Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Интегралы уравнений Гамильтона. Теорема Пуассона

Можно дать новое, весьма изящное доказательство теоремы Пуассона ( 22.3). Возьмем в качестве функции ф известный интеграл исходной системы Гамильтона, при этом семейство траекторий в фазовом пространстве преобразуется само в себя, т. е. каждая траектория преобразуется в другую, близкую траекторию системы. Если а з (д р t) есть другой интеграл уравнений Гамильтона, то приращение его при контактном преобразовании (т. е. разность г]) Q Р i) — г (д р t)) будет равно (г з, ф) эта последняя величина остается постоянной, поскольку преобразованная траектория является одновременно траекторией исходной системы. Таким образом, (г ), ф) является функцией от (д р г), которая сохраняет постоянное значение вдоль траекторий гамильтоновой системы, иными словами, если ф и г з — известные интегралы уравнений Гамильтона, то (t 5, ф) также будет интегралом этих уравнений, и теорема Пуассона, таким образом, доказана.  [c.518]


Теорема Пуассона. Если /1(2, I) и Д(г, I) - два первых интеграла уравнений Гамильтона (5), то их скобка Пуассона тоже является первым интегралом.  [c.363]

Таким образом, для всякого интеграла системы уравнений Гамильтона существует семейство таких добавочных интегралов, что теорема Пуассона не дает новых интегралов.  [c.26]

Действительно, в силу лемм 1 и 2 набор интегралов (3.13) уравнений Гамильтона замкнут относительно скобки Пуассона. После этого замечания теорема 4 вытекает из неавтономного варианта теоремы А. В. Браилова об интегрируемости гамильтоновых систем с замкнутым набором интегралов, удовлетворяющих условию (2.3). Поскольку полный интеграл уравнения Гамильтона—Якоби порождает полный замкнутый интеграл уравнения Ламба, то классическая теорема Якоби содержится в теореме 4.  [c.200]

В этой исключительно ясно и просто написанной работе дается законченное изложение всех вопросов, связанных с задачами канонических преобразований и с задачей интегрирования уравнений Гамильтона методом отыскания полного интеграла. Обпще положения развиваемой им теории Донкин прилагав к установлению уравнений теории возмущенного движения. В своем изложении предмета Донкин широко пользуется функциональными определителями и скобками Пуассона, устанавливая для них новые соотношения и формулируя получаемые теоремы с помощью этих скобок.  [c.26]


Смотреть страницы где упоминается термин Интегралы уравнений Гамильтона. Теорема Пуассона : [c.86]   
Смотреть главы в:

Теоретическая механика  -> Интегралы уравнений Гамильтона. Теорема Пуассона



ПОИСК



Гамильтон

Гамильтона теорема

Гамильтона уравнения

Дифференцирование операторов по времени, скобки Пуассона. Квантовые уравнения Гамильтона. Интегралы движения Теоремы Эренфеста Задачи

Зэк гамильтоново

Интеграл Гамильтона

Интеграл Пуассона

Интеграл уравнений

Первые интегралы гамильтоновых систем Теорема Якоби-Пуассона. Уравнения Уиттекера

Пуассон

Пуассона теорема

Пуассона теорема уравнение

Пуассона уравнение

Уравнения Пуассона си. Пуассона уравнение



© 2025 Mash-xxl.info Реклама на сайте