Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Железо Кристаллическая структура

Магнитные свойства феррита при увеличении температуры исчезают дважды в точке Кюри и в точке компенсации [Л. 63]. Наличие этой второй точки объясняется особенностями его кристаллической структуры. В подавляющем большинстве ферриты представляют собой твердые растворы окиси железа РегОз и окислов двухвалентных металлов. Феррит имеет две подрешетки с магнитными моментами, направленными антипараллельно. Компенсация происходит тогда, когда эти моменты будут равны. Намагниченность насыщения у ферритов меньше, чем у ферромагнетиков. Влияние температуры на начальную динамическую магнитную проницаемость увеличивается с ростом этой величины. Однако у никель-цинкового феррита (ц= 200) магнитная проницаемость 14  [c.14]


Учитывая изложенное выше, можно сделать вывод, что формирование заготовок полюсных наконечников в штампе позволяет достичь некоторых преимуществ 1) появляется возможность управлять формированием кристаллической структуры полюсных наконечников, а в необходимых случаях добиваться большей ее однородности, чем в заготовках, полученных свободной осадкой 2) получить значительную экономию дорогостоящих железо-кобальтовых сплавов.  [c.210]

Представленные в сборнике результаты расчета влияния излучения посторонних источников при тепловых методах контроля и экспериментальные данные по чувствительности приемников излучения в зависимости от температуры среды и фоновой засветки позволяют учесть влияние излучения посторонних источников при измерении температуры, когда их интенсивность в несколько раз превышает полезный сигнал. Даны результаты исследования по оптимизации магнитных свойств и кристаллической структуры железо-кобальтовых сплавов, используемых в качестве материалов для полюсных наконечников в электромагнитах с высокой однородностью поля. Рассчитана оптимальная конфигурация проводников с током для коррекции поля в электромагнитах радиоспектрометров ядерного магнитного резонанса, показана возможность изготовления системы коррекции в виде плоских проводников с током.  [c.4]

В этом разделе будут рассмотрены стали, имеющие кристаллическую структуру о. ц. к. Круг таких сплавов очень широк — от почти чистого железа до высоколегированных нержавеющих сталей. Составы всех упоминаемых, а также ряда других типичных сталей приведены в табл. 1. Хотя различные стали, представленные в табл. 1, могут существенно различаться своей микроструктурой, а иногда и особенностями поведения, их оказалось удобнее поместить в один раздел. Помимо общей решетки, эти стали имеют, как будет показано ниже, много общих черт поведения при взаимодействии с окружающей средой.  [c.51]

Кристаллическая структура 3 — ЗОЭ Полосовая бронза — см. Бронза полосовая Полосовая сталь — см. Сталь полосовая Полосовое железо — Линейная усадка 1  [c.207]

При пайке железа медью с разными зазорами структура, формирующаяся при затвердевании расплава, оказывается при прочих равных условиях различной в малых и больших зазорах. В широких зазорах (0,5—2 мм) кристаллизация происходит с образованием развитой дендритной структуры и имеет характер объемного затвердевания. Содерл<ание железа в осях дендритов достигает 4%, а на периферии падает до 2—2,5 % (массовые доли). Смена форм затвердевания с изменением размера зазора вызывается изменением условий кристаллизации. Согласно существующим представлениям тип кристаллизации сплавов определяется градиентом температуры расплава, а такл<е величиной и протяженностью области концентрационного переохлаждения вблизи фронта кристаллизации. При прочих равных условиях уменьшение зазора, а следовательно, слоя кристаллизующейся жидкости, начиная с определенного момента, приводит к таким изменениям указанных факторов, что дендритная форма кристаллов постепенно уступает место ячеистой, а последняя — преобладающему росту кристаллов с гладкой поверхностью. Окончательная кристаллическая структура металла шва не соответствует первоначальным формам роста кристаллов. Новые границы зерен в шве пересекают в произвольных направлениях дендритные и ячеистые кристаллы. При больших зазорах имеются участки, где вторичные границы совпадают с пограничными зонами первичных дендритов. При малых зазорах структура шва по ширине представляет собой один слой зерен. Возникновение вторичной структуры в литых сплавах связывается с образованием при кристаллизации большого числа дефектов (дислокаций и вакансий), способных перемещаться и группироваться в определенных участках затвердевающего металла.  [c.34]


Кристаллическая структура фосфидов железа приведена в табл. 202.  [c.527]

Фазы гамма штрих (ц ). Выделение преципитата соединений A3D с решеткой г.ц.к., или разновидностей у -фаз в суперсплавах — наиболее благоприятное событие. Благодаря состоянию его электронной Ъй оболочки, атом Ni несжимаем. По этой причине высоконикелевая матрица способствует выделению у -фаз, которое сопровождается лишь небольшим изменением параметров решетки матрицы (опыт показывает, что в сплавы с решеткой г.ц.к. необходимо вводить не менее 25 % Ni). Образования более сложных фаз, требующих существенного изменения атомных размеров, избегают. Эти нежелательные фазы возникают при наличии матрицы с повышенным значением концентрации электронных дыр (A/J, например, в сплавах на основе железа. Согласованность кристаллических структур и параметров решетки г.ц.к. у -фазы и у-матрицы (размерное несоответствие около 0,1%) обеспечивают возможность гомогенного зарождения преципитата, отличающегося низкой поверхностной энергией и чрезвычайно долговременной стабильностью. Когерентность у - и у-фаз сохраняется благодаря тетрагональному искажению.  [c.136]

С этим явлением мы уже сталкивались в гл. 2 на примере железа. Но железо далеко не одиноко в своем стремлении к многоликости . Ему в этом следует целая группа металлов. Существование у одного элемента нескольких кристаллических структур называется полиморфизмом, а сам переход кристалл I — Кристалл 2 — полиморфным превращением. С этими превращениями связана одна трагическая страница человеческой истории.  [c.133]

Кривые намагничивания и магнитная проницаемость поли-кристаллического вещества, например железа, в слабых магнитных полях существенно зависят от примесей и дефектов кристаллической структуры.  [c.162]

Наиболее низкие рабочие температуры (450—650 С) имеют стали ферритного, перлитного и мартенситного классов, т е стали на основе а железа Аустенитные стали имеют более высокие рабочие температуры Это объясняется влиянием типа кристаллической структуры и полиморфных превращений на механические свойства сталей при высоких температурах  [c.297]

У обычного полиэтилена с аморфно-кристаллической структурой Е = = 120. .. 260 МПа, у полипропилена Е = 160. .. 320 МПа. Сополимер этилена и пропилена при соотношении мономеров 1 1 не кристаллизуется и при температуре 20-25°С является каучуком. Его модуль (при растяжении 300 %) всего 9 — 15 МПа. У полиэтиленового волокна в зависимости от технологии изготовления Е — 100. .. 170 ГПа (для сравнения у железа Е = 214 ГПа).,  [c.44]

В процессе окисления железа и стали на поверхности растут несколько оксидов, у которых химический состав, кристаллическая структура и защитные свойства различны.  [c.489]

В то время, к которому относится посещение Кульманом Америки, большинство американских инженеров питали мало доверия к железным фермам, и надо полагать, что усталостные аварии были главной причиной этого недоверия. Они рассказывали Кульману, что под действием повторной ударной нагрузки и колебаний волокнистое железо принимает кристаллическую структуру, в результате чего отдельные элементы теряют иной раз несущую способность внезапно, без всякого предостерегающего сигнала о наступлении этой аварии. Кульман замечает, вероятно правильно, что причина этого явления заложена в принятых американцами высоких значениях допускаемых напряжений. Усталостных разрушений можно избежать путем снижения рабочих напряжений.  [c.234]

Так же как в случае наводороживания при катодной поляризации, проницаемость стали для диффундирующего водорода, образующегося в процессе коррозии стали, зависит от химического состава стали, ее структурного состояния, степени механической деформации, наличия внутренних напряжений, дефектов кристаллической структуры металла. Эти вопросы рассмотрены в разделах 2.6—2.9. Количество абсорбированного водорода при коррозии должно быть связано с вышеперечисленными факторами в основном таким же образом, как и при катодной поляризации. Однако здесь возможны и отклонения, обусловленные неравномерным растворением выходящих на поверхность стального образца зерен и межзеренных прослоек, включений примесей и т. д. Исследованию влияния указанных факторов на способность стали абсорбировать водород, выделяющийся при коррозии, посвящено очень немного работ. Исследователи предпочитали изучать действие этих факторов при наложении на образцы катодной поляризации от внешнего источника тока, что объясняется рядом причин 1) при коррозии стали происходит одновременно диффузия водорода внутрь образца и удаление его поверхностных слоев, уже насыщенных водородом (согласно [323], наводороживание стали уменьшает ее коррозионную стойкость, т. е. облегчает переход ионов железа в раствор), 2) образующиеся, при коррозии микрощели по границам зерен и т. д. искажают результаты эксперимента, 3) результаты искажают также переходящие из стали в раствор примеси, среди которых особенно опасны элементы-стимуляторы наводороживания.  [c.116]


Кристаллическую структуру аустсннта можно себе представить как г. ц. к. решетку, состоящую из атомов железа, в которую внедрены меньшего размера атомы углерода. Если бы все свободные места (поры) в г. ц. к. решетке были заняты углеродом, то это состояние характеризовала бы схема, изображенная на рис. 132,а. Но так как атом углерода больше размеров ио-  [c.163]

На рис. 25 видно, что в интервале температур 910—1392 С устойчивым является -железо (Fe. ,) (К12) с кристаллической структурой, имеющей меньшую свободную энергию, чем а-железо (Ре )-а при тем[1ературах ниже 910 и выше 1392 °С устойчиво а-железо (Fe ) (К8), так как его свободная энергия меньше, чем -железа (Fe ).  [c.40]

Ферриты-ш пинели имеют кристаллическую структуру типа минерала шпинели MgAl204 и химическую формулу Me Fef 04, где Ме + — ион двухвалентного металла, а ионы железа Fe + — трехвалентны. В случае простых ферритов Me представляет собой один из двухвалентных ионов переходных элементов, например Мп, Ni, Со или Mg возможна также комбинация этих ионов твердые растворы ферритов или смешанные ферриты). Трехвалентные ионы железа в МеРе204 могут быть полностью или частично заменхены другими трехвалентными ионами, например А1Н или Сг + (смешанные ферриты-алюминаты или ферриты-хромиты).  [c.709]

Сплав железа с кремнием (0,5-ь 5%) называют электротехнической сталью. В стали могут присутствовать примеси углерода и серы при их содержании свыше 0,01% заметно увеличиваются магнитные потери / ю/бо- Легирование кремнием имеет важное значение. При введении кремния происходит раскисление стали, а углерод переводится из ухудшающего магнитные свойства соединения цементита Feg в графит, выпадающий в виде мелких включений. При наличии кремния снижаются магнитострикция и анизотропия, а строение стали приобретает крупнозернистую структуру. Слегка искажая кристаллическую структуру, кремний вызывает повышение удельного сопротивления р до примерно 60-10 ом-см. Вместе с тем  [c.233]

На рис. 1, а и б, видны частицы окисп железа, отделенные от металла вместе с покрытиями из окиси алюминия и двуокиси циркония. На рис. 2 видна граница между частицами окиси железа и окиси алюминия. Сравнительно резкое очертание этой границы может свидетельствовать об отсутствии химического взаимодействия между материалом покрытия и подложно . Как видно из рис. 2, на поверхности скола частиц из окиси алюминия наблюдаются, так называемые, речные узоры. Каждая из линий, составляющих речной узор, связана с различием уровней отдельных частей поверхности скола, обусловленным тем фактом, что трещина скола, вместо того, чтобы распространяться по одной кристаллографической плоскости, была разбита дефектами кристаллической структуры на отдельные части.  [c.243]

При питтинговой коррозии основное коррозионное разрушение локализуется на отдельных небольших участках металла (магний, алюминий, железо, никель, титан и др.) и протекает с большой скоростью, что может приводить к сквозной точечной коррозии металла. Питтинговая коррозия наблюдается, обычно, когда основной металл находится в пассивном состоянии. Ионы-активаторы (СГ, Вг , I") адсорбируются в основном на участках поверхности, где плеяка оксида несовершенна (металлические или неметаллические включения, искажающие или нарушающие кристаллическую структуру оксида) [22]. Анионы частично замещают кислород в оксиде и образуют хорошо растворимые поверхностные комплексные ионы. Пассивная пленка нарушается, и металл начинает непосредственно контактировать с раствором. Потенциал металла на этих участках имеет более отрицательное значение, чем потенциал основного металла, покрытого оксидной пленкой, что приводит к возникновению локальных токов. Если пассивная пленка не обладает большим омическим сопротивлением, то система заполяризовывается и на участках питтингооб-разования в основном протекает интенсивно анодный процесс, а катодный процесс восстановления окислителя идет на пассивной поверхности металла. При этом миграция анионов-активаторов идет в основном к участкам питтингообразования.  [c.38]

Таким образом, все металлы VHI группы образуют с титаном фазы на основе эквиатомных соединений с кристаллической структурой типа s l. Эта структура в системах с железом, рутением, осмием и кобальтом устойчива вплоть до комнатной температуры во всей области гомогенности этих фаз. В системах с родием и иридием существует узкий интервал ее устойчивого состояния при сравнительно низких температурах за счет стабилизации избыточным, по сравнению с эквиатомным составом, содержанием титана. В сплавах близких к эквиатомному, а в системах с никелем, палладием и платиной — во всей области гомогенности — с понижением температуры  [c.187]

Карашев Т., Тврминасов Ю. С. Рентгенографическое исследование искажении кристаллической структуры отожженного технического железа, подвергнутого испытанию на износ.— В ки. Применение рентгеновских лучей к исследованию материалов, выи. 29. Л., Ле-нингр. инж.-экои. ин-т, 1962.  [c.112]

Марки сплавов, химический состав тип кристаллической структуры и на личие магнитной анизотропии норми рованы ГОСТ 17809—72 (табл. 22) Названия марок сплавов составлены из условных буквенных обозначений (табл. 23) химических элементов, входящих в сплав (не считая железа). Цифры определяют процентное содержание того элемента, за буквенным обозначением которого они следуют. Например, марка ЮНДК35Т5Б означает сплав железа с алюминием, никелем, медью, кобальтом, титаном и ниобием. Процентное содержание кобальта и титана соответственно 35 и 5%. Марка ЮНДК35Т5БА означает сплав железа с алюминием, никелем, медью, кобальтом и ниобием со столбчатой кристаллической структурой, а марка ЮНДК35Т5АА — сплав железа с алюминием, никелем, медью, кобальтом и титаном с моно-кристаллической структурой.  [c.97]

Исследование взаимодействия Fe с Zr начато еще в 1928 г. Х , однако окончательно диаграмма состояния системы Fe—Zr не построена до сих пор. Различные исследователи [1—22] сообщают об образовании промежуточных фаз, число, стехиометрия и кристаллическая структура которых не всегда совпадают. Для исследования, как правило, были использованы материалы высокой чистоты — иодидный цирконий, электролитическое или армко железо спланм выплавляли в дуговой печи в атмосфере аргона, в индукционной печи во взвешенном состоянии в атмосфере гелия, в электроннолучевой печи в вакууме. Исследования проводили методами конического, рентгеновского фазового, дифференциального терм нм сякого анализов, а также измерением твердости, магнитного аналн.за, Мессбауэровской спектроскопии и др.  [c.586]


Лапунова P.B. Фазовые равновесия и кристаллические структуры в тронных системах редкоземельных металл—железо—галлий Автореф. дис. канд. хим наук. Львов. 1989. 24 с.  [c.626]

Кристаллическая структура промежуточных фаз. Хорошо известно, что в сплавах Ti—Ni в области составов, богатых никелем, и в сплавах с частичным замещением никеля кобальтом и железом происходит двухступенчатое мартенситное превращение высокотемпературная фаза — промежуточная фаза — низкотемпературная фаза, О появлении указанной промежуточной фазы первоначально сообщил Даутвич [5]. Он сделал вывод, что причиной аномального увеличения электросопротивления при охлаждении сплава Ti — 51 % (ат.) Ni является появление промежуточной фазы, которая при комнатной температуре имеет ромбоэдрическую структуру с параметрами ао = 0,602 нм, а = 90,7°,  [c.60]

Ниобий имеет электронное строение ls 25 2p 35 3p 3rf 454p 4rf55s , кристаллическая структура — объемноцентрированный куб. Основные фи-зико-химические свойства ниобия следующие атомная масса 92,91 плотность 8,6 г/см валентности 2, 3, 4 и 5 температура плавления 2468 °С. С железом ниобий образует непрерывный ряд растворов. Из-  [c.308]

Основными компонентами этих материалов являются железо (до 70%), алюминий (до 14%), никель (до 25%), медь (до 4%), кобальт (до 42%), титан (до 9%). Металлы обозначаются в марках следующими буквами Ю — алюминий, Н — никель, Д — медь, К — кобальт, Т — титан, С — кремний, Б — ниобий. Цифры после букв в обозначении означают содержание металла в %. Кристаллическая структура сплава обозначается буквой А — столбчатая равноосная, АА — монокристаллическая. Например, сплав марки ЮН 14ДК25БА означает, что он содержит алюминий, никель (14%), медь, кобальт (25%), ниобий и имеет столбчатую кристаллическую структуру.  [c.146]

По данным [22, 23], ст-фаза имеет тетрагональную кристаллическую структуру порядка 30 атомов в кристаллической ячейке, по другим [24] — орторомбическую структуру гранецентрирован-ного куба с 24 атомами в ячейке. Большинство исследователей склоняются к тому, что ст- фаза является интерметаллическим соединением хрома и железа (Fe r).  [c.19]

Эле- мент Кристаллическая структура Атомный диаметр, о Л Возможные соедииенн я с железом Другие возможные соединения  [c.38]

Эле- меят Кристаллическая структура Атомный диаметр, 0 А Возможные соединения с железом Другие возможные соединения  [c.38]

Твердые растворы внедрения являются частным случа ем фаз внедрения (к последним также относятся карбиды, нитриды, бориды, оксиды, гидриды и другие химические соединения переходных металлов с элементами внедрения) Твердые растворы внедрения всегда ограничены, а раство римость в них зависит от кристаллической структуры ме талла растворителя и размеров атома элемента внедрения Ограниченность твердых растворов внедрения определяется тем, что они сохраняют решетку металла растворителя, а атомы внедрения в них занимают лишь вакантные меж доузлия — октаэдрические и тетраэдрические поры в решетке металла растворителя Часть пор всегда не запол иена Размеры этих пор для оцк,гцкигпу реше ток представлены ниже, а на рис 14 приведена схема расположения пор в а и у железе  [c.38]

Карбид железа РезС (цементит, или б-фа-за) имеет ромбическую кристаллическую решетку (см. табл. 5.5). Координация атомов железа в структуре цементита близка к гексагональной. этим, в частности, были связаны трудности выявления карбида низкоотпущен-ной стали (е-карбида), который действительно имеет гексагональную компактную упаковку атомов железа с неупорядоченным расположением атомов углерода (тип е-РезК ). До сих пор дискуссионными являются вопросы о содержании углерода в е-карбиде и об образовании при распаде мартенсита углеродистой стали других карбидных фаз. е-карбид образуется при низкотемпературном распаде мартенсита не только в углеродистых (при содержании углерода более 0,3—0,4 %), но и в легированных сталях, в которых стабильными могут быть специальные карбиды (хро.ма, молибдена и др.).  [c.135]

Из формул строения, приведенных на стр. 547—548, видно, что винилиденхлорид более симметричен, чем хлористый винил. Симметричность его строения приводит к частичному развитию в нем кристаллической структуры, в результате чего он приобретает очень высокую прочность на разрыв и твердость, но растворимость его ухудшается. Сополимеризация с акрилонитрилом или хлористым винилом практически устра няет его симметрию и кристалличность. Такая модификация несколько снижает прочность и химстойкость винилиденхлорида, но улучшает его растворимость И совместимость. Полимеры и сополимеры винилиденхлорида под действием тепла и ультрафиолетового света разлагаются аналогично сополимерам хлористого винила, описанным в одном из предыдущих разделов этой главы- Для их стабилизации можно применять те же типы стабилизаторов, которыми пользуются для стабилизации сополимеров хлористого винила, но они не всегда дают результаты, одинаковые как с сополимерами винилиденхлорида, так и хлористого винила. Эти смолы также разлагаются при действии на них цинковых и железных пигментов и железа тары. Реакции со стенками емкостей можно предупредить, протирая их фосфорной кислотой или доба вляя к раствору смолы небольшие количества фосфорной кислоты.  [c.600]

Металлы с кристаллической структурой объем-ноцентрированного куба (стали на основе а-железа, вольфрам, хром, молибден и др.), а также некоторые металлы с гексагональной плотноупакованной решеткой (цинк, кадмий, магний) относятся к хладноломким материалам. Чистый титан имеет решетку ГП, но сохраняет пластичность и при низких температурах. Металлы с решеткой гране-центрированного куба (аустенитные стали на основе у-железа, медь, алюминий, никель) не склонны к хладноломкости.  [c.20]

Шуман провел классификацию переходных Ы-, Ad- и 5 -элементов периодической системы элементов по их способности образовывать те или иные кристаллические структуры [52] и предложил гипотезу, согласно которой е-фаза должна образовываться как термодинамически устойчивая фаза при легировании железа элементами с числом внешних электронов 7—9 и атомным радиусом, превосходящим атомный радиус железа, но не более 10%. При этом в областях, окружающих легирующий элемент, должны возникать высокие сжимающие напряжения, приблизительно 1000—1500 МПа на 1% (ат.) легирующего элемента, что и обеспечивает компактное построение ГПУ структуры [52, 53]. Однако эта гипотеза не объясняет возможности существования е-фазы в концентрационном интервале (15—25% Мп). Кроме того, среди переходных 4й-элемен-тов марганец имеет аномально больщой атомный радиус и несколько нарушает закономерность, установленную Шуманом для элементов 5 и 6-го периодов, однако, в сплаве с железом марганец относится к группе элементов, стабилизирующих е-фазу при нормальном давлении [53].  [c.36]

К анализу поведенрш материала при высокой скорости деформации целиком относится то, что сказано в 1 предыдущей главы о свойствах материала в зависимости от времени. Из попыток детального объяснения влияния скорости деформации приведем только выдвинутое недавно объяснение запаздывания текучести в мягкой стали. Пластическая деформация, согласно этой теории, связывается с движением свободных, несвязанных дислокаций (нарушений кристаллической структуры). Чтобы эти дислокации начали двигаться, надо приложить извне некоторое напряжение, равное пределу текучести. Но в углеродистых сталях каждая дислокация окружена облаком атомов углерода, которое препятствует перемещению дислокаций. Поэтому требуется еще некоторое добавочное внешнее напряжение, чтобы освободить дислокации от облаков углерода. Этим объясняют наличие у мягких сталей и железа верхнего и нижнего пределов текучести. Верхний предел текучести— это то напряжение, которое необходимо для начала процесса текучести (на освобождение дислокаций, по излагаемой теории), а нижний предел текучести — это то напряжение, которое достаточно для поддержания начавшегося процесса текучести (по излагаемой теории, яа движение освободившихся дислокаций). При мгновенном приложении  [c.250]



Смотреть страницы где упоминается термин Железо Кристаллическая структура : [c.545]    [c.271]    [c.182]    [c.284]    [c.84]    [c.84]    [c.98]    [c.223]    [c.46]    [c.115]    [c.85]    [c.52]    [c.30]   
Справочник машиностроителя Том 2 Изд.3 (1963) -- [ c.436 ]

Машиностроение Энциклопедический справочник Раздел 2 Том 3 (1948) -- [ c.308 , c.320 , c.332 ]



ПОИСК



411—416 — Структура кристаллическая

Кристаллические



© 2025 Mash-xxl.info Реклама на сайте