Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поглощение лазерного излучения нелинейное

Настоящая глава посвящена анализу автомодельной задачи о поршне в предположении, что газ является нетеплопроводным, однако на движение газа влияют нелинейные объемные источники или стоки массы, импульса и энергии. Исследование нестационарного течения газа с учетом объемных источников и стоков различной природы представляет большой интерес. Известно, например, какую роль играют при нагреве и сжатии плотной высокотемпературной плазмы энерговыделение от поглощения лазерного излучения, объемные потери энергии на собственное тепловое излучение, выделение тепла от термоядерных реакций и другие физические эффекты [78]. На сжатие и нагрев плазмы осевым магнитным полем (тета-пинч) существенное влияние оказывают потери массы через торцы плазменного шнура и торцевые потери энергии за счет продольной электронной теплопроводности [19]. Вычислительные эксперименты показали [13, 18], что процессы, происходящие в тета-пинчах, могут быть Удовлетворительно описаны в одномерном приближении при моделировании торцевых потерь объемными стоками.  [c.197]


К нелинейным относятся оптические эффекты, характер которых зависит от интенсивности излучения [2.35, 2.36]. Эта зависимость возникает только в сильных световых полях (которые нельзя считать пренебрежимо малыми по сравнению с внутриатомными полями), поэтому для наблюдения нелинейных эффектов применяют лазерное излучение. Ряд нелинейных эффектов проявляется при достижении пороговой интенсивности света. Для нерезонансных нелинейных явлений, происходящих вне полос поглощения материала, в качестве порога появления можно указать ориентировочно интервал интенсивностей 10 -Ы01° Вт/см  [c.55]

Возникновение динамического штарковского сдвига атомных уровней приводит к ряду весьма существенных эффектов при нелинейной ионизации атомов. Увеличение потенциала ионизации может приводить к изменению степени нелинейности процесса (порогового числа поглощенных фотонов). Сдвиги атомных уровней нарушают возможность выделения прямого (в отсутствие промежуточных резонансов с реальными возбужденными состояниями, см. гл. V) и резонансного (см. гл. VI) процессов многофотонной ионизации путем подбора частоты излучения. Из-за гауссовой формы импульса лазерного излучения (гл. III) по мере нарастания интенсивности излучения на фронте импульса из-за сдвига уровней чередуются прямые и резонансные процессы ионизации (так называемые динамические резонансы, см. гл. VI).  [c.20]

С помощью непрерывного лазера на органическом красителе с шириной спектра 7 10 см был исследован спектр поглощения атмосферного водяного пара в области 0,59 мкм [3] и аммиака в области 1,06 мкм [34]. На оптико-акустических спектрометрах с импульсными лазерами на рубине и СО2 были измерены пороги нелинейных спектроскопических эффектов в парах Н2О и СО2 [5 проведены исследования формы контура спектральной линии Н2 в сильном поле резонансного лазерного излучения [3], обнаружено уменьшение поглощательной способности в далеком крыле линии Н2О при возрастании интенсивности излучения [6].  [c.198]

При распространении в молекулярных газах и атмосфере интенсивного лазерного излучения коэффициент поглощения к может зависеть от интенсивности в силу действия целого ряда нелинейных спектроскопических эффектов таких, как спектроскопический эффект насыщения, динамический эффект Штарка, изменение потенциала межмолекулярного взаимодействия в сильном электромагнитном поле резонансной и нерезонансной частоты, воздействие поля электромагнитного излучения на динамику столкновений, многофотонные процессы и т. д.  [c.222]


Коррелированный оптический фон, появляющийся в результате прохождения лазерного излучения через ОА-ячейку. Возможные причины появления такого фона поглощение излучения элементами конструкции камеры ОА-ячейки, включая окна и стенки камеры, попадание рассеянного излучения на акустический датчик, а также различные физические эффекты (электро-стрикция, нелинейные эффекты и т.п.), сопровождающие взаимодействие излучения с исследуемой средой.  [c.138]

Взаимодействие лазерного излучения с составляющими атмосферы характеризуется следующими основными физическими эффектами 1) поглощением газами 2) молекулярным рассеянием 3) рассеянием и поглощением аэрозолями 4) резонансным рассеянием 5) комбинационным рассеянием 6) флуоресценцией атмосферных газов и аэрозолей 7) нелинейными эффектами. Перечисленные явления могут рассматриваться независимо, что позволяет выбором параметров зондирующего излучения свести к минимуму тот или иной эффект или наоборот усилить  [c.15]

Давление излучения характерно для волн любой природы, в том числе для электромагнитных волн (вспомним давление света). Его происхождение связано с изменением в некотором объеме (например, у препятствия или вследствие поглощения волн на пути их распространения) среднего по времени переносимого волной импульса. Отличие звукового радиационного давления от давления света состоит в том, что волновое уравнение для световых волн линейно (еслн не рассматривать задач нелинейной оптики, имеющей дело с мощным лазерным излучением), тогда как в акустике, даже при относительно небольших интенсивностях звука, возникают нелинейные эффекты (см. гл. 3, 4), которые в ряде случаев приходится принимать во внимание.  [c.118]

Рассмотрим вначале нелинейные явления, для которых высокие монохроматичность и направленность лазерного излучения не играЮт определяющей роли. Одним из них является насыщение поглощения то есть просветление нелинейной поглощающей среды при прохождении мощных световых пучков.  [c.278]

Параметры, характеризующие свойства активной среды (коэффициент поглощения, показатель преломления) при высоком уровне интенсивностей излучения становятся нелинейными, т. е. зависящими от значения интенсивности. Это существенно усложняет процесс взаимодействия усиливаемого излучения с активной средой. Поскольку при разработке лазерных систем требования к выходным характеристикам формулируются достаточно жестко, то задача точного исследования возможного влияния нелинейных явлений на выходные характеристики излучения, учет этого влияния и обеспечение возможности управления процессами нелинейного взаимодействия, а также необходимой точности и воспроизводимости выходных характеристик — все это составляет круг вопросов, требующих детальной разработки.  [c.196]

В [17] проведены оценки влияния ВТР на нелинейное ушире-ние излучений импульсных лазеров в атмосфере с газовым поглощением. За счет изменения поглощения вследствие лазерного нагрева возможно усиление затравочного излучения, распространяющегося под углом 0 к волне накачки. Характерное время развития эффекта /втр < s t/2, где кт = 2пд/К — модуль волнового вектора температурной волны. Для 0 = 0,5 мрад, Я=10,6 мкм получаем [17] /втр —5 МКС, что намного меньше характерного времени ts релаксации давления в масштабе пучка Ro (например, при Ro 3 см, ts 100 мкс).  [c.23]

Приближенные решения уравнения переноса были получены в [27—29] и использовались для анализа влияния многофакторности процесса на создание просветленного канала в облачной среде. Установлено, что для практически важных задач проявление эффектов нелинейной рефракции обусловлено действием тепловой линзы, образованной.за счет нагрева воздуха при молекулярном поглощении лазерного излучения и сосредоточеннной в области пучка, где отсутствуют капли (просветленная зона, об-ласгь распространения до аэрозольного слоя).  [c.106]


В настоящей книге представлены результаты исследований автомодельных решений уравнений газовой динамики, рассматриваемых только в однотемпературном приближении. В последние годы при участии авторов проведен анализ большого числа автомодельных задач с учетом в среде поглощения лазерного излучения, электронно-ионной релаксации, приводящей к неравенству электронной и ионной температуры, а также с учетом неравенства трех компонент температуры — электронной, ионной и фотонной. Использование автомодельных и численных решений системы уравнений двухтемпературной и трехтемпературной газодинамики позволило установить ряд новых свойств газодинамических и температурных волн (см. [11,12,17,32—35]). В работах [27, 57, 58] с помощью автомодельных решений исследовалось движение газа и перенос тепла с учетом релаксации теплового потока. В работах [14, 26, 30, 31] проведен анализ широкого класса автомодельных решений уравнений газовой динамики и магнитной гидродинамики с учетом влияния на движение нелинейных объемных источников и стоков массы, импульса и энергии. Исследовались автомодельные решения уравнений двухтемпературной газодинамики с учетом  [c.227]

Выше уже отмечались исследования С. И. Вавилова зависимости коэс1х ициента поглощения от интенсивности поглощаемого света (см. гл. ХХУИ1, ХЬ). В книге Микроструктура света , обобщая свои наблюдения, относящиеся к 20 гг., и последующие опыты, Вавилов писал Нелинейность в поглощающей среде должна наблюдаться не только в отношении абсорбции. Последняя связана с дисперсией, поэтому скорость распространения света в среде, вообще говоря, также должна зависеть от световой мощности. По той же причине в общем случае должна наблюдаться зависимость от световой мощности, т. е. нарушение принципа суперпозиции, и в других оптических свойствах среды — в двойном лучепреломлении, дихроизме, вращательной способности и т. д. . Последующее развитие нелинейной оптики, об>условленное экспериментальным исследованием распространения лазерного излучения, не только подтвердило общие соображения Вавилова о мно-гообрази И возможных нелинейных явлений, но и привело к обнаружению всех перечисленных им конкретных эффектов. Поэтому Вавилов по праву признан основоположником нелинейной оптики.  [c.820]

Напомним, что причину нелинейных явлений Вавилов усматривал в изменении числа молекул или атомов, способных погло-ш,ать свет, т. е. изменений, обусловленных переходом атомов и молекул в возбужденное состояние и конечной длительностью пребывания в этих состояниях. Помимо указанной, к нелинейным явлениям приводит и ряд других причин часть из них будет рас-с.мотрена ниже. В соответствии с этим и совокупность нелинейных явлений, обнаруженных при исследовании распространения лазерного излучения, оказалась еще более многообразной. Некоторые из них — вынужденное рассеяние Ман,дельштама — Бриллюэна, многофотонное поглощение и ионизация (см. 157), нелинейный фотоэффект ( 179) — описаны выше. В данной главе рассмотрены явления, сводящиеся, в общих чертах, к изменению направления распространения и спектрального состава излучения.  [c.820]

СПЕКТРОСКОПИЯ (раздел физики, в котором изучают спектры оптические абсорбпионпая изучает спектры поглощения видимого, инфракрасного и ультрафиолетового света акустическая — совокупность методов измерения фазовой скорости и коэффициента поглощения звуковых волн различных частот, распространяемых в веществе вакуумная — спектроскопия коротковолнового ультрафиолетового и мягкого рентгеновского излучения, в которой применяют вакуумные спектральные приборы лазерная изучает полученные с помощью лазерного излучения спектры испускания, поглощения и рассеяния света мессбауэровская — метод изучения электрических и магнитных полей, создаваемых на атомных ядрах их окружением микроволновая — радиоспектроскопия электромагнитных волн сантиметрового и миллиметрового диапазонов длин волн нелинейная — методы исследования строения вещества, основанные на нелинейных оптических явлениях оптико-акустическая — метод анализа вещества, основанный на изучении спектров поглощения света, возникающих  [c.278]

АКТИВНАЯ ЛАЗЕРНАЯ СНЕКТРОСКОНЙЯ один из методов нелинейной спектроскопии, исс.педующий поглощение или рассеяние пучка света в среде, в к-рой предварительно (с помощью дополнит, лазерного излучения определ. частот) селективно возбуждены и (или) сфазированы изучаемые оптич. моды. Такое активное лазерное приготовление среды (накачка) меняет картину взаимодействия зондирующего (пробного) излучения со средой.  [c.38]

При высоких интенсивностях света (лазерное излучение), когда существенны процессы многоквантового поглощения света, зависимость скорости Г. н. з. от ир тенсивности становится нелинейной (см. Многофотонные процессы., Полупроводниковый лазер).  [c.435]

Высокая направленность и интенсивность лазерного излучения позволяет измерять малое поглощение ( — 10 см 1). Широко применяются абсорбционные спектрометры на основе диодных лазеров (разрешение 10 M i), а также фурье-спектрометры (см. Фуръе спектроскопия). Для повыше]ШЯ контрастности резонансов и исследований нелинейных явлении поглощающую среду помещают внутрь резонатора лазера (см. Внутрире-зоиаторная лазерная спектроскопия).  [c.555]

Важным эффектом импульсного лазерного воздействия на конденсированные среды является образование периодич. поверхностных структур — оптически наведённых решёток. При взаимодействии мощного лазерного излучения с поверхностью в результате вынужденного рассеяния на материальных поверхностных возбуждениях (акустических и каииллярных волнах, волнах испарения) в течение длитсльиости импульса на поверхности нарастают синусоидальные (а также более сложные) волны модуляции рельефа, что приводит к появлению нелинейного экспоненциально нарастающего во времени оптич. поглощения (поглощательная способность поверхности может возрастать более чем на порядок).  [c.561]


При больших интенсивностях излучения М. п., возможные в данном веществе, в значит, мере определяют оптич. свойства этого вещества. Так, при достаточно высокой интенсивности падающего лазерного излучения прозрачные вещества могут стать непрозрачными за счёт процессов МЕОгофотонного поглощения. М. п. составляют физ. основу ш1П)окого круга нелинейных оптич. явлений. На их наблюдении часто базируется большинство методов нелинейной спектроскопии.  [c.168]

НОА может быть связана с лазерным нагревом оптически активной среды (тепловая НОА), с упорядочением ориентаций киральных (лево- и правоасимметричных) молекул в растворах под действием электрич. поля световой волны, с обратимой и необратимой деструкциями киральных структур в поле лазерного излучения. Особенный интерес для спектроскопии представляет исследование НОА, обусловленной электронными механизмами нелинейности, а именно нелокальностью нелинейного отклика среды (НОА-1) и анизотропией нелинейного поглощения (НОА-П).  [c.305]

НЕЛИНЕЙНАЯ СПЕКТРОСКОПИЯ — совокупность методов оптич. спектроскопии, базирующихся на применении эффектов нелинейной оптики. Методами Н. с. исследуют нелинейные оптич. восприимчивости — их частотную дисперсию, симметричные свойства, изменения во времени и т. и., а также изменения линейных оптич. характеристик вещества (показателя преломления, коэф. поглощения, анизотропии и оптич. активности), вызванные нелинейным взаимодействием мощного оптич. (лазерного) излучения с исследуемым веществом, Н. с. относится к лазерной спектроскопии, т. к. для реализации всех методов Н. с. используется лазерное излучение одной или неск. длин волн. Одной из разновидностей Н. с. является активная лазерная спектроскопия. Первые работы по Н. с. появились в 1964—66, широкое развитие она получила после созда-Бия плавно перестраиваемых по частоте лазеров, а также лазеров со стабилизиров. узкими линиями генерации, лазеров, испускающих сверхкороткие световые импульсы с длительностью в пико- и фемтосекундном диапазонах, и др.  [c.306]

В связи с использованием лазеров развиваются исследования особенностей распространения лазерного луча в атмосфере. Из-за высокой монохроматичности лазерного излучения даже в окнах прозрачности атмосферы лазерный луч может сильно ослабляться. В тонкой структуре спектра поглощения атмосферы в этих окнах имеются относительно узкие, но сильные полосы поглощения. Количественные оценки П. э. а. для лазерного излучения требуют знания (с весьма высокой точностью) положения, интенсивности и формы лвний тонкой структуры спектров атм. газов. Большая мощность излучения лазеров ( 10 Вт/см ) может вызывать разл. рода нелинейные эффекты (многофотонные эффекты, приводящие к пробою в газах спектро-скопич. эффекты насыщения, вызывающие частичное просветление газов эффекты самофокусировки оптич. пучков, вызываемых зависимостью коэф. преломления среды от мощности потока излучения, и др.). При малой длительности оптич. импульсов ( 10 с) могут возникать явления, приводящие к отклонению ослабления излучения от закона Бугера.  [c.137]

Частотное преобразование охватывает группу нелинейных явлений, связанных с генерацией гармоник, смешением частот, вынужденных рассеяний. При амплитудном преобразовании изменяется характер ослабления света в среде, что соответствует эффектам нелинейного поглощения и просветления, самоиндуцированной прозрачности. Пространственному преобразованию отвечают эффекты самофокусировки, самодефокусировки, самоканализации, когда в процессе нелинейного взаимодействия происходит изменение диаграммы направленности и яркости пучка. Наконец, временные преобразования связаны с изменением структуры лазерного импульса. Нелинейные эффекты, в которых происходит самодефо-кусировка, самофокусировка, самоканализация, компрессия и декомпрессия импульса, образование солитонов, называют эффектами самовоздействия [9]. В реализации этих эффектов частота излучения практически не изменяется.  [c.8]

В общем случае кроме линейных надо также принимать во внимание н нелинейные процессы рассеяния, обусловленные поглощением нескольких фотонов н описывающиеся нелинейными восприимчивостями (лекция 2). В качестве примера можно привести процесс гиперкомбниациоппого рассеяния (формула (18) и рнс. 5 нз лекции 2). Такие процессы типичны при взаимодействии мощного лазерного излучения с атомной средой.  [c.122]

Разрушения, возникающие в прозрачных твердых телах нод действием лазерного излучения, паибо.тее целесообразно разделить на разрушения, возникающие в идеально чистых средах, и разрушения, обусловленные примесями. В этих случаях различны механизмы, приводящие к разрушению. В чистой среде это оптический пробой, качественно аналогичный пробою в газе, обсуждавшемуся в лекции 16 в средах с при.месями — разрушения, связанные с нагревом примесей при поглощении излучения. Соответственно возникает разделение и но режимам генерации лазеров, и по определяющим характеристикам излучения с точки зрения их влияния на процессы, приводящие к разрушению. Пробой, являясь нелинейным эффектом, зависит от мотц-ности излучения, а нагрев нримесей — в основпом от энергии излучеиия.  [c.216]

Процессы, определяющие объемную лучевую прочность стекол, можно разделить на три группы взаимодействие лазерного излучения с поглощающими примесями в стекле, нелинейные процессы, такие как многофотонное поглощение, самофокусировка, вынужденное рассеяние и т, д., приводящие к изменению характера про-странственно-временного распределения лазерного излучения в объеме, стекла, и, наконец, возникновение в стекле собственного оптического пробоя, обусловленного взаимодействием лазерного излучения с самой матрицей стекла без каких-либо допороговых искажений в распределении лазерного пучка.  [c.53]

В случае когда к зависит от интенсивности лазерного излучения (при нелинейном резонансном взаимодействии ЛИ с КВ-переходами) величина и/Е также пропорциональна поглощательной способности единичного объема исследуемого газа Епогл/Ео> однако Епотл сложным образом связана с энергией в импульсе, сечением резонансного поглощения, частотой излучения и соотношением между длительностью импульса и временами неупругой релаксации, характеризующими безызлучательный канал, ответственный за формирование ОА-сигнала [26]. Характер резонансного взаимодействия квазимонохроматического ЛИ с КВ-переходами в молекулах определяется соотношением между т, временем релаксации поляризации Т2, вращательной (тя) и колебательной (ту) релаксации [12]. С практической точки зрения большой интерес представляет взаимодействие излучения моноимпульсных лазеров на рубине, стекле с неодимом, углекислом газе и колебательно-вращательными переходами в молекулах атмосферных газов, таких как Н2О, СО2, О3 и т.д. Значения длительности мо-ноимпульсной генерации перечисленных выше лазеров расположены в диапазоне от 10 до 10 с [19].  [c.135]

НОГО лазерного излучения через атмосферу в условиях резонансного поглощения даже слабыми линиями является необходимость учета нелинейных спектроскопических эффектов. Экспериментальные результаты, полученные в предыдущей главе при исследовании нелинейного взаимодействия мощных импульсных лазеров видимого и ИК-диапазона с резонансными линиями атмосферных газов (Н2О и СО2) и далекими крыльями линий Н2О, указывают на необходимость учета как резонансных нелинейных эффектов (на-  [c.196]


Имея в виду указанные неизбежные усложнения картины нелинейного взаимодействия лазерного излучения с конденсированными средами, мы тем не менее начинаем анализ явлений с простой модели поглощения и отражения высококонценгрированного лазерного излучения при взаимодействии с ковденсированными средами, имеюидими неизменные во времени и не зависящие от интенсивности лазерного излучения оптические характеристики, т.е. с анализа стадии линейного взаимодействия лазерного излучения с разреженными газами, а затем с жидкостями и твердыми телами. Этот анализ поможет нам понять и специфику дальнейших нелинейных и нестационарных стадий такого взаимодействия.  [c.130]

Эксперим, схемы, использующие генерацию суммарной частоты, применяются и для получения ИК-спектров поглощения в разл. моменты времени. В этом случае образец возбуждается СКИ, а непрерывное ИК-излучение используется для зондирования. При возбуждении образца изменяются колебат. состояния составляющих его частиц и зондирующее непрерывное ИК-излучение модулируется этими изменениями, Промодулированное ИК-излучение направляется на нелинейный кристалл, где смешивается с лазерным импульсом. Измерение сигнала производится на суммарной частоте, т. е. в видимой части спектра, а измерение времени задержки позволяет регистрировать эволюцию ИК-поглощения.  [c.281]

Представляют интерес хорошие генерационные характеристики застеклованных концентрированных сред на КНФС (см. табл. 7.15) по сравнению с традиционными силикатными лазерными стеклами типа КГСС и близкими к ним. Дополнительной особенностью таких материалов, как НАБ и КНП (калиевый аналог ЛНП), является нецентросимметричность, открывающая дополнительные возможности их использования в нелинейной и интегральной оптике, что будет подробнее рассмотрено в 7.9. Возможность изоморфного встраивания в решетку кристаллов типа НАБ ионов хрома [111, И4], обеспечивающих эффективное поглощение излучения накачки н перенос ее на возбужденные ионы неодима, открывает, в частности, перспективы солнечной накачки и подчеркивает энергетические преимущества новых КЛС по сравнению с ранее известными легированными лазерными материалами.  [c.234]

Значительного повышения эффективности обжатия соответственно при уменьшении длины волны излучения можно добиться, с одной стороны, за счет большей степени поглощения греющей энергии, большего абляционного давления ( сдирающего оболочку мишени) и уменьшения концентрации и нагрева горячих электронов, с другой — ирн одновременном использовании успешно развиваемого обращения волнового фронта (ОВФ) [122]. ОВФ методом четырехзолнового смешения использует кубичную нелинейность, присущую всем центросимметричным средам, например сероуглероду. ОВФ необходимо для самокомпенсации искажений изображения (в частности, профиля лазерного пучка) в световоде и компенсации временного расплывания импульсов в среде с дисперсией. Эти особенности ОВФ оказываются предельно необходимыми и полезными в ЛТЯС, когда с его помощью обеспечивается  [c.244]


Смотреть страницы где упоминается термин Поглощение лазерного излучения нелинейное : [c.553]    [c.163]    [c.314]    [c.352]    [c.651]    [c.188]    [c.190]    [c.266]    [c.464]    [c.118]    [c.215]    [c.306]    [c.420]    [c.6]    [c.479]    [c.239]   
Атмосферная оптика Т.2 (1986) -- [ c.223 ]

Атмосферная оптика Т.3 (1987) -- [ c.204 ]



ПОИСК



Излучение лазерное

Излучения поглощение

Лазерное (-ая, -ый)

Поглощение

Поглощение лазерного излучения

Поглощение нелинейное



© 2025 Mash-xxl.info Реклама на сайте