Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электрический Плотность

Преобразование химической энергии в электрическую плотность электролита увеличивается.  [c.14]

Тепловая мощность, МВт Электрическая мощность, МВт Средняя объемная плотность теплового потока, кВт/л  [c.33]

Количество электричества, электрический заряд Плотность электрического тока I Разность электрических потенциалов, электродви- жущая сила, электричес-, кое напряжение 1 Напряженность электрического поля  [c.12]


Технически чистая медь имеет плотность 8940 кг/м , температуру плавления 1083 С, обладает высокой пластичностью, коррозионной стойкостью, малым удельным электросопротивлением (7-10 Ом м), высокой теплопроводностью [385 Вт/(м К) 1, и поэтому ее широко используют для изготовления электропроводов, деталей электрических машин и приборов, в химическом машиностроении. Медь по чистоте подразделяют на марки МО (99,95 % Си), Ml (99,9 % Си), М2 (99,7 % Си), М3 (99,5 % Си), М4 (99 % Си).  [c.18]

В соответствии с необходимостью применения высоких плотностей тока для сварки плавящимся электродом используют проволоку малого диаметра (0,6—3 мм) и большую скорость ее подачи. Такой режим сварки обеспечивается только механизированной подачей проволоки в зону сварки. Сварку выполняют на постоянном токе обратной полярности. В данном случае электрические свойства дуги в значительной степени определяются наличием ионизированных атомов металла электрода в столбе дуги. Поэтому дуга обратной полярности горит устойчиво и обеспечивает нормальное формирование шва, в то же время ей соответствуют повышенная скорость расплавления проволоки и производительность процесса сварки.  [c.197]

При разности потенциалов на электродах происходит ионизация межэлектродного промежутка. Когда напряжение достигнет определенного значения, в среде между электродами образуется канал проводимости, по которому устремляется электрическая энергия в виде импульсного искрового или дугового разряда. При высокой концентрации энергии, расходуемой за 10" —10 с, мгновенная плотность тока в канале проводимости достигает 8000—10 ООО А/мм , в результате чего температура на поверхности обрабатываемой заготовки-электрода возрастает до 10 ООО—12 ООО °С. При этой температуре мгновенно оплавляется и испаряется элементарный объем металла и на обрабатываемой поверхности заготовки образуется лунка. Удаленный металл застывает в диэлектрической жидкости в виде гранул диаметром 0,01—0,005 мм.  [c.401]

Как ранее было указано, электрохимическая реакция присоединения электрона к иону водорода требует некоторой энергии активации, т. е. для того, чтобы процесс разряда ионов водорода шел на электроде с определенной скоростью, необходимо сообщить ему некоторый избыточный (против равновесного) потенциал, который определяется величиной перенапряжения водорода. Потенциал разряда водородных ионов с определенной скоростью к равен сумме равновесного потенциала водородного электрода и величины перенапряжения водорода, обозначаемой г]. Под величиной перенапряжения водорода понимают сдвиг потенциала катода при данной плотности тока 1п в отрицательную сторону по сравнению с потенциалом водородного электрода в том же растворе, в тех же условиях, но при отсутствии тока в системе. Поэтому расход электрической энергии на получение водорода электролизом больше, чем это определяется термодинамическими подсчетами.  [c.42]


В экспериментальной установке для определения теплоотдачи жидких металлов по трубке диаметром d=l2 мм и длиной / = = 1 м течет висмут. Трубка обогревается электрическим нагревателем плотность теплового потока на стенке постоянна по длине трубки и равна 9с = 6-10 Бт/м1  [c.102]

По трубке внутренним диаметром d=lO мм и длиной /= = 1 м течет натрий. Трубка обогревается электрическим нагревателем плотность теплового потока постоянна по длине и составляет <7с = 1-10 Вт/м . Температура натрия на входе в трубку ж1 = 300°С.  [c.103]

Интегральная микросхема - это микроэлектронное изделие, выполняющее определенные функции преобразования и обработки сигнала или накапливания информации, например суммирование, имеющее высокую плотность упаковки (существуют приборы размером до 1 см ) электрически соединенных элементов. С точки зрения требований к испытаниям, приемке, поставке и эксплуатации, интегральная схема рассматривается как единое целое.  [c.538]

Когда проводящая сфера радиусом а помещена в однородное электрическое поле с первоначально однородной униполярной ионной плотностью По, распределение потенциала V определяется по уравнению Пуассона  [c.436]

Видно, что твердая частица окружена электронным облаком уменьшающейся плотности, ограниченным распределенным потенциалом. Такая система ионизуется, когда часть электронного облака рассеивается (теоретически движется в бесконечность). Этого можно достичь, если приложить внешнее электрическое  [c.449]

Виды сварочных дуг. Источником теплоты при дуговой сварке является сварочная дуга — устойчивый электрический разряд в сильно ионизированной смеси газов и паров материалов, используемых при сварке, и характеризуемый высокой плотностью тока и высокой температурой.  [c.9]

Электронный луч создается в специальном приборе — электронной пушке (рис. 10), с помощью которой получают узкие электронные пучки с большой плотностью энергии. Пушка имеет катод /, который может нагреваться до высоких температур. Катод размещен внутри прикатодного электрода 2. На некотором расстоянии от катода находится ускоряющий электрод (анод) 3 с отверстием. Элект-ройы, выходящие с катода, фокусируются с помощью электрического поля между прикатодным и ускоряющим электродами в пучок с диаметром, равным диаметру отверстия в аноде 5. Положительный потенциал ускоряющего электрода может достигать нескольких десятков тысяч вольт, поэтому электроны, испускаемые катодом, на пути к аноду приобретают значительную скорость и энергию. Питание пушки электрической энергией осуществляется от высоковольтного источника 7 постоянного тока.  [c.15]

Другой подход к измерению поляризации — определение потенциалов при разных расстояниях от носика L до В с последующей экстраполяцией до нулевого расстояния. Как показано в разделе 4.4, подобная поправка необходима только при. измерениях, требующих большой точности, а также при необычно высоких плотностях тока или при необычно низкой проводимости электролита, например в дистиллированной воде. Однако эта поправка не учитывает возможной ошибки из-за высокого сопротивления пленки продуктов реакции, которой может быть покрыта поверхность электрода. Предложен специальный электрический контур для электролитов с высоким сопротивлением. Он позволяет измерять потенциал с поправками на падение напряжения в электролите и в электродных поверхностях пленках.  [c.50]

Во II области при дальнейшем росте тока и ограниченном сечении электродов столб дуги несколько сжимается и объем газа, участвующего в переносе зарядов, уменьшается. Это приводит к меньшей скорости роста числа заряженных частиц. Напряжение дуги становится мало зависящим от тока, а характеристика — пологой. Первые две области токов охватывают дуги с так называемым отрицательным электрическим сопротивлением. Падающая и пологая характеристики типичны для дуги при ручной дуговой ДР) и газоэлектрической (ГЭ) сварке, а также вообще для сварки при малых плотностях тока, в том числе и дугой под флюсом (ДФ).  [c.39]

Электроны при плотности тока i от электрического поля F получают в I м за 1 с энергию  [c.49]


Всякое разделение зарядов приводит к возникновению электрических полей. Согласно законам электростатики, если на длине г, см, имеется объемный заряд плотностью q, то он создает электрическое поле, которое по уравнению Пуассона равно Е — = Ащг. Пусть в 1 см имеется Д лишних электронов сверх тех, которые точно нейтрализуют заряд ионов. Тогда  [c.51]

Плотность тока j в плазме будет равна сумме электрических зарядов, пересекающих единичную площадку за 1 с.  [c.55]

На практике широко оперируют электрическими сигналами, поэтому целесообразно ввести понятие электрического сигнала АЭ, получаемого как электрический сигнал на выходе приемного преобразователя. Эти сигналы можно характеризовать такими параметрами, как общее число импульсов, суммарная АЭ, интенсивность АЭ, уровень (сигналов) АЭ, амплитуда АЭ, амплитудное распределение, энергия (сигнала) АЭ, спектральная плотность (сигналов) АЭ.  [c.256]

Здесь к — показатель адиабаты Ь — проводимость среды, отнесенная к скорости света в пустоте с а = 1/41г I — время, умноженное на с р — давление, деленное на с т — плотность газа 8 — энтропийная функция, деленная на с V — вектор скорости, отнесенный к с Я — вектор напряженности магнитного поля, отнесенный к с Я — вектор напряженности электрического поля, отнесенный к с.  [c.29]

Электрическая плотность представляет собой отношение величины эпектрического напряжения к толщине изделия в месте пробоя. Для суспензионного жесткого ПВХ оно составляет 50 кВ/мм, что позаслпет считать этот материал изолятором. Одкако следует принять во внимание, что напряжение пробоя возрастает не в пропорциональной зависимости от толщины материала.  [c.24]

Закон Ома в дифференциальной форме j=—agradf аналогичен закону Фурье (8.1). Соответственно аналогичными получаются и решения задач теплопроводности и электропроводности для тел одинаковой формы. Каждому тепловому параметру в этих решениях соответствует вполне определенный электрический аналог плотности теплового потока q — плотность тока j, тепловому потоку Q — сила тока /, температуре t — электрический потенциал , теплопроводности X — электропроводность а.  [c.76]

К количественным показателям коррозии помимо перечисленных ранее показателя склонности к коррозии / t, очагового показателя коррозии Кп, глубинного показателя коррозии Кп, показателя изменения массы Кт, объемного показателя коррозии Кобъемн, токового показателя коррозии i (плотность коррозионного тока), механического показателя коррозии Ка, показателя изменения электрического сопротивления относится также отражательный (или оптический) показатель коррозиы — выраженное в процентах изменение отражательной способности поверхности металла за определенное время коррозионного процесса.  [c.428]

Для образцов поликарбоната, не подвергавшихся специа.нь-ной термообработке, характерны следующие показатели плотность 1,17—1,22 Л1г/ж влагоемкость 0,16% удельная ударная вязкость (18 л-20) -10 (Зж/лГ предел прочности при растяже-нип 89 Мн м при изгибе 80,0—100,0 Мн1м , при сжатии 80,0— 90,0 Мн/м- модуль упругости при растяжении 2200 Мн1м диэлектрическая проницаемость — 2,6—3,0 удельное объемное электросопротивление 4-10 = ом-см тангенс угла диэлектрических потерь 5-10 . морозостойкость—100°С электрическая прочность 10 кв/.им, максималы ая рабочая температура 135—  [c.410]

На макроуровне используют математические модели, описывающие физическое состояние и процессы в сплошных средах. Для моделирования применяют аппарат уравнений математической физики. Примерами таких уравнений служат дифференциальные уравнения в частных производных—уравнения электродинамики, теплопроводности, упругости, газовой динамики. Эти уравнения описывают поля электрического потенциала и температуры в полупроводниковых кристаллах интегральных схем, напряженно-деформированное состояние деталей механических конструкций и т. п. К типичным фазовым переменным на микроуровне относятся электрические потенциалы, давления, температуры, концентрадии частиц, плотности токов, механические напряжения и деформации. Независимыми переменными являются время и пространственные координаты. В качестве операторов F и У в уравнениях (4.2) фигурируют дифференциальные и интегральные операторы. Уравнения (4.2), дополненные краевыми условиями, составляют ММ объектов на микроуровне. Анализ таких моделей сводится к решению краевых задач математической физики.  [c.146]

Уравнения (4.7) —(4,8) показывают, что причинами изменения концентрации носителей могут быть неодинаковость числа носителей, втекающих (и вытекающих) в элементарный объем полупроводника (тогда dlvJ O), и нарушение равновесия между процессами генерации и рекомбинации носителей. Уравнения (4.9) и (4.10), называемые уравнениями плотности тока, характеризуют причины протекания электрического тока в полупроводнике электрический дрейф под воздействием электрического поля (grad tp= 0) и диффузию носителей при наличии градиента концентрации. Уравнение Пуассона характеризует зависимость изменений в пространстве напряженности электрического поля Е=—gгadф от распределения плотности электрических зарядов pi  [c.156]

Определить объемную производительность внутренних источников теплоты q , Вт/м , плотность теплового потока на поверхности стержня q, Вт/м тепловой поток на единицу длины стержня qi, Вт/м. и температуры на поверхности и на оси стержня, если коэффициент теплоотдачи от поверхности стержня к кипящей воде а = = 44 400 Вт/(м2- С). Удельное электрическое сопротивление нихрома р—1,17 Om-mmVm. Коэффициент теплопроводности нихрома Я = = 17,5 Вт/(м. С).  [c.28]


Тепломер ИТП-2 состоит из датчиков и вторичного прибора. Датчики взаимозаменяемы, а вторичный прибор градуирован по электрическому сопротивлению датчиков и их геометрическим размерам. Тепломер гюзволяет определять плотность теплового потока до 580 amUi.  [c.527]

Известно, что в электрическом поле напряженностью Е сферическая диэлектрическая частица, как частица двуокиси циркония, будет поляризоваться, причем поверхностная плотность заряда равна Збо os 9, где 9 измеряется от направления поля [3781. Можно показать, что для частицы размером 9,1 мк вероятность поляризации с одним электроном составляет не более 10 д.ля по.ля напряженностью 109 в1м, тогда как в примере с частицалш двуокиси циркония размером 0,1 мк общий заряд равен 10 дырок на частицу (и.ли удельный заряд 0,32 к/кг), так что не приходится ожидать заметного влияния по.ляризации твердых частиц на тер-1мическую э.лектризацию.  [c.468]

Пламли [612] учел силы инерции, поле вязкого потока и распределение плотности заряда на поверхности взаимодействующих капель, а также внешнее электрическое поле. Его результаты представлены на фиг. 10.14 в виде зависимости эффективности столкновений между заряженными каплями от их заряда. Для заряда был выбран закон пропорциональности квадрату радиуса капли, предложенный в работе [296] [уравнение (10.6)].  [c.478]

Представляет интерес движение по трубе смеси газ — твердые частицы. Если труба — проводник или диэлектрик с равномерно распределенным зарядом, то, согласно закону Гаусса, электрического поля внутри трубы не будет. Если частицы равномерно заряжены и осесимметрично распределены по трубе, то частица, возможно, осядет на стенку, если поток нетурбулентен. Согласно уравнению (10.157), мелкие стеклянные шарики в атмосферном воздухе при концентрации 1 кг частицЫг воздуха на расстоянии 1 см от оси будут иметь в 10 раз большее ускорение, чем под действием силы тяжести даже при отношении заряда к массе, равном 0,002 к1кг. Радиальная составляющая интенсивности турбулентного движения частиц в соответствии с приближением oy [721] составляет 10 м сек для частиц диаметром 100 мк. Этот эффект может полностью компенсировать действие силы тяжести на смесь газ — твердые частицы в горизонтальной трубе и стать одной из возможных причин большой разницы между поперечной и продольной интенсивностями турбулентного движения частиц (разд. 2.8). Распределение плотности, данное oy [726], можно приписать дрейфовой скорости, обусловленной главным образом электрическим зарядом частиц.  [c.485]

Блуждающими токами называют токи утечки из электрических цепей или любые токи, попадающие в землю от внешних источников. Попадая в металлические конструкции, они вызывают коррозию в местах выхода из металла в почву или воду. Обычно природные токи в земле не опасны в коррозионном отношении — они слишком малы и действуют кратковременно. Переменный ток вызывает меньшие разрушения, чем постоянный, а токи высокой частоты обусловливают большие разрушения, чем токи низкой частоты. По данным Джонса [1], возрастание коррозии углеродистой стали в 0,1 н. Na l, вызванное токами частотой 60 Гц и плотностью 300 А/м, незначительно, если раствор аэрирован, и в несколько раз выше (хотя и относительно низкое) в деаэрированном растворе. Возможно, в аэрированном растворе скорости обратимых или частично обратимых анодной и катодной реакций симметричны по отношению к наложенному переменному потенциалу, а в деаэрированном они несимметричны, главным образом вследствие реакции выделения водорода. Подсчитано, что коррозия стали, свинца или меди в распространенных коррозионных средах под действием переменного тока частотой 60 Гц не превышает 1 % от разрушений, вызванных постоянным током той же силы [2, 3].  [c.209]

На практике катодную защиту можно применять для предупреждения коррозии таких металлических материалов, как сталь, медь, свинец и латунь, в любой почве и почти всех водных средах. Можно предотвратить также питтинговую коррозию пассивных металлов, например нержавеющей стали и алюминия. Катодную защиту эффективно применяют для борьбы с коррозионным растрескиванием под напряжением (например, латуней, мягких и нержавеющих сталей, магния, алюминия), с коррозионной усталостью большинства металлов (но не просто усталостью), межкристаллитной коррозией (например, дуралюмина, нержавеющей стали 18-8) или обесцинкованием латуней. С ее помощью можно предупредить КРН высоконагруженных стрей, но не водородное растрескивание. Коррозия выше ватерлинии (например, водяных баков) катодной защитой не предотвращается, так как пропускаемый ток протекает только через поверхность металла, контактирующую с электролитом. Защитной плотности нельзя также достигнуть на электрически экранированных поверхностях, например на внутренней поверхности трубок водяных конденсаторов (если в трубки не введены вспомогательные аноды), даже если сам корпус конденсатора достаточно защищен.  [c.215]

Отступления от модели идеал11Ного газа для плазмы связаны с двумя явлениями, существующими только при больших плотностях электрическим взаимодействием и так называемым вырождением.  [c.53]

Удельная электрическая проводимость, магнитная проницаемость, коэрцитивная сила, остаточная индукпдя, твердость, влажность, напряжение, структура, химический состав, предел прочности, предел текучести, относительное удлинение, плотность и другие.  [c.177]

Под действием электрической силы еЕ, где е — заряд иона, —напряженность электрического поля, ион ползгчает дрейфовую скорость = ЬеЕ, где Ь —подвижность. Это приводит к среднему потоку ионов каждого сорта J = пОдрЛ, где п —плотность их числа, А — площадь сечения. Учитывая, что в величину электрического тока, lg, дают вклад оба сорта ионов, получаем  [c.213]

Использование платы МССВ в конструкциях электронно-вычислительной аппаратуры позволяет разме-щ ать на ее поверхности элементы, выделяющие в четыре раза больше тепла, чем на платах того же размера из стеклотекстолита. К тому же в 2 раза уменьшается масса конструкции. Следует отметить, что металлическая плата, сохраняя необходимый температурный ре-жрм, отдает в окружающую среду в 13 раз больше теп-л , чем плата из неметалла, при этом вдвое уменьшается мйсса и объем конструкции. Это означает, что вместо устройств с мощными вентиляторами, создающими поток для охлаждения, или даже с жидкостными системами охлаждения можно использовать обычные печатные схемы. И еще одно преимущество плат МССВ по сравнению с обычными увеличение в 3 раза допустимых плотностей электрического тока в печатных схемах при той же разности температур полупроводника и окружающей среды.  [c.243]


Смотреть страницы где упоминается термин Электрический Плотность : [c.248]    [c.388]    [c.227]    [c.72]    [c.190]    [c.305]    [c.363]    [c.16]    [c.156]    [c.230]    [c.445]    [c.70]   
Машиностроение Энциклопедический справочник Раздел 1 Том 1 (1947) -- [ c.513 ]



ПОИСК



Критическое магнитное поле Нс и критическая плотность электрического тока

Линейпая плотность электрического тока

Объемная плотность электрической энергии

Оператор плотности электрического

Оператор плотности электрического фотонов

Плотность заряда электрического

Плотность тока Электрического

Плотность электрических зарядов объемная

Плотность электрического заряда поверхностная

Плотность электрического заряда, линейная

Плотность электрического тока линейная

Плотность электрического тока поверхностная

Плотность энергии, запасенной электрическом поле

Полуклассические лазерные уравнения для макроскопических величин напряженности электрического поля, поляризации и плотности инверсии

Полуклассические уравнения лазера для макроскопических величин напряженности электрического поля, поляризации и плотности инверсии в приближении вращающейся волны и медленно меняющихся амплитуд

Фундаментальные уравнения электродинамики в вакууме. 4-плотность тока электрического заряда



© 2025 Mash-xxl.info Реклама на сайте