в ультразвуковом поле. Этот способ очистки нашел применение для удаления из изделий небольщих размеров с глубокими или глухими отверстиями масла, нагара, остатков полировочных паст и других загрязнений. Ультразвуковой метод очистки основан на создании высокочастотных колебаний в жидкостях, применяемых в качестве моющих растворов. Сообщаемые жидкостям колебания обладают большой механической энергией, обеспечивающей разрушение и отрыв частичек загрязнений при непрерывной подаче раствора на поверхность изделий. В зависимости от состава и свойств загрязнений процесс может длиться от нескольких секунд до нескольких минут. Ультразвуковую очистку проводят в специальных ваннах, снабженных магнито-стрикционными, пьезокерамическими или ферритовыми преобразователями. Наиболее распространены ультразвуковые ванны УЗВ-15М, УЗВ-16М и УЗВ-18М.  [c.212]

Технологические процессы механической обработки связаны главным образом с изменением формы, размеров, положений и частично с изменением физических свойств обрабатываемых объектов. Такие процессы совершаются за счет затраты и преобразования механической энергии и составляют область механической технологии соответствующих материалов металла, дерева, волокнистых материалов и т. д.  [c.5]

Платиновые Р1 —Со-и Р1 —Ре Высокие механические и магнитные свойства. Удельная энергия до 45 кДж/м Миниатюрные магниты  [c.23]

Композиции На основе однодоменных частиц Ре и Ре—Со Хорошие механические и магнитные свойства. Удельная энергия до 26 кДж/м Перспективны, но промышленное применение ограничено из-за сложной технологии. Подвижные магниты автомобильных измерительных приборов, тормозные устройства счетчиков, роторы микродвигателей  [c.24]

Применяемая в машиностроении мягкая эластичная резина обладает большим относительным удлинением и может многократно переносить повторные деформации, поглощая и рассеивая при этом существенную часть подводимой механической энергии. Методы испытания механических и иных свойств резины стандартизованы, но характеризуют лишь образцы определенных габаритов. Однако форма и масштаб резинового изделия существенно сказываются на его механических свойствах. Объем резины при деформации практически не изменяется. Длительная статическая или многократно повторная динамическая деформации вызывают утомление резины, которое ведет к снижению ее прочности.  [c.394]

Замечательными свойствами электрической энергии являются относительная простота техники преобразования механической энергии в электрическую широкая возможность передачи электрической энергии по проводам. Электронный транспорт переменного тока высокого напряжения экономически осуществляется на сотни (до четырехсот) километров. Намечаемое применение постоянного тока высокого напряжения позволит еще увеличить даль-  [c.12]

В зависимости от задач исследования рассматривают техническую или химическую термодинамику, термодинамику биологических систем и т. д. Т е х и и ч е-ская термодинамика изучает закономерности взаимного превращения тепловой и механической энергии и свойства тел, участвующих в этих превращениях. Вместе с теорией теплообмена она является теоретическим фундаментом теплотехники. На ее основе осуш,ествля-ют расчет и проектирование всех тепловых двигателей, а также всевозможного технологического оборудования.  [c.6]

При увеличении скоросгн момент дви ателей обычно уменьшается, а момент машин-нотребителей механической энергии обычно увеличивается. Такое свойство очень полезно, так как автоматически содействует устойчивому поддержанию режима движения машины, и чем сильнее оно выражено, тем устойчивость больше. Назовем такое свойство машин саморегулированием.  [c.142]


Такая формула уравнений ЛагрзЕ жа более удобна для исследования некоторых свойств этих уравнений. Функция Ь не является механической энергией системы Е, которая равна  [c.367]

При движении же струйки реальной жид-КОСТ1 , отличающе11Ся от невязкой жидкости свойством ВЯЗКОСТИ, общий запас удельной механической энергии не может остаться постоянным. Удельная энергия в струнке реальной (вязкой) жидкости при установившемся движении должна неизбежно уменьшаться по мере поодвижения жидкости от одного сечения струйки до другого. Уменьшение удельной энергии в струйке реальной жидкости будет происходить потому, что часть механической энергии будет необратимо превращаться в тепловую энергию, затрачиваясь на преодоление сопротивлений, возникающих в жидкости вследствие ее вязкости.  [c.59]

В процессе механической обработки деталей в поверхностных слоях происходит изменение rpyKrypi.i металла и его механических свойств. Названные изменения являются следствием процессов, развивающихся в поверхностном слое под влиянием внешнего энергетического воздействия в виде контак ного давления и относительного перемеа(ения (скольжения) режущего инструмента. При этом основная часть механической энергии преобразуется в тепловую, создавая градиент температур по глубине слоя. В результате этих процессов в материалах деталей при резании как при термической обработке развиваются остаточные напряжения.  [c.41]

Вакуумная электроника, основанная на использовании движения свободных электронов и ионов в вакууме или разреженных и сжатых газах, дала возможность создать вакуумные генераторы и усилители элег<тромагнитных колебаний в широчайшем спектре частот., Имеются приборы, основанные на вакууме, которые преобразуют тепловую, световую и механическую энергию в электрическую. Функции, выполняемые электровакуумными приборами во всех отраслях радиоэлектроники, весьма обширны и разнообразны. Этому способствовало изучение электрических свойств воздуха и вакуума, разработка и применение новых газов и паров штетических жидкостей, обладаюихих высокой электрической прочностью, малыми значениями диэлектрической проницаемости и потерь, а также применение новых видов пластмасс и керамики, особенно пористых.  [c.3]

Под внутренним трением понимают способность твердых тел необратимо поглощать и рассеивать внутрь материала сообщаемую извне механическую энергию. Внутреннее трение — это неупругое релаксационное свойство, проявляющееся как вязкое сопротивление взаимному перемещению частей одного и того же твердого тела при его деформировании или при сообщении ему механических колебаний [277—279]. Знание величины внутреннего трения позволяет выбирать демпфирующие материалы для гашения механических йолебаний (здесь необходимо высокое внутреннее трение) или рекомендовать сплавы, практически не рассеивающие упругую энергию, т. е. обладающие незначительным внутренним трением. Кроме того, измерение внутреннего трения дает информацию о механизмах фазовых превращений, диффузии, кинетике выделения избыточных фаз и др. Методика внутреннего трения может быть использована для оценки работоспособности материалов в условиях их длительной работы при сложных температурных и силовых воздействиях [227].  [c.184]

В 1852 г. в работе О проявляющейся в природе общей тенденции к рассеянию механической энергии В. Томсон вводит важнейшее деление процессов на обратимые и необратимые. Вое реальные процессы необратимы. Он писал, что только системы тел, подверженные обратимым изменениям, обладают свойством восстанавливать механическую энергию , то есть способно>сть производить ту же самую механическую работу. При не-братимых же процессах, таких, как трение, теплопроводность и т. п., система тел не может прийти в первоначальное состояние, поскольку их механическая энергия , то есть способность совершать работу, непрерывно уменьшается и происходит рассеяние механической Энергии , превращающейся в теплоту.  [c.157]

Следует выделить условие, которое приводит к возникновению лучевых свойств механических траекторий, потому что мы фактически произвели определенный отбор среди всех возможных механических траекторий. Световые лучи в заданном оптическом поле образуют двумерное многообразие, в то время как совокупность всех механических траекторий в потенциальном поле образует пятимерное многообразие. С заданной базисной поверхности траектории могли бы начинаться с произвольными скоростями. Мы отбираем те траектории, которые имеют одну и ту же полную энергию и перпендикулярны заданной поверхности. Лучевые свойства устанавливаются именно для них. Механические траектории являются изолированными линиями, не пересекающимися друг с другом. Если при помощи ка-кого-иибудь условия искусственно выделить некоторое семейство траекторий, то, вообще говоря, ничто не мешает добавить к ним некую случайную траекторию, не принадлежащую к этому Лмейству. В противоположность этому оптические лучи не могут существовать в изолированном виде, а всегда являются частью какого-то поля.  [c.306]

Возникает вопрос чем может быть обусловлена активация новой системы скольжения в процессе усталостного нагружения На этот вопрос в настоящее вре.мя трудно ответить однозначно. Нам представляются вероятными две причины. Во-первых, в процессе усталостного нагружения происходит неупругое рассеяние механической энергии, которое приводит к разогреву образца. Поскольку молибден обладает разной ориентационной и температурной зависимостью предела текучести, то при увеличении температуры испытания будет изменяться геометрия скольжения. Поэтому в процессе усталостных испытаний, когда происходит автокаталитпческий разогрев образца, может активироваться новая система скольжения. В результате начнут проявляться ко.ллективные свойства дислокационного ансамбля с образованием бездислокационных каналов.  [c.168]

Изменение энергии и физико-механических свойств в процессе пластической деформации. Пластическая деформация — это процесс возникновения и необратимого движения дислокаций, вакансий и других несовершенств кристаллической решетки и их взаимодействия между собой и с другими дефектами. Вследствие этого внутренняя энергия пластически деформированных металлов и сплавов возрастает. Величина дополнительной энергии (скрытая энергия наклепа) равна той доле механической энергии деформации, которая накапливается в материале и остается в нем по окончании действия внешнних сил.  [c.25]

Нелинейный характер сил неупругого сопротивления типа сухого трения имеет принципиальное значение для оценки динамических свойств механических систем. Системы, в которых действуют силы сухого трения, являются потенциально автоколебательными, так как характеристика сухого трения обусловливает возможность притока энергии в систему в некоторых диапазонах скоростей, которым соответствуют падающие участки вида (1.13) характеристики 9t(o). Необоснованные упрощения характеристики указаных сил (например, приближенное представление их в виде кулонова трения) могут привести к ошибкам при анализе динамической устойчивости некоторых режимов машинного агрегата.  [c.14]


Книга написана на основании достижений отечественной науки, вклад которой в этой области знаний чрезвычайно велик. Рассмотрение природы трения стало возможным только на основе выдвинутой егце М. В. Ломоносовым молекулярной теории тел, стремившейся объяснить все их особенности и качества движением и свойствами составляющих атомов и молекул. Превращение механической энергии в энергию теплового молекулярного движения не может быть понятно вне рамок закона сохранения энергии, сформулированного Ломоносовым. Интересно, что самый термин трение был введен в науку Ломоносо-вым.  [c.7]

Надежды изобретателей обратились к новому виду энергии — к электричеству. Первые опыты передачи электрической энергии на расстояние-относятся к началу 70-х годов. В 1873 г. французский физик И. Фонтен демонстрировал на Венской международной выставке свойство обратимости электрических машин приводил в действие двигатель (машину Грамма) от генератора (такой же машины Грамма). Двигатель и генератор соединялись между собой кабелем длиной в 1 км. Таким образом была доказана принципиальная возможность передачи механической энергии на относительно большое расстояние путем двойного преобразования энергии механической в электрическую на генераторном конце и электрической в механическую — у потребителя. Экономическая целесообразность такого принципа еще не была тогда доказана.  [c.57]

G 01 [Измерение механического напряжения, крутящего момента, работы, механической энергии, механического КПД или давления газообразных и жидких веществ или сыпучих материалов Р-- Линейной или угловой скорости, ускорения, замедления или силы ударов. Индикация наличия, отсутствия или направления движения R — Электрических и магнитных величин) D — Индикация или регистрация в сочетании с измерением вообще, устройства или приборы для измерения двух или более переменных величин, тар1чфные счетчики, способы и устройства для измерения hjhi испытания, не отнесенные к другим подклассам i - - Взвешивсишс, М -Проверка статической и динамической балансировки машин, испытания различных конструкций или устройств, не отнесенные к другим подклассам N — Исследование или анализ материалов путем определения их хи.мических или физических свойств]  [c.40]

ВОСПРИИМЧИВОСТЬ — характеристика (диэлектрика, показывающая его способность поляризоваться в электрическом поле магнетика, показывающая его способность намагничиваться в магнитном поле) ВЯЗКОСТЬ [—свойство жидкостей и газов оказывать сопротивление перемещению одной их части относительно другой динамическая — количественная характеристика сопротивления жидкости или газа смещению одного слоя относительно другого кинематическая— отнощение динамической вязкости к плотности жидкости или газа магнитная — отставание во времени изменения магнитных характеристик ферром нетика от изменения напряженности внешнего магнитного поля объемная — величина, характеризующая процесс перехода внутренней энергии в тепловую при объемных деформациях среды (вторая вязкость) структурная — вязкость, связанная с возникновением структуры в дисперсных системах ударная — поглощение механической энергии твердыми телами в процессе деформации и разрущения под действием ударной нагрузки]  [c.228]


Смотреть страницы где упоминается термин Свойства механической энергии : [c.15]    [c.276]    [c.155]    [c.216]    [c.338]    [c.27]   
Смотреть главы в:

Сопротивление материалов  -> Свойства механической энергии

Сопротивление материалов Издание 6  -> Свойства механической энергии



ПОИСК



Поверхностная энергия и механические свойства (твердость, спайность)

Свойства энергии

Энергия механическая



© 2025 Mash-xxl.info Реклама на сайте