Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Обесцинкование латуни

Обесцинкование — это вид разрушения цинковых сплавов, например латуни, при котором преимущественно корродирует цинк, а медь остается на поверхности в виде пористого слоя — см. [1, рис. 4 на G. 333]. Прокорродировавшее таким образом изделие нередко сохраняет исходную форму и может показаться неповрежденным, но его прочность и особенно пластичность значительно снижены. Подвергшаяся обесцинкованию латунная труба способна выдерживать внутреннее давление воды, однако может разрушиться при гидравлическом ударе или проведении ремонтных работ.  [c.28]


Рис. 19.3. Пробковые коррозионные поражения при обесцинковании латунной трубы (в натуральную величину) Рис. 19.3. Пробковые коррозионные поражения при обесцинковании латунной трубы (в натуральную величину)
Рис. 19.4. Расслаивание при обесцинковании латунных болтов (в натуральную величину) Рис. 19.4. Расслаивание при обесцинковании латунных болтов (в натуральную величину)
Со стороны охлаждающей воды трубки конденсаторов турбин могут подвергаться общему и локальному (пробочному) обесцинкованию, а также ударной коррозии. В некоторых случаях может появляться также коррозионная усталость. Обесцинкование латуни — основная форма разрушения конденсаторных труб, которая представляет собой компонентно-избирательную (селективную) коррозию цинка,  [c.81]

Обесцинкование латуни происходит при селективном растворении цинка из сплава. Остается пористая медь, имеющая низкую прочность.  [c.136]

Процесс обесцинкования латуни интенсифицируется при понижении pH основного конденсата, поэтому необходимо тщательно следить за его величиной, которая должна составлять 9,1 0,1.  [c.62]

Скорость обесцинкования латуни зависит от протекания вторичных процессов, интенсивность которых усиливается как относительно низкими, так и высокими значениями pH среды, создаваемыми аммиаком в присутствии кислорода, наличием угольной кислоты, а также повышениями скорости воды и ее температуры. 68  [c.68]

Избирательное выщелачивание представляет собой коррозионный процесс, в результате которого из сплава удаляется какой-либо элемент. Примерами могут служить процессы обесцинкования латуни и графитизации чугуна. Эрозионная коррозия — это быстропротекающий химический процесс, при котором в результате воздействия абразивных веществ или потоков вязких материалов на поверхности материала постоянно в месте контакта с коррозионной средой обнажается свежий незащищенный материал. Кавитационная коррозия наблюдается, когда под влиянием давления пара пузырьки и каверны в жидкости лопаются у поверхности сосуда давления, в результате чего удаляются частицы материала и открывается доступ коррозионной среде к свежему, незащищенному материалу.  [c.18]


При избирательной коррозии (рис. 1.1, в) разрушается одна структурная составляющая или один компонент сплава. В качестве примеров можно привести графитизацию чугуна или обесцинкование латуней.  [c.16]

Все рассмотренные выше механизмы растворения сплавов объясняют равномерный характер этих процессов в стационарных условиях. В некоторых случаях сплавы даже в стационарном режиме растворяются не равномерно, а избирательно, т.е. с преимущественным переходом в раствор более активного компонента (это имеет место, например, при коррозии латуни в морской воде, когда наблюдается эффект обесцинкования латуни). В таких случаях обычно первоначально в растворе обнаруживается избыток компонента А, затем относительное содержание А и Б в растворе становится таким же, как в сплаве (что соответствует условию Z = 1), и наконец опять А оказывается в  [c.110]

Для простых латуней характерен вид коррозии, который называется обесцинкованием. Латунь на отдельных участках поверхности подвергается специфическому разрушению, в результате которого возникает рыхлый слой меди. Вначале в раствор переходят одновременно цинк и медь. Затем ионы меди вторично выделяются из раствора, а образовавшийся осадок меди, выполняя роль добавочного катода, ускоряет электрохимическую коррозию латуни. В результате в раствор переходят ионы цинка, и с течением времени коррозия распространяется так глубоко, что приводит к образованию сквозных повреждений. Если процесса обесцинкования не происходит, то скорость разрушения латуней в морской воде невелика и составляет 0,008-0,01 мм/год.  [c.206]

Для уменьшения обесцинкования латуней сплав дополнительно легируют оловом, никелем, алюминием, а чаще всего мышьяком в количестве 0,001-0,012%.  [c.206]

Следовательно, вначале коэффициент обесцинкования латуней равен бесконечности, а затем становится равным единице.  [c.215]

В настоящее время известно, что коррозия латуней начинается с преимущественного растворения цинка (см. гл. 1 и 3). В дальнейшем (в зависимости от условий) латуни растворяются либо равномерно, либо селективно, причем в последнем случае процесс СР сопровождается фазовым превращением медн в поверхностном слое или же обусловлен восстановлением ионов меди из раствора в собственную фазу. В связи с этим для выяснения механизма легирующего действия на обесцинкование латуней целесообразно рассмотреть закономерности влияния добавок на отдельные стадии этого процесса..  [c.172]

Итак, практически все известные ингибиторы коррозий меди в той или иной степени действительно препятствуют обесцинкованию латуни. Однако им присущ ряд общих недостатков. Эффективность их защ,итного действия резко снижается при повышенных температурах (табл. 4.2), тогда как  [c.185]

Пассивацию поверхности латуни мойно рассматривать как результат взаимодействия. с неорганическими ингибиторами окислительного типа, какими фактически и являются нитриты и бихроматы в достаточной концентрации. Совместное действие неорганических и органических ингибиторов обесцинкования латуни, а также механизм ингибиторной защиты легированных латуней практически не изучались.  [c.189]

Обесцинкование латуней всегда является основным видом их разрушения в условиях эксплуатации оборудования горячего водоснабжения. Исключить его проще всего заменой конструкционного материала, например, заменой латуни медными сплавами, не склонными к обесцинкованию, такими сплавами являются 8п (5%), 2п, РЬ, Си 2п (4—7%), Си.  [c.160]

Обезуглероживание стали 2—327 1—262 Обесцинкование латуни 2—7 Облучение, влияние на механич. свойства 2—185,  [c.512]

Характерным примером компонентноизбирательной коррозии является обесцинкование латуней. В зависимости от содержания цинка различают однофазные твердые растворы а-латуни (до 39% 2п), а + р-латуни (39—47% 2п) и у-латуни (47—50% 2п). Обесцинкование латуней заключается в том, что в коррозионный раствор, обычно нейтральный или слабокислый, цинк переходит более интенсивно, чем медь. У поверхности латуни накаплива-  [c.170]

На практике катодную защиту можно применять для предупреждения коррозии таких металлических материалов, как сталь, медь, свинец и латунь, в любой почве и почти всех водных средах. Можно предотвратить также питтинговую коррозию пассивных металлов, например нержавеющей стали и алюминия. Катодную защиту эффективно применяют для борьбы с коррозионным растрескиванием под напряжением (например, латуней, мягких и нержавеющих сталей, магния, алюминия), с коррозионной усталостью большинства металлов (но не просто усталостью), межкристаллитной коррозией (например, дуралюмина, нержавеющей стали 18-8) или обесцинкованием латуней. С ее помощью можно предупредить КРН высоконагруженных стрей, но не водородное растрескивание. Коррозия выше ватерлинии (например, водяных баков) катодной защитой не предотвращается, так как пропускаемый ток протекает только через поверхность металла, контактирующую с электролитом. Защитной плотности нельзя также достигнуть на электрически экранированных поверхностях, например на внутренней поверхности трубок водяных конденсаторов (если в трубки не введены вспомогательные аноды), даже если сам корпус конденсатора достаточно защищен.  [c.215]


Б. Избирательная коррозия (см. рис. 1, е) бывает двух видов компонентноизбирательная и структурно-избирательная. Компонентно-избирательная коррозия, например обесцинкование латуней, заключается в том, что в коррозионный раствор, обычно нейтральный или слабокислый, цинк переходит более интенсивно, чем медь. На поверхности латуни образуется рыхлый слой меди, что, в свою очередь, способствует усилению электрохимической коррозии. Структурно-избирательная, например коррозия серых чугунов, заключается в преимущественном разрушении ферритиой составляющей, вследствие чего образуется скелет из  [c.4]

Медь и латунь подвергались равномерной коррозии, причем скорость коррозии латуни по сравнению с медью больше (рис. V.9). С течением времени цвет латуни от желтого переходит в красный, что является признаком обесцинкования. Таким образом,обесцинкование латуни может быть не только в морской воде, но и в морской атмосфере. В данном случае не отмечено превалируюш,его влияния температуры. Несмотря на то что температура к концу испытаний резко возросла, коррозия продолжала  [c.75]

Этому виду коррозии подвержены металлические материалы, в составе которых есть фазы с различной химической стойкостью. Наиболее распространенными видами избирательной коррозии являются графитизация серого литейного чугуна (избирательное растворение ферритных и перлитных составляющих), обесцинкование латуней (селективная коррозия цинка), обезалюмиииваиие алюминиевых бронз (растворение фаз, обогащенных алюминием).  [c.53]

В зависимости от степени локализации различают коррозионные пятна, язвы (питтинг) и точки. Точечные поражения могут дать начало подповерхностной коррозии, распространяющейся в стороны под очень тонким, например, наклепанным слоем металла, который затем вздувается пузырями или шелушится. Наиболее опасные виды местной коррозии - межкристаллитная интеркристаллитная), которая, не разрушая зерюн металла, продвигается вглубь по их менее стойким границам, и транскристаллитная, рассекающая металл трещиной прямо через зерна. Почти не оставляя видимых следов на поверхности, эти поражения могут приводить к полной потере прочности и разрушению детали или конструкции. Близка к ним по характеру ножевая коррозия, словно ножом разрезающая металл вдоль сварного шва при эксплуатации некоторых сплавов в особо агрессивных растворах. Иногда специально выделяют поверхностную нитевидную коррозию, развивающуюся, например, под неметаллическими покрытиями, и послойную коррозию, идущую преимущественно в направлении пластической деформации. Специфична избирательная коррозия, при которой в сплаве могут избирательно растворяться отдельные компоненты твердых растворов (например, обесцинкование латуней).  [c.160]

Селективному вытравливанию подвержены сплавы на основе меди — хорошо известное явление, называемое обесцинкованием латуней. При селективном вытравливании интерметаллида РезА1 из алюминиевой бронзы на ее поверхности образуются ярко выраженные разрушения типа коррозионных язв. Частными случаями структурно-избирательного растворения является развитие МКК нержавеющих сталей в сильноокислительных средах, когда преимущественному растворению подвергаются выделяющиеся на границах зерен карбидные фазы, зарождение питтингов вследствие преимущественного растворения включений сульфида марганца, развитие язвенной коррозии углеродистых и низколегированных сталей, спровоцированное выделением в их структуре включений сульфида кальция.  [c.134]

В заключение поясним, каким путем образуется сервовитная пленка на трущихся поверхностях в паре сталь—латунь. При высоких температурах может произойти обесцинкование латуни. Это один из факторов возможного образования сервовитной нлeнl и.  [c.314]

Коррозия (о5 Ч- Р)-латуней — наиболее сложный процесс. Здесь реализуются оба механизма обесцинкования латуней. А также накладывается работа коррозионного элемента а-фаза — р-фаза , в котором р-фаза выступает в качестве анода. Потенциал коррозии этих латуней из-за малой анодной поляризуемости Р-фазы практически равен потенциалу р-лагуней, поэтому псевдоселективная коррозия всегда имеет место и на а-фазе.  [c.217]

Предупреждение обесцинкования латуней должно планироваться из знания механизма коррозии в данных условиях. Обес-цинкование, связанное с осаждением меди, можно предупредить введением добавок ПАВ, которые тормозят катодное восстановление ионов меди. Причем содержание растворимых продуктов окисления в коррозионной среде (в случае замкнутой системы) не должно быть высоким. Этого можно достичь установкой в системе цинковых пластин, на которых будет осаждаться медь. Наиболее эффективным способом является легирование латуней мышьяком, который растворим в а-латунях примерно до 0,1 %. Чаще в латунь мышьяк вводят в количестве 0,05 %, однако и 0,01 % As оказывается достаточным, чтобы предупредить обес-цинкование а-латуни Л70 в 0,5 н. Na l. При содержании мышьяка выше 0,1 % по границам зерен латуни образуются прослойки хрупкого химического соединения UgAs. Сурьма и фосфор также предупреждают обесцинкование латуней, но в меньшей степени, fio они плохо растворимы в а-латуни, образуют хрупкие соединения и резко снижают пластичность.  [c.217]

Рис. 5.004. Кристаллы меди, образовавшиеся при пробковом обесцинковании латуни типа ЛА76-2 Рис. 5.004. Кристаллы меди, образовавшиеся при пробковом обесцинковании латуни типа ЛА76-2
Рас. 5.006. Обесдинкование латуни Л63 (ос + Э) в виде отдельных пробок. Х2 Рис. 5.007. Обесцинкование латуни ЛбЗ (ш + 3) в виде групп пробок. Х40  [c.370]

ОСНОВЩ.Ш недостатком большинства латуней по сравнению с бронзами является их пониженная коррозионная стойкость в некоторых средах (морская вода и др.), связанная с обесцинкованием. Латуни с большим количеством р-фазы склонны к сезонному растрескиванию при наличии остаточ-  [c.737]


Целенаправленный подбор ингибиторов для предупреждения селективной коррозии сплавов стал возможен лишь в последние годы благодаря определенному прогрессу в ло-нимании термодинамических и кинетических закономерностей процессов СР. Наиболее подробно изучен Механизм и кинетика обесцинкования латуней, поэтому именно для них может быть развит научный подход к созданию ингибиторов и ингибирующих смесей.  [c.181]

Выделим основные стадии процесса обесцинкования латуней, которые могут бытЬ заторможены с помощью инги> биторов. Для а-латуни, корродирующей в аэрированном водном растворе электролита это ионизация цинка и меди, а также восстановление (обратное осаждение) ионов меди и восстановление молекулярного кислорода. В случае р- и (а-ЬР)-латуни к этим процессам прибавляется стадия фазовой перегруппировки атомов меди н а поверхности с образованием, новой фазы.  [c.181]

Содержание в латунях мышьяка (0,001—0,06%) существенно снижает скорость обесцинкования латуней. В связи с этим для изготовления трубок охладителей и конденсаторов наряду с латунью ЛО-70-1 все шире применяются мышьяковистые латуни (ЛОМШ-70-1-0,06, ЛАМШ-77-2-0,06). Присадка к латуням сурьмы и фосфора (0,5%) также повышает коррозионную стойкость этого сплава.  [c.143]

Химическая обработка охлаждающей воды для снижения ее коррозионной агрессивности сильно затруднена масштабами ее потребления. Полное удаление из нее растворенных кислорода и хлоридов, вызывающих и стимулирующих развитие кислородной коррозии конструкционных материалов, практически невозможно. Реальным путем обеспечения нормальной работы конденсаторов и охладителей является предотвращение образования накипи и обрастания рабочих поверхностей продуктами-жизнедеятельности микроорганизмов. Основными агентами, которые обусловливают накипеобразование, являются гидрокарбонаты Са(НСОз)2 и Мд(НСОз)2. Эти соединения при нагревании воды в аппаратах даже до температуры 30 °С разлагаются , образуя на поверхностях нагрева осадки СаСОз и Мд (ОН) 2-Применяемое при обработке различных типов вод известкование (см. гл. 4) для устранения жесткости охлаждающей воды не всегда допустимо в конденсаторах и охладителях, так как при такой обработке повышается pH среды и поэтому может усиливаться, например, обесцинкование латуней. Однако в отличие от хлоридов карбонаты из воды могут быть достаточно полно удалены некоторыми методами.  [c.147]

Согласно механизму обесцинкования, выдвигаемому Маршаковым с сотрудниками [49], обесцинкование латуней в значительной степени обусловлено деполяризующей ролью меди. Поэтому при более отрицательном потенциале, устанавливающемся в щели, этот процесс должен 242  [c.242]


Смотреть страницы где упоминается термин Обесцинкование латуни : [c.14]    [c.31]    [c.77]    [c.12]    [c.60]    [c.15]    [c.115]    [c.318]    [c.215]    [c.219]    [c.8]    [c.51]    [c.147]    [c.238]    [c.18]   
Коррозия и защита от коррозии (2002) -- [ c.16 , c.134 ]

Конструкционные материалы Энциклопедия (1965) -- [ c.2 , c.7 ]

Теория коррозии и коррозионно-стойкие конструкционные сплавы (1986) -- [ c.70 , c.283 , c.285 ]

Водный режим и химический контроль на ТЭС Издание 2 (1985) -- [ c.83 ]



ПОИСК



ЛАТУН

Латунь

Обесцинкование

Обесцинкованне



© 2025 Mash-xxl.info Реклама на сайте