Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Упругость Теплопроводность

Термобиметалл инвар — немагнитная сталь обладает высокими показателями прочности и упругости. Теплопроводность  [c.244]

Безусловно, прочность, упругость, теплопроводность— в первую очередь интересуют конструктора. Поэтому металлурги и технологи упорно бьются за каждый лишний килограмм на квадратный миллиметр, из года в год совершенствуя существующие сплавы, подбирая наиболее выгодные режимы обработки — термической, давлением и т. д. Иногда им удается сделать сразу боль-  [c.7]


В дальнейшем фундам, исследования в Э. переместились в квантовую релятивистскую область, В частности, только квантовая Э. объяснила устойчивость вещества, ибо по законам классич. Э. ускоренно движущиеся электроны в ато.мах должны были бы непрерывно растрачивать энергию ка излучение и в конце концов упасть на ядра. Вместе с тем при учёте квантового характера движения нерелятивистских заряж. частиц, составляющих материальные тела, законы классич. Э., описывающие взаимодействие этих частиц посредством классич. полей, позволяют объяснить подавляющую часть происходящих вокруг нас явлений. Сюда относятся не только электрич,, магн. и оптич. свойства твёрдых тел, жидкостей и газов, но и их др. макроскопич. характеристики (упругость, теплопроводность, поверхностное трение, вязкость и т, д.).  [c.519]

Сочетание высокой упругости, теплопроводности, твердости и износостойкости в композитах позволило эффективно применять их в качестве инструментальных и конструкционных машиностроительных материалов.  [c.139]

Термостойкость зависит от прочности, упругости, теплопроводности и др,, а также от формы и размеров деталей и от градиента температур. Из рис. 1 видно, что наибольшей термостойкостью обладает ВеО.  [c.362]

В данной книге на основе метода сингулярных интегральных уравнений предложен единый подход к решению плоских задач теории упругости, теплопроводности и термоупругости для тел, ослабленных системой криволинейных трещин. Этим же методом решаются задачи о продольном сдвиге цилиндрических тел с туннельными разрезами, а также задачи об изгибе пластин п пологих оболочек с трещинами.  [c.5]

Металлические фильтры. Металлические фильтры имеют следующие преимущества перед фильтрами из асбеста, технической ткани или бумаги жесткость, извилистый характер пор, стойкость против окисления и действия повышенных температур, механическая прочность и упругость, теплопроводность, легкая  [c.330]

Для расчета величин термических напряжений в телах различной формы предложены формулы, которые учитывают распределение температур, коэффициент теплового расширения, модуль упругости, теплопроводность, коэффициент Пуассона и др. [72, стр. 228—231].  [c.77]

Оценка термической стойкости и теплоизоляционных свойств огнеупорных изделий основывается на определениях термического расширения, модуля упругости, теплопроводности и теплоемкости.  [c.132]

Напряжения второго рода возникают главным образом вследствие неоднородности кристаллического строения и различия физико-механических свойств фаз и структур сплавов. Фазы (например, в черных металлах феррит, аустенит, цементит, графит), обладают различной кристаллической решеткой их плотность, прочность и упругость, теплопроводность, теплоемкость, характеристики теплового расширения различны. Структуры, представляющие собой смесь фаз (например, перлит в сталях), а также закалочные структуры, в свою очередь, обладают отличными от смежных структур свойствами. Различие кристаллической ориентации зерен металла, обусловливает анизотропию физико-механических свойств микрообъемов металла. В результате совместного действия этих факторов возникают внутризеренные и межзеренные напряжения еще в процессе первичной кристаллизации и при последующих превращениях во время остывания. При высоких температурах напряжения уравновешиваются в силу пластичности материала. Однако они проявляются в низкотемпературной области, возникая при фазовой перекристаллизации и выпадении вторичных фаз (фазовый наклеп), при каждом общем или местном повышении температуры (в силу различия теплопроводности и коэффициентов линейного расширения структурных составляющих), приложении внешних нагрузок (в силу различия и анизотропии механических свойств), а также при наклепе, наступающем в результате общего или местного перехода напряжений за предел текучести материала.  [c.153]


ЧТО координатные линии совпадают с главными направлениями упругости, теплопроводности и линейного температурного расширения ортотропного материала оболочки.  [c.415]

Кроме того, дефекты возникают в результате образования термических пиков. Дело в том что часть энергии нейтронов затрачивается на возбуждение упругих колебаний отдельных групп атомов. Это соответствует как бы резкому возрастанию температуры в небольшом объеме. Вслед за локальным увеличением температуры происходит быстрое рассеяние тепла (посредством теплопроводности) и металл в этом месте получает закалку, сопровождающуюся сильными остаточными искажениями решетки.  [c.556]

Интенсивный отвод тепла, выделяющегося в реакторе при ядерном расщеплении, может быть осуществлен эффективно с помощью легких металлов они по своим тепловым свойствам значительно превосходят воду, так как имеют более высокую скрытую теплоту испарения (на что, следовательно, больше будет затрачиваться тепла), более низкую упругость пара (следовательно, система может работать при более низких давлениях и иметь более тонкие стенки), более высокий коэффициент теплопроводности и т. д.  [c.560]

Холодные трещины возникают в области упругих деформаций, когда сплав полностью затвердел. Тонкие части отливки охлаждаются и сокращаются быстрее, чем толстые. В результате в отливке образуются напряжения, которые и вызывают появление трещин. Холодные трещины чаще всего образуются в тонкостенных отливках сложной конфигурации и тем больше, чем выше упругие свойства сплава, чем значительнее его усадка при пониженных температурах и чем ниже его теплопроводность. Опасность образования холодных трещин в отливках усиливается наличием в сплаве вредных примесей (например, фосфора в сталях). Для предупреждения образования в отливках холодных трещин необходимо обеспечивать равномерное охлаждение отливок во всех сечениях путем использования холодильников применять сплавы для отливок с высокой пластичностью проводить отжиг отливок и т. п.  [c.126]

Магниевые сплавы. Магниевые сплавы состоят из Мя (90% и вьпне) И легирующих элементов (А1, Мп, 2п, 2г и др.). Они обладают малой плотностью (1,8 кг/дм ), низким значением модуля упругости ( = = 4200 -н 4500 кгс/мм ) и малой твердостью НВ 60—80). Коэффициент линейного расширения очень высок а = (27-1-30)-10 (в интервале 0 —100°С), теплопроводность 60 — 70 кал/(м-ч-°С).  [c.183]

Плотность ситаллов 2,5 — 3 кгс/дм , теплоемкость 0,2 кал/(кг-°С), теплопроводность 2 — 4 кал/(м-ч °С). Модуль нормальной упругости 7000— 15 000 кгс/мм . Микротвердость 700-1200 кгс/мм . Коэффициент линейного расширения в зависимости от химического состава и строения ситалла колеблется от 30-Ю до 0. Таким образом, имеется возможность изготовлять изделия, не меняющие линейных размеров с изменением температуры и, следовательно, не подверженные тепловым напряжениям. Есть ситаллы с отрицательным коэффициентом линейного удлинения до —8-10 , размеры которых уменьшаются с повышением температуры.  [c.191]

Приведенные выше соотношения справедливы при температурах примерно до 200 С, когда показатели прочности, упругости, линейного расширения и теплопроводности обычных конструкционных материалов изменяются сравнительно мало. При переходе в область более высоких температур на первый план выступают жаропрочность, т. е. способность длительно выдерживать напряжения  [c.369]

Твердость антифрикционных алюминиевых сплавов НВ 40 — 80, теплопроводность 100 — 200 ка.ч (м-ч-"С), коэффициент линейного расширения (21—24)10 , модуль упругости 7000 кгс/мм". Предел прочности литых сплавов 12—18 ктс/мм", штампованных 20 — 30 ктс/мм .  [c.381]

Эти колебания в реальных веществах имеют затухающий характер, в связи с чем наблюдаются затухание тепловых упругих волн и невысокое значение коэффициента теплопроводности. В теории теплопроводности предполагается, что колебания нормального вида квантуются. В дискретной кристаллической решетке связь между ангармоническими колебаниями приводит к взаимодействию фононов между собой. Для описания этого процесса можно воспользоваться понятием длины свободного пробега. По аналогии с кинетической теорией газов теплопроводность твердого тела можно предста-  [c.157]


Уравнение движения ( динамики, упругой кривой, математической физики, параболического типа, эллиптического типа, гиперболического типа, смешанного типа, линии действия, теплопроводности Эйлера, Пуассона...). Уравнения движения в векторной форме ( с одним неизвестным...). Уравнения Гамильтона ( Лагранжа...).  [c.93]

Теория упругости излагается как часть теоретической физики. Наряду с традиционными вопросами рассматриваются макроскопическая теория теплопроводности и вязкости твердых тел, ряд вопросов теории упругих колебаний и волн, теория дислокаций. В новом издании добавлена специальная глава о механике жидких кристаллов, объединяющей в себе черты, свойственные как жидкостям, так и упругим средам.  [c.4]

В книге, написанной физиками и в первую очередь для физиков, нас, естественно, интересовали вопросы, которые обычно не излагаются в курса теории упругости таковы, например, вопросы теплопроводности и вязкости твердых тел, ряд вопросов теории упругих колебаний и волн. В то же время мы лишь очень кратко касаемся ряда специальных проблем (например, сложных математических методов теории упругости, теории оболочек и т. п.), в которых к тому же авторы ни в какой степени не являются специалистами.  [c.7]

Рассмотрим сначала поглощение поперечных упругих волн. Теплопроводность вообще не может привести к поглощению таких волн (в рассматриваемом приближении). Действительно, в поперечной волне иц = О, и потому температура в ней, согласно  [c.181]

Высокая те.мпература, резкое или частое ее изменение являются причинами, вызывающими термические напряжения п покрытии, подлож,се или в систе.ме металл — покрытие. В общем случае величина этих напряжений зависит от градиента температуры, формы тела. 1Коэффицнента теплового расширения, модуля упругости, теплопроводности, коэффициента Пуассона и других характеристик конструкции. Способность материала или системы материалов сопротивляться действию тепловых напряжений характеризует его работсоспособносгь и долговечность в условиях воздействия высоких температур.  [c.177]

М. п. введено Р. Я. Меллинои (R. Н. МеШн, 1896) и сводится к Лапласа преобразованию подстановкой х = = ехр(—г). М. п. применяют для решения плоских задач теории упругости, теплопроводности, электростатики II др., а также для анализа интегралов, связанных с Фейнмана диаграммами, в теории перенормировок.  [c.96]

Бороволокниты отличаются высокой прочностью при сжатии, сдвиге и срезе, низкой ползучестью, высокими твердостью и модулем упругости, теплопроводностью и электрон ронодиаюстью. Ячеистая микроструктура борных волокон обеспечивает высокую прочность при сдвиге на границе раздела с матрицей.  [c.480]

В связи с большой величиной коэффициента линейного расширения ы низки.м модулем упругости сплав имеет повышенную склонность к короблению. Поэтому 1Шобходимо прибегать к жесткому закреплению листов с помощью грузов, а такгке ннев-мо- или гидравлических прижимов на специальных стендах для сварки полотнищ и секций из этих сплавов. Ввиду высокой теплопроводности алюминия приспособления следует изготовлять из материалов с низкой теплопроводностью (легированР1ые стали и т. п.).  [c.354]

Модуль нормальной упругости титановых сплавов 115000 кгс/мм-, коэффициент Пуассона 0,3 плотность 4,5 0,1 г/см удельное электросопротивление 1,0—1,6 Om-mmVm коэффициент линейного расширения 8,0-10- — 8,6-10 мм/(мм-град) теплопроводность 0,02 кал/(см-с-град).  [c.517]

На рис. 5.5 представлены схемы выполнения сварки по суперпроходам, принятые при расчете ОСН. Последовательность наложения суперпроходов соответствовала последовательности выполнения проходов в реальном процессе сварки. Основной металл (перлитная сталь 12НЗМД) и аустенитный сварочный материал принимались для всех анализируемых соединений одинаковыми. Теплофизические свойства — теплопроводность X и объемная теплоемкость су — принимались независимыми от температуры, равными Я = 32,3 Вт/(м-град), су = 3,8-10 Дж/(м -град) для основного металла и i = 14,7 Вт/(м-град), су = 4,6- 10 Дж/(м -град) для аустенитного металла шва. Используемые при решении термодеформационной задачи зависимости температурной деформации е , модуля упругости Е (одинаковая зависимость для основного металла и металла шва) и предела текучести ат приведены соответственно на рис. 5.6. и 5.7. Так как аустенит не претерпевает структурных превращений, для него зависимости От и е от температуры на стадии нагрева и охлаждения одинаковые. Основной металл претерпевает структурные превращения, и, так как сварочный термический цикл далек от равновесного (большие скорости нагрева и охлаждения), температурный интервал Fe — Fev-превращения от T l до Ти (см. рис. 5.6) при нагреве не совпадает с интервалом  [c.282]

На макроуровне используют математические модели, описывающие физическое состояние и процессы в сплошных средах. Для моделирования применяют аппарат уравнений математической физики. Примерами таких уравнений служат дифференциальные уравнения в частных производных—уравнения электродинамики, теплопроводности, упругости, газовой динамики. Эти уравнения описывают поля электрического потенциала и температуры в полупроводниковых кристаллах интегральных схем, напряженно-деформированное состояние деталей механических конструкций и т. п. К типичным фазовым переменным на микроуровне относятся электрические потенциалы, давления, температуры, концентрадии частиц, плотности токов, механические напряжения и деформации. Независимыми переменными являются время и пространственные координаты. В качестве операторов F и У в уравнениях (4.2) фигурируют дифференциальные и интегральные операторы. Уравнения (4.2), дополненные краевыми условиями, составляют ММ объектов на микроуровне. Анализ таких моделей сводится к решению краевых задач математической физики.  [c.146]


Тепловыделение в микрообъемах тем больше, чем больше амплитуда напряжений и меньше коэффициент асимметрии цикла. С другой стороны величина местного повышения температуры зависит от свойств материала и его структурных составляющих. Повышение температуры в микрообъемах тем больше, чем меньше теплопроводность и теплоемкость материала и выше его циклическая вязкость, определяюндая (на стадии упругих деформаций) долю необратимого превращения энергии колебаний в тепловую энергию.  [c.288]

Теплопроводность их 25 - 35 кал/(м ч С). коэффициент линеГшого расширения (22—24) 10 Модуль нор.мальной упругости Е — 5000 т- 6000 кге/м.м . Плотность 7,3 кг/дм . Твердость при 20 С НВ 20 — 30, предел текучести при сжатии 4—6 кгс мм. При 100 —120 С твердость-II предел текучести снижаются примерно вдвое.  [c.375]

Теплопроводность антифрикционных бронз 50 — 100 кал, (м-ч- С) коэффициент линейного расщиренпя (16 — 18)10 модуль упругости = = 8000 10 000 кгс/мм .  [c.380]

ФЕЕЗико-механические свойства графита плотность 2,2 г/с.м , температура плавления 3500 С разрушающее напряжение 2 кге/.мм", модуль нормальной упругостЕЕ 800 кге/м.м", коэффЕЕЦиент линейного расширения (0,5 — 1) 10 теплопроводность 5 — 7 кал/(.м-ч- С).  [c.387]

Высокие теплопроводность и теплоемкость алюминия требуют применения мощных источников тепла, а в ряде случаев подогрева. Высокий коэффициент линейного расширения и малый модуль упругости способствуют появлению значительных сварочных деформаций, что требует применения надежных зажимных приспособлений и устранения деформаций после свар Ки в ответственных конструкциях. В алюминии отсутствует пластическое состояние при нагреве и переходе из твердого в жидкое соетояние, при этом алюминий не меняет своего цвета, а в области температур более 400—450 С имеется провал прочности и пластичности, поэтому рекомендуется сварка на подкладках,  [c.134]

НеТкй тбиЛовьШп упругими колебаниями решетки (ре -шеточная теилоироводность), движением электронов и столкновениями их с атомами (электронная теплопроводность). А. Ф. Иоффе [126] показал, что хорошо соблюдается аддитивность электронной и решеточной долей теплопроводности твердого тела, т. е.  [c.157]

С колебаниями атомов кристаллической решетки связаны многие физические явления в твердых телах — теплоемкость, теплопроводность, термическое расширение, электропроводность и др. Теория коле баннй атомов трехмерного кристалла крайне сложна. Поэтому мы сначала рассмотрим распространение упругих волн в однородной упругой струне и в кристаллах без учета их дискретной структуры. Затем рассмотрим колебание атомов в одно-ме13Ной решетке. После этого полученные результаты обобщим для случая трехмерной кристаллической решетки.  [c.141]

При рассмотрении колебаний атомов кристаллической решетки а также теплоемкости твердых тел, связанной с этими колебания ми, предполагалось, что силы, действующие между атомами, упру гие и атомы совершают гармонические колебания с малыми ам плитудами около их средних положений равновесия. Это позволи ло разделить весь спектр колебаний на независимые моды, рассчи тать в этом приближении тепловую энергию кристалла и получить формулу для теплоемкости, хорошо описывающую ее поведение при низких и высоких температурах. Однако для объяснения ряда явлений, таких, например, как тепловое расширение твердых тел и теплопроводность, сделанных предположений уже недостаточно и необходимо принимать во внимание тот факт, что силы взаимодействия между атомами в решетке не совсем упругие, т. е. они зависят от смещения атомов из положения равновесия не линейно, а содержат ангармонические члены второй и более высоких степеней, влияние которых возрастает с ростом температуры.  [c.183]


Смотреть страницы где упоминается термин Упругость Теплопроводность : [c.9]    [c.203]    [c.321]    [c.260]    [c.66]    [c.187]    [c.560]    [c.215]    [c.102]    [c.305]    [c.157]    [c.80]   
Машиностроение Энциклопедический справочник Раздел 1 Том 1 (1947) -- [ c.485 , c.487 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте