Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Волокна (проволока) металлические

Металлические волокна (проволока). Волокна из металлов и их сплавов — бериллия, вольфрама, молибдена, стали, титана и др. получают различными методами. Наиболее распространенным из них является волочение, т. е. деформирование металла протягиванием катаных или прессованных заготовок через фильеру меньшего сечения. Известны и другие способы получения проволоки — гидроэкструзией, электрохимическим методом, вытягиванием из расплава, осаждением из газовой фазы, описанные в специальной литературе [27].  [c.42]


Материалы, армированные металлическим волокном. Большинство металлических композиционных материалов, армированных металлическим волокном, удовлетворительно обрабатывается обычными методами механической обработки (резкой, сверлением, фрезерованием, шлифованием). Некоторые трудности возникают лишь при обработке материалов, упрочненных вольфрамовой проволокой относительно большого диаметра (0,3 мм и более).  [c.200]

При создании таких материалов применяют непрерывные и дискретные поликристаллические волокна и нитевидные кристаллы бора, углерода и различных соединений (окислов, карбидов, боридов, нитридов и др.), а также металлические волокна (проволоки), отличающиеся, высокими значениями прочности и модуля упругости.  [c.584]

Волокнистые наполнители значительно повышают механические свойства эпоксипластов (сопротивление растяжению, сжатию, изгибу, удару). Наиболее широко для этой цели применяются стеклоткань и стекловолокно, рекомендуемые для армирования рабочей поверхности штампов, работающих на удар. Недостаток — низкая стойкость на износ. Поэтому облицовочный слой вытяжных штампов (3—5 мм) обычно делается из износоустойчивого эпоксипласта с железным порошком в качестве наполнителя. Армирование эпоксипластов металлическими волокнами (проволока, стружка) повышает износоустойчивость и теплостойкость эпоксипластов (150—170° С).  [c.417]

Высокая прочность композиционных пластиков зависит от применяемых наполнителей (стеклоткани и стекловолокна, хлопчатобумажные ткани и волокна, металлическая сетка и проволока,  [c.433]

В разделе IV обсуждалось использование низкотемпературных материалов. В настоящее время исследуются экспериментальные композиции, которые обеспечат улучшение эксплуатационных качеств применительно ко всем секциям двигателя. К ним относятся титан, армированный борными волокнами никель, армированный волокнами карбида кремния различные суперсплавы, армированные проволоками из тугоплавких металлических сплавов. Последний тип композиций открывает возможности для замены в будущем существующих сплавов для лопаток турбин более легкими материалами с повышенной выносливостью при температурах свыше 1100° С.  [c.75]

Цель автора — обрисовать в общих чертах при помощи простых средств основные принципы, необходимые для понимания инженерами-проектировщиками сущности композиционных материалов. Можно полагать, что представленные концепции применимы к конструкциям или элементам конструкций из пластиков, армированных непрерывными или короткими стеклянными или угольными волокнами из бетона, армированного волокнами или стержнями из металлов, армированных керамическими волокнами или частицами, металлической проволокой или лентой. Схемы армирования композитов могут быть одно-, двух- или трехмерными некоторые из них уже применяются, другие находятся в стадии разработки.  [c.9]


Взаимодействие наиболее эффективно протекает в композиционных материалах в процессе нагрева при их изготовлении, особенно жидкофазными способами, поэтому в ряде случаев предпочитают применять твердофазные технологические процессы, при которых в связи со сравнительно низкими температурами нагрева диффузия в значительной мере замедлена. Уменьшения взаимодействия матрицы с упрочнителем можно добиться разработкой высокоскоростных и низкотемпературных методов изготовления композиционных материалов. К таким методам изготовления композиций, при которых не успевают проходить диффузионные процессы и взаимодействие в такой мере, чтобы повлиять на снижение свойств, относятся взрывное прессование слоистых и волокнистых композиций [12], гидродинамическое горячее прессование [84] и другие методы твердофазного изготовления, например, композиционных материалов с никелевой матрицей, армированной вольфрамовой проволокой. Одним из наиболее прогрессивных методов изготовления композиционных материалов с металлическими волокнами является динамическое горячее прессование, при котором уплотнение волокнистых и слоистых композиций происходит под действием ударной нагрузки в течение долей секунды.  [c.32]

Жесткие армирующие волокна воспринимают основные напряжения, возникающие в композиции при нагружении, придавая ей прочность и жесткость в направлении ориентации волокон. Податливая металлическая матрица, заполняющая межволоконное пространство, осуществляет передачу напряжений отдельным волокнам за счет касательных напряжений, действующих вдоль границы раздела волокно—матрица. Для металлической проволоки характерно повышенное удлинение при разрыве (2—5%) по сравнению  [c.34]

В настояш,ее время известны способы сохранения высокотемпературной прочности и сопротивления ползучести. К таким способам относятся дисперсное упрочнение металлической матрицы тугоплавкими кислородными и бескислородными дисперсными частицами [52]. Сравнительно недавно созданы вольфрамовые сплавы W—Hf—С и W—Hf—Re—С для получения волокон (проволоки) для армирования никелевых матриц [95]. Упрочняющей фазой в волокнах из вольфрамового сплава является карбид гафния. Подобное упрочнение дисперсными частицами может быть осуществлено и на других металлах.  [c.42]

Схема получения материала с дискретными волокнами состоит из операций смешения порошкового матричного материала с ме-ющи . определенную длину волокнами упрочнителя. При использовании металлического упрочнителя (нарезаемая определенной длины проволока) возможно применение обычных валковых мельниц и шаровых смесителей. Возможно перемешивание как всухую, так и с применением жидкостей, например спирта. При этом следует обратить внимание на возможность комкования волокон отдельно от порошковой фракции обычно это происходит в том случае, когда отношение длины к диаметру волокон составляет более ста. Получение хорошо перемешанной шихты с равномерным распределением волокон зависит от следующих факторов, устанавливаемых опытным путем 1) метода перемешивания  [c.151]

Прессование. Прессование заготовок для получения компактной детали или полуфабриката может быть произведено в стальных пресс-формах с использованием обычных гидравлических прессов. Давление прессования подбирают в каждом случае отдельно можно лишь отметить, что в случае, когда смесь содержит металлические волокна, например стальную, вольфрамовую или бериллиевую проволоку, давление прессования должно быть больше, чем это необходимо для прессования порошка материала матрицы. В ряде случаев при прессовании заготовок, содержащих большое количество упругих металлических волокон (30% и более), спрессованные заготовки разваливаются в результате пружинящего действия волокон. Для получения плотной и прочной заготовки в этом случае используют метод горячего прессования или методы деформации.  [c.152]

Способность к формоизменению металлических композиционных материалов в основном определяется природой упрочняющих волокон материалы, упрочненные металлическими волокнами, способны к значительным формоизменениям, например алюминий, армированный стальной проволокой, допускает гибку как в направлении волокон, так и в других направлениях, а также выдавливание с небольшими степенями вытяжки.  [c.198]


Предполагается использование композиционных материалов на никелевой основе для длительной работы при температурах выше 1000° С. Однако разработка таких материалов затруднена из-за отсутствия упрочнителей, которые могли бы без потери прочности длительно работать в контакте с никелевой матрицей. Из металлических упрочнителей с точки зрения совместимости с никелевой матрицей лучшей пока остается вольфрамовая проволока, обеспечиваюш,ая довольно высокие значения длительной прочности в композиционных материалах на основе никелевых сплавов. Характеристики прочности и длительной прочности некоторых композиций приведены в табл. 18—22 и 61. Из таблиц видно, что введение вольфрамовой проволоки в количестве 40— 70 об. % позволяет получить материал с длительной (100-часовой) прочностью при 1100° С, равной 13—25 кгс/мм . Основными недостатками этих материалов является высокая плотность и необходимость защиты от окисления при высоких температурах. В этой же таблице приведены свойства композиции никель—углеродное волокно. Композиция привлекательна своей невысокой плотностью. Однако прочность ее невелика, и композиция не может работать длительно при температурах выше 1000° С из-за взаимодействия волокна с матрицей.  [c.217]

В массе своей (Композиционные материалы с волокнистой арматурой и металлической матрицей еще не вышли за рамки лабораторных исследований опытно-промышленного использования. Но некоторые из них уже применяются в практических целях свинец, серебро и алюминий армируют стальной проволокой, алюминий — стекловолокном, медь — вольфрамовыми волокнами. Объем производства композиционных материалов на основе пластиков и стекловолокна достиг завидной величины, а о масштабах производства железобетона и говорить е приходится.  [c.129]

В качестве армирующих элементов слоистых и волокнистых композиционных материалов с металлической матрицей применяются волокна из углерода, бора, карбида кремния, оксида алюминия, высокопрочной стальной проволоки (сетки), бериллиевой, вольфрамовой и других проволок. Для обеспечения химической стойкости в расплаве матрицы и сцепления волокна с матрицей применяют защитные барьерные покрытия на волокнах из карбидов кремния, титана, циркония, гафния, бора, из нитридов и окислов этих и других элементов. При этом получается сложная многокомпонентная система матрица — переходный слой продуктов химического воздействия матрицы с барьерным покрытием — слой волокна. Механические свойства за счет армирования повышаются в 1,5—3 раза (удельные в 2—5 раз) в зависимости от объемной доли и способа введения армирующих волокон.  [c.78]

Тканый фрикционный материал изготовляется в виде ленты из нитей, состоящих из асбестовых и хлопчатобумажных волокон и металлической проволоки. Примерный состав тканой ленты следующий асбестовое волокно 56%, проволока 30%, хлопчатобумажное волокно 14%. Применение металлической проволоки увеличивает механическую прочность фрикционного материала и повышает его теплопроводность. Обычно применяют латунную или медную проволоку диаметром 0,15—0,2 мм. Иногда применяют свинцовую или цинковую проволоку, которую можно волочить до меньшего диаметра. Однако латунная проволока получила наибольшее распространение, так как она меньше изнашивает сопряженную деталь, чем проволоки из других материалов. Тканая тормозная лента (ГОСТ 1198-55), находила ранее весьма широкое применение в тормозных устройствах разнообразных машин. Ее эластичность обусловливала возможность применения для работы с тормозными шкивами различного радиуса кривизны, что при большом разнообразии диаметров шкивов имело большое значение.  [c.527]

При умеренных нагрузках (напряжения растяжения меньше 3—5 кг/мм ) целесообразно применять армирование стеклотканью, проволокой или металлическими прутками. Направление прутков арматуры должно совпадать с направлением нормальных напряжений. В элементах, подверженных изгибу, прутки следует закладывать в плоскости действия наибольших растягивающих напряжений, т. е. там, где волокна наиболее вытянуты. Проволоку и прутки арматуры не рекомендуется делать из мягкой пластичной стали. В этом случае возможно растрескивание напряженных мест пластмассовой детали из-за больших удлинений арматуры.  [c.101]

Волокна представляют собой отрезки металлической проволоки длиной 4—20 мм и диаметром от 0,025 до 0,175 мм, которые прессуются и спекаются, после чего пропитываются мягким металлом или сплавом. Плотность основы регулируется при прессовании величиной сжимающего усилия от 6 до 60% плотности исходного материала. Спекание нержавеющей стали производится в течение 2 ч при температуре 1250° С с продуванием сухого водорода. Пропитка мягким металлом (наполнителем) производится при высокой температуре в индукционной печи. При вакуумной пропитке заполнение основы осуществляется за счет собственного веса наполнителя и капиллярных сил.  [c.570]

Тонкие металлические волокна можно также получать химическим травлением проволоки до нужных сечений. Например, травлением медной проволоки в азотной кислоте получают волокна диаметром < 1 мкм. Для получения тонких вольфрамовых волокон с успехом применяют метод электролитического травления 15 - 20 %-ным раствором едкого натра в поле переменного тока.  [c.183]

Горячая вытяжка. Этот метод разработан для производства прутков или трубчатых изделий из полуфабрикатов в форме проволоки [8]. Процесс вытяжки следует проводить таким образом, чтобы растягивающие напряжения были направлены в основном вдоль волокон, а изгибающие напряжения были минимальными или отсутствовали. Это дает возможность существенно уменьшить повреждения волокон и дефекты на границе раздела волокно-металлическая матрица. На рис. 7.4 показана общая схема метода горячей вытяжки стержней из композиционного материала на основе алюминия, армированного углеродными волокнами. Заготовку в виде проволоки вакуумируют в оболочке из нержавеющей стали. Вытяжку осуществляют, протягивая такую заготовку через волочильный глазок из карбида кремния, температура которого поддерживается на постоянном уровне, ниже температуры плавления металлической матрицы.  [c.247]


Повышение жаропрочности никелевых сплавов достигается армированием их вольфрамовой или молибденовой проволокой. Металлические волокна используют и в тех случаях, когда требуются высокие теплопроводность и электропроводимость. Пер-спективньши упрочнителями для высокопрочных и высокомодульных волокнистых композиционных материалов являются нитевидные кристаллы из оксида и нитрида алюминия, карбида и нитрида кремния, карбида бора и др., имеющие = 15 000-н28 000 МПа и Е = 400 4-600 ГПа.  [c.424]

Наиболее широкое применение в технике получили композиты, армированные высокопрочными и высокомодульными непрерывными волокнами. К ним относят полимерные композиты на основе термореактивных (эпоксидных, полиэфирных, полиимидных и др.) и термопластичных связующих, армированных стеютянными (стеклопластики), углеродными (углепластики), органическими (органопластики), борными (боропластики) и другими волокна.ми металлические композиты на основе сплавов А1, Mg, Си, Ti, Ni, Сг, армированных борными, углеродными или карбидкремниевыми волокна.ми, а также стальной, молибденовой или вольфрамовой проволокой композиты на основе углерода, армированного углеродными волокнами (углерод-углеродные материалы) композиты на основе керамики, ар.мированные углеродными, карбидкремниевыми и другими жаростойкими волокнами.  [c.13]

Неметаллические волокна — борные, углеродные, карбида кремния, оксида алюминия, оксида циркония, нитевидные кристаллы карбида н нитрида кремния, оксида и иитрнда алюминия и др. Металлические армирующие — волокна (проволока) бериллия, вольфрама, молибдена, стали, титановых и других сплавов.  [c.352]

Кроме волокон в качестве армирующего элемента используют также нитевидные кристаллы, получаемые осаждением из газовой фазы, выращиванием в электрическом поле, кристаллизацией из растворов. Волокна изготавливают с аморфной (стекловолокно, кремниевые волокна), композиционной (борные) и кристаллической (углеродные) структурой. Борные волокна получают осаждением бора на вольфрамовую проволоку (диаметром 22,5 мкм) в виде покрытия углеродные — карбонизацией и графитизацией полиакрилонитрильных (ПАН-В) или гидроцеллюлозых (вискозных Гц-6) волокон. Керамические волокна (MgO, AI2O3, ZrOj, TiO, Si , В С) получают из расплавов, осаждением из газовой фазы или методами порошковой металлургии. Металлические волокна (проволока) изготавливают механически, электрохимически или формованием из расплава с использованием фильер.  [c.125]

Получение волокон механическим способом основано на использовании тонкой проволоки или металлической стружки, полученной при шабрении, шевинговании и других видах обработки на станках, дающих непрерывные пряди металла. Перед формованием проволоку и металлическую стружку режут на куски определенной длины. Правильный выбор размера волокон способствует формированию однородной структуры материала. Способы получения волокон резкой проволоки и шевингованием используют для всех технически важных металлов и сплавов. Использование тонкой металлической стружки предпочтительнее использования проволочных волокон. Волокна из металлической стружки, имеющие шероховатую поверхность, обладают хорошей сцепляемостью, что облегчает проведение дальнейших технологических процессов. При резке проволоки важно изменение конфигурации волокон — изгиб или закручивание, что приближает такие волокна по характеристикам сцепляемости к металлической стружке. Волокна, полученные механическими способами, перед дальнейшей обработкой подвергают обезжириванию в трихлорэтИ-лене, перекиси натрия или гидрооксиде аммония.  [c.181]

Следует иметь в виду, что если арматура предназначена для упрочнения (увеличения механических характеристик) полимерного материала, то последний называется армированной пластмассой, например армированный стеклопластик, усиленный непрерывной стеклоарматурой (волокнами) армированный металлопластик— металлическими волокнами (проволокой или сеткой) армированный капронополиэтилен — капроновыми нитями и т. д.  [c.94]

Внутри каждой in3 перечисленных груип композиционные материалы можно классифицировать различными способами по виду материала компонентов, их размерам, форме, ориентировке, а также по назначению или методу получения. Например, волокнистые материалы по виду матрицы делят на металлические, полимерные и керамические по виду волокон —на материалы, армированные проволокой, стеклянными, борными, углеродными, керамическими и другими волокнами или нитевидными кристаллами по размерам волокон — на материалы с непрерывными или короткими (дискретными) волокнами по ориентировке волокон — на материалы с однонаправленными или ориентированными в двух и более направлениях волокнами.  [c.635]

Минеральная вата -теплоизоляционный материал, состоящий из тончайших гибких стекловидных волокон. Теплоизоляционные свойства минеральной ваты определяются воздушными порами (90% от общего объема материала), заключенными между волокнами. В настоящее время является самым распространенным теплоизоляционным материалом. Ее применяют для тепловой изоляции энергетического оборудования, строительных конструкций, холодильных установок. Из нее изготовляют маты, плиты (на битумной связке, битумно-глиняной связке), прошивные маты с обкладкой металлической сеткой, стсклохолстом, картоном, бумагой, жгуты, оплстсккыс проволокой, асбестовой или стеклянной нитью. Приь1еняются для набивки или засыпки между двойными стенками оборудования, изолируемыми поверхностями и кожухами. Предельная температура применения минеральной ваты  [c.142]

Волокна, нити, проволоки, фольги и ленты широко используются в технике и являются одним из самых доступных видов армирующих элементов, применяемых при создании жаропрочных композиционных материалов. Однако прочность и деформативность гибких металлических конструктивных элементов при высоких температурах исследуется недостаточно из-за методических трудностей точного измерения и записи данных эксперимента. Совершенствование методики в этом направлеппп необходимо для получения более корректных данных прочности и особенно пластичности.  [c.118]

Для армирования наиболее широко используют термореактив-ные полимеры (например, полиэфиры, смолы на основе сложных виниловых эфиров, эпоксидные, фурановые), а в качестве армирующего наполнителя — стекловолокно из стекла Е, С, К, 8. Используют также асбестовые волокна. Это не значит, однако, что другие волокна не находят применения в качестве армирующих, например такие, как борные, керамические, углеродные, джутовые волокна, металлическая проволока или листы, полиакриловые, полипропиленовые, кварцевые волокна, нитевидные кристаллы сапфира. Многие из перечисленных материалов, например нитрид бора, углеродные, кварцевые волокна и нитевидные кристаллы сапфира использовались в основном в авиационно-космической технике и, несмотря на их привлекательность, имеют ограниченное применение в осуществлении программы по предотвращению коррозии в химической промышленности вследствие их высокой стоимости. Углеродные или графитовые волокна являются армирующим наполнителем, обладающим наибольшей потенциальной возможностью снижения стоимости.  [c.312]

Другая серия экспериментов на армированных волокнами никелевых сплавах выполнена в работе [44]. Там в качестве материала матрицы использован Нимокаст 713С. Для определения лучшей комбинации проволока — матрица последняя армировалась несколькими типами огнеупорных металлических про-  [c.304]


К первой группе относятся композиционные материалы, упрочненные дисперсными частицами и хаотически расположенными монокристалличе-скими нитями (так называемыми усами ) (см. рис. 114, I—1). Материалы, получаемые методами порошковой металлургии и состояш ие, например, из частиц карбидов тугоплавких металлов, помеш енных в связующее, образуемое металлами железной группы, иллюстрируются схемой I—2. За рубежом значительное внимание уделяют созданию металлических материалов, например, на медной основе, армированных дискретными отрезками вольфрамовой, молибденовой проволоки (/—3), а также расположенными в металлической основе непрерывными проволоками 1—4) [97 98]. Могут быть изготовлены материалы, имеющие армирующие элементы в виде сеток -— проволочных тканей и сот (/—5). Еще один вид образуют материалы, имеющие непрерывные неориентированные армирующие волокна — типа войлока , в зарубежной практике называемые фелтметалл (/—6).  [c.250]

Прочная связь напыленного металлического слоя с волокнами значительно облегчает дальнейшие технологические операции с монослойным полуфабрикатом — укладку, резку, прессование и др. Помимо природы волокна и матричного материала, состояния поверхности их, а также режимов плазменного напыления, на прочность связи волокна с матрицей большое влияние оказывает температура волокон в процессе напыления. Изменение прочности сцепления алюминиевой матрицы с борными волокнами и прочности самих волокон в зависимости от температуры волокон изучалось в работе [88]. Проволоку из алюминиевого силава АМг-5 диаметром 1,2 мм распыляли в аргоновой плазмен-  [c.173]

Титановые сплавы обладают максимальной удельной прочностью по сравнению со сплавами на основе других металлов, достигающей 30 км и более. В связи с этим трудно подобрать армирующий материал, который позволил был создать на основе титанового сплава высокоэффективный композиционный материал. Разработка композиционных материалов на основе титановыг сплавов осложняется также довольно высокими технологическими температурами, необходимыми для изготовления этих материалов, приводящими к активному взаимодействию матрицы и упрочни-теля и разупрочнению последнего. Тем не менее работы по созданию композиционных материалов с титановой матрицей проводятся, и главным образом в направлении повышения модуля упругости, а также прочности при высоких температурах титановых сплавов. В качестве упрочнителей применяются металлические проволоки из бериллия и молибдена. Опробуются также волокна из тугоплавких соединений, такие, как окись алюминия и карбид кремния. Механические свойства некоторых композиций с титановой матрицей приведены в табл. 58. Предел прочности и модуль упругости при повышенных температурах композиций с молибденовой проволокой показаны в табл. 59.  [c.215]

Композитные материалы выполняют а) с непрерывными однонаправленными волокнами, б) с дискретными однонаправленными волокнами, в) армированные тонкой проволокой, г) армированные сеткой и, наконец, д) в виде фелт-металла, т. е. металлического войлока.  [c.65]

Значительные силы трения в застывающем уплотнении, приводящие к заклиниванию штока, могут быть существенно уменьшены разными способами, например использованием в застьшающем уплотнении набивки из металлического волокна (рис. 5). По существу такое уплотнение становится сальниковым. Высота участка застывания увеличивается, и в него устанавливается спехщальная набивка. В этом случае в сальник поочередно укладываются кольца набивки двух типов. Кольца одного из них выполнены из металлического волокна толщиной 10 мкм, помещенного в оплетку из тонкой монелевой проволоки. Марки материала волокна сердечника и оплетки различны. Оплетка этих колец набивки плотно прилегает к поверхности штока клапана и очищает его от окислов натрия. Кольца набивки другого типа состоят из тонкого листового  [c.11]

Воздушный транспорт <В 64 ангары для стоянки Е 04 FI 6/44 системы регулирования полетов G 08 G 5/00-5/06) Вокзалы, общее устройство В 61 В 1/00 Волновая энергия, использование [В 29 С вулканизация изделий 35/08-35/10 (соединение 65/14-65/16 тиснение или гофрирование поверхностей 59/16) пластических материалов , для переплавки металлов С 22 В 9/22 для полимеризации С 08 F 2/46 для получения привитых сополимеров на волокнах, нитях, тканях или т. п. D 06 М 14/18-14/34 в химических или физических процессах В 01 J 19/08] Волокна [использование <для изготовления гибких труб F 16 L 11/02 в сплавах цветных металлов С 22 С 1/09 в фильтрах В 01 D 39/02-39/06) металлические в сплавах С 22 С 1/09 оптические в качестве активной среды лазеров Н 01 S 3/07] Волокнистые материалы [использование для изготовления приводных ремней F 16 G 1/04, 5/08 складывание В 65 Н 45/00 сушильные устройства F 26 В 13/00] Волоконная оптика <С 02 В 6/00 химический состав и изготовление оптического стекловолокна С 03 (В 37/023, 31j027, С 13/04) Волочение [В 21 С листового металла, проволоки, сортовой стали, труб 1/00-1/30 устройства для правки проволоки, конструктивно сопряженные с волочильными машинами 19/00) как способ изготовления топливных элементов реакторов G 21 С 21/10] Волочильные станы В 21 С <1/02-1/30 комбинированные с устройствами для очистки металлических изделий 43/02 рабочие инструменты для них 3/00-3/18) Вольтова дуга, использование для нагрева печей F 27 D 11/08 Вольфрам С 22 легированные стали, содержащие вольфрам, С 38/12-38/60 получение и рафинирование В 34/36 сплавы на его основе С 27/04)  [c.59]

Рис. 1.35. Аитокатод на основе углеродных нолокн и полимеров а — автокатоды (.1) в никелевых трубах (2) вставлены во фторопластовую оправку (J). Металлический спей-сер (4) служит для крепления модуляторного электрода и конструкции в целом 6 — заливка формы кремнийорганическим диэлектриком в — после затвердевания диэлектрика и удаления оправки г — выравнивание волокон подлине электроэрозийпой резкой. Потенциал прикладывается между проволокой (5) и углеродными волокнами Рис. 1.35. Аитокатод на основе углеродных нолокн и полимеров а — автокатоды (.1) в никелевых трубах (2) вставлены во фторопластовую оправку (J). Металлический спей-сер (4) служит для крепления модуляторного электрода и конструкции в целом 6 — <a href="/info/285125">заливка формы</a> кремнийорганическим диэлектриком в — после затвердевания диэлектрика и удаления оправки г — выравнивание волокон подлине электроэрозийпой резкой. Потенциал прикладывается между проволокой (5) и углеродными волокнами
Для изготовления мягких сальникс/вых набивок употребляют хлопчатобумажную, льняную, пеньковую или джутовую пряжу, а также асбестовое волокно или пряжу с добавлением хлопковых волокон, а для усиления— металлическую проволоку.  [c.103]

Композиционные материалы с неметаллической матрицей нашли широкое применение. В качестве неметаллических матриц используют полимерные, углеродные и керамические материалы. Из полимерных матриц наибольшее распространение получили эпоксидная, фенолоформальдегидная и полиимидная. Угольные матрицы коксованные или пироуглеродные получают из синтетических полимеров, подвергнутых пиролизу. Матрица связывает композицию, придавая ей форму. Упрочнителями служат волокна стеклянные, углеродные, борные, органические, на основе нитевидных кристаллов (оксидов, карбидов, боридов, нитридов и др.), а также металлические (проволоки), обладающие высокой прочностью и жесткостью.  [c.475]

Часто для изготовления фильтров применяют металлические волокна (тонкую проволоку). Выбор способа изготовления порошковых фильтров зависит от их назначения и предъявляемых к ним требований, главным образом от требуемого размера пор. На технологию изготовления оказывают впияние размеры фильтра, в частности толш,ина его стенки. Основными способами изготовления порошковых фильтров можно считать следуюш,ие  [c.71]

Армирование титана и его сплавов повышает жесткость и расширяет диапазон рабочих температур до 973 - 1073К. Для армирования титановой матрицы применяют металлические проволоки, а также волокна карбидов кремния и бора Композиты на основе титана с металлическими волокнами получают прокаткой, динамическим горячим прессованием и сваркой взрывом.  [c.115]

Характеристики при растяжении полуфабрикатов в ввде проволоки и изделий из них приведены в табл. 7.2 и 7.3. Степень реализации прочности волокон в полуфабрикатах составляет 80%, а после горячего прессования она уменьшается до 60% и ниже. Ухудшение прочностных свойств в процессе формования связано с реакцией на поверхности раздела углеродное волокно-металлическая матрица вследствие высокого относительного содержания образовавшегося на поверхности AI4 3. Эти данные подтверждают тот факт, что поверхностный слой "ПВ недостаточно хорошо защищает волокна от реакций на поверхности раздела.  [c.251]


Смотреть страницы где упоминается термин Волокна (проволока) металлические : [c.44]    [c.71]    [c.16]    [c.163]    [c.182]    [c.109]   
Структура и свойства композиционных материалов (1979) -- [ c.42 ]



ПОИСК



Волокна

Волокна (проволока)

Волокна металлические



© 2025 Mash-xxl.info Реклама на сайте