Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Атомные прямые

Для большого числа случаев структуру можно описывать, повторяя один или несколько известных элементов структуры с непостоянными периодами. Например, структуру можно составить из идентичных атомных плоскостей, расстояния между которыми непостоянны, или из идентичных и параллельных атомных прямых, расположенных на разных расстояниях друг от друга по двум направлениям, перпендикулярным их длине, или из идентичных блоков атомов, разделенных разными расстояниями в трех измерениях. В этих случаях распределение электронной плотности можно записать в виде  [c.154]


Если какие-либо два атома простой решетки соединить прямой линией, то, ввиду периодичности распределения атомов в пространстве, на этой прямой окажется бесконечно много атомов, находящихся на одинаковых расстояниях друг от друга. Такие прямые мы будем называть атомными прямыми, а плоскости, в которых располагаются атомы, — атомными плоскостями. Всю неограниченную решетку можно рассматривать как бесконечную двоя ко периодическую систему параллельных атомных прямых или как бесконечную однократно периодическую систему параллельных атомных плоскостей. Оба эти представления не единственны, а могут быть выполнены бесконечным множеством способов. Три произвольные атомные прямые, не лежащие в одной плоскости и пересекающиеся в каком-либо атоме, можно принять за координатные оси X, У, Z прямолинейной (вообще говоря, косоугольной) системы координат. Тогда координаты атомов простой решетки представятся выражениями  [c.387]

Но условия (61.4) являются и достаточными для интерференционного усиления волн, рассеянных в рассматриваемом направлении всеми атомами решетки. Действительно, проведем через произвольный атом 1 атомную прямую, параллельную оси X. При выполнении первого условия (61.4) в направлении под углом а к этой прямой получится интерференционный максимум. Проведем теперь через тот же атом 1 атомную прямую, параллельную оси У. При выполнении второго условия (61.4) все атомы этой прямой рассеивают волны в рассматриваемом направлении в той же фазе, что и атом 1. Значит, все атомы обеих атомных прямых, а с ними и все атомы, лежащие в их плоскости, будут посылать волны в том же направлении также в одинаковых фазах. Таким образом, выполнение первых двух условий (61.4) приводит к интерференционному усилению волн, рассеиваемых в рассматриваемом направлении всеми атомами любой атомной плоскости, параллельной координатной плоскости XV. Аналогично убедимся, что при выполнении еще третьего условия (61.4) будет иметь место интерференционное усиление волн, рассеянных всеми такими атомными плоскостями. Тем самым достаточность условий (61.4) доказана.  [c.388]

Теплообмен всего дисперсного потока с поверхностью нагрева реализуется в тех случаях, когда одна из сред находится под повышенным давлением, когда необходим теплообмен без прямого контакта охлаждающей (греющей) среды и дисперсного материала либо при теплоотводе от тел с внутренним источником тепла. Часто дисперсный поток является промежуточным теплоносителем. Исключение — одноконтурные схемы атомных установок с пропуском запыленных потоков через турбину [Л. 380] либо технологические установки, в которых дисперсный поток является непосредственно греющим (охлаждаемым) веществом, В ряде случаев при разработке пароперегревателей, регенераторов газотурбинных и т. п. установок целесообразно выполнять камеру нагрева насадки по регенеративному принципу (рис.  [c.385]


Хотя отношение коэффициентов Эйнштейна было известно, сами значения А и В не могли быть вычислены без развития квантовой механики. В 1927 г. Дирак показал, как это в принципе можно осуществить. Методы, использованные для выполнения таких вычислений, не просты, и интересующийся читатель отсылается за подробностями к работам по квантовой механике (см., например, [78]). Прямые вычисления излучательных и поглощательных свойств реальных материалов в общем случае чрезвычайно сложны и для термометрии бесполезны. Однако атомный аспект теплового излучения позволяет воспользоваться соотношением между коэффициентами Эйнштейна, чтобы получить полезное различие между квантовой и классической областями.  [c.321]

Атомы (ионы) располагаются на таком расстоянии один от другого, при котором энергия взаимодействия минимальна. Этому состоянию соответствует равновесное состояние a . Сближение атомов (ионов) на расстояние, меньшее а , или удаление их на расстояние, большее do, осуществимо лишь при совершении определенной работы против сил отталкивания и притяжения. Поэтому в металле атомы располагаются закономерно, образуя правильную кристаллическую решетку, что соответствует минимальной энергии взаимодействия атомов. Ее следует представлять как мысленно проведенные в пространстве в направлении трех осей координат прямые линии, соединяющие ближайшие атомы и проходящие через их центры, около которых они совершают колебательные движения. Проведенные линии образуют объемные фигуры правильной геометрической формы. Таким образом, элементарная кристаллическая ячейка - это наименьший объем кристалла, дающий представление об атомной структуре металла во всем объеме.  [c.274]

Нейтрон, соударяясь с атомным ядром газа в ионизационной камере, обменивается с ним энергией и импульсом. Пусть — масса нейтрона, и v — скорость нейтрона до и после соударения, М, v —масса и скорость ядра отдачи. В случае упругого центрального прямого соударения нейтрона с атомным ядром законы сохранения энергии и импульса запишутся в виде  [c.60]

Формула Резерфорда может быть использована для определения в прямом опыте заряда атомного ядра Z. Напомним, что идентификация заряда ядра с порядковым номером элемента в периодической системе была произведена при помощи закона Мозли. Этот способ дает точные результаты, однако он не является прямым. Формула Резерфорда позволяет сравнить величину заряда ядра Z с величиной непосредственно вызываемого им отклонения 9. Экспериментально удобнее сравнивать количество N падающих а-частиц с числом dN рассеянных а-частиц лод заданным углом 9. Тогда  [c.224]

В атомных электростанциях преобразование атомной энергии в электрическую проходит через промежуточные этапы получения высокотемпературного пара, используемого для приведения в движение паровых турбин, соединенных с электрогенераторами. В этом смысле АЭС отличается от тепловой только типом блока, в котором получают тепловую энергию. Однако специфические особенности атомных источников тепла позволяют построить удобные источники тока, в которых осуществляется прямое преобразование тепловой энергии в электрическую (без паровых котлов, паровых турбин и электрогенераторов).  [c.407]

В качестве одномерной модели твердого тела рассмотрим цепочку из N одинаковых атомов с массой М н межатомным расстоянием а (рис. 5.4), которые могут перемещаться вдоль прямой линии. Каждый атом в такой системе обладает одной степенью свободы, а вся система — N степенями свободы. Модель с точки зрения атомной структуры хорошо описывается линейной примитивной ячейкой Бравэ, в которой положения атомов определяются вектором трансляции Т=па, где п — целое число, указывающее положение равновесия атомов в цепочке.  [c.145]


Трансляции связывают в решетке (прямой) кристалла пары точек, имеющих одинаковое атомное окружение. В случае обратного пространства также вводится понятие трансляций, которые называются векторами обратной решетки  [c.59]

Идея опытов Франка - Герца. Опыты Франка и Герца (1913) дали прямое доказательство дискретности атомных состояний. При неупругих столкновениях первого рода (см. 7) между электроном и атомом происходит передача энергии от электрона к атому.  [c.75]

Опыты Франка и Герца (1913) дали прямое экспериментальное доказательство дискретности атомных состояний.  [c.77]

Возбуждение источника каскадного излучения пар фотонов. Перевод атомов кальция на верхний возбужденный уровень (см. рис. 152) осуществлялся прямым двухфотонным возбуждением посредством двух лазеров криптонового лазера с А, = = 406 нм и перестраиваемого лазера с А, = 581 нм, настроенного на резонанс для двухфотонного процесса. Излучение лазеров имеет параллельную поляризацию и фокусируется на пучок атомов кальция. Мощность каждого лазера составляла несколько десятков милливатт, а их излучение фокусировалось на площадь менее 0,01 мм атомного пучка с концентрацией примерно 10 ° атомов/см . При этих условиях частота каскадных переходов, при которых излучаются пары фотонов, превосходит 10 каскадов/с. Была обеспечена также высокая стабильность частоты каскадных переходов (лучше чем 1% в течение нескольких часов).  [c.423]

Метод термодинамики заключается в строгом математическом развитии некоторых постулатов или исходных аксиом, являющихся обобщением общечеловеческого опыта познания природы и допускающих прямую опытную проверку во всех областях знаний. Термодинамика, построенная по такому принципу, носит наименование феноменологической термодинамики, которая изучает связь между макроскопическими величинами, характеризующими систему, например, между давлением, температурой и энергией, без описания микроскопических (атомных, молекулярных) явлений. Она опирается на строгие определения принятых понятий, прежде всего температуры и теплоты, а также на несколько общих аксиом, называемых законами термодинамики.  [c.5]

Здесь N — число Авогадро, А — атомная масса, Z — число электронов в атоме.) Поэтому потери прямо пропорциональны плотности  [c.438]

Заменив в этой формуле ускорение на силу, деленную на массу, == FIM, получим, что интенсивность тормозного излучения при кулоновском столкновении частицы с заряженным центром обратно пропорциональна квадрату массы частицы и прямо пропорциональна квадрату заряда рассеивающего центра. Отсюда прежде всего следует, что если радиационные потери и важны, то только для электронов, но не для тяжелых частиц. Например, радиационные потери для протонов в (Мр/т) 3 10 раз меньше, чем для электронов. Далее, если в ионизационные потери основной вклад дают столкновения налетающей частицы с атомными электронами, то радиационные потери, наоборот, обусловлены столкновениями с ядрами. Действительно, излучение при столкновении с ядром в больше, чем при столкновении с электроном, а число электронов лишь Б Z раз больше, чем ядер.  [c.444]

Наиболее актуальные задачи, которые решают с использованием термодинамики и теплопередачи создание летательных аппаратов, в том числе космических многоразового действия проектирование тепловых и атомных электрических станций, магнитогидродинамических генераторов (установок для прямого преобразования теплоты в электрическую энергию), холодильных установок умеренного холода, холодильных установок глубокого холода, например, для получения жидких кислорода, азота, водорода, гелия и других газов проектирование машин и разработка технологических процессов в пищевой, химической и других отраслях промышленности. В перечисленных задачах термодинамические и тепломассообменные процессы играют важ ную, а иногда и определяющую роль при выборе конструкции.  [c.3]

Винтовая дислокация — это прямая линия z—г, вокруг которой атомные плоскости изогнуты по винтовой линии. Все атомы находятся на одной винтовой поверхности.  [c.35]

Молекула одноатомного газа обладает тремя степенями свободы. У двухатомного газа число степеней свободы равно пяти три в любом поступательном движении и две во вращательном движении около произвольной оси, проходящей через центр тяжести молекулы и перпендикулярной прямой, соединяющей центры тяжести атомов. У трех атомного и многоатомного газов шесть степеней свободы.  [c.50]

Новые направления, без освещения которых невозможен учебник технической термодинамики, возникли и в самой энергетике. Сюда прежде всего относятся развитие парогазовых установок, использование углекислотных циклов, рабочие циклы атомных электростанций. В связи с проблемой прямого превращения тепла в электрическую энергию в магнитогидродинамических генераторах в разделе курса, посвященном течению газов, целесообразно рассматривать, хотя бы в упрощенной форме, течение электропроводящего газа по каналу в магнитном поле. Развитие и использование топливных элементов сказываются вполне естественно на изложении раздела химической термодинамики. Представляется также целесообразным рассмотрение вопросов поступательно-вращательного движения жидкостей и газов по трубам, так как практически довольно часто приходится встречаться с такими потоками (например, в холодильных установках, в теплообменных устройствах нового типа и т. п.).  [c.6]

Установлено, что теплоемкость различных газов находится в прямой зависимости от температуры и атомности газов. Однако у одноатомных газов эта зависимость проявляется слабо и в расчетах не учитывается. Поэтому теплоемкость одноатомных газов считается постоянной величиной, не зависящей от температуры.  [c.32]


Для контроля сварных швов большой толщины (до 250 мм) наиболее эффективны установки, разработанные в НПО ЦНИИТМАШ ПП. Сварные швы роторов атомных турбин (толщиной около 140 мм) успешно контролируют установкой УДЦ-31. Она состоит из сканирующего устройства с акустическим блоком и электронной стойки. Сканирующее устройство включает в себя привод, три каретки и соединяющие штанги. Акустический блок содержит шесть ПЭП, закрепленных в каретках. В комбинированной каретке закреплены три ПЭП один прямой РС-ПЭП и два наклонных с углом ввода 39°. Наклонные ПЭП ориентированы под углом 90° к оси сварного шва. В горизонтальной каретке закреплены два ПЭП с а = 39°, направленных вдоль шва. В вертикальной каретке закреплен один ПЭП с а = 39°. ПЭП в комбинированной и горизонтальной каретках перемещаются при сканировании в радиально-осевой плоскости. ПЭП в вертикальной каретке перемещается в радиальном направлении ротора. Благодаря ориентации наклонных ПЭП поперек и вдоль сварного шва удается уверенно обнаруживать дефекты, ориентированные различным образом в сварном шве. Электронный блок трехканальный каждый канал содержит УЗ-дефектоскоп, блоки обработки и регистрации сигналов в аналоговой форме. Блок обработки сигналов, входящий в каждый канал, предназначен для автоматического измерения координат залегания дефектов и амплитуды сигналов, отраженных от дефектов. К каждому каналу подключены по два ПЭП.  [c.385]

Кроме краевых различают еще винтовые дислокации. На рис. 10 показана пространственная модель винтовой дислокации — это прямая линия EF (рис. 10), вокруг которой aroMinje п.юскости изогнуты гю винтовой поверхности. Обойдя верхнюю изогнутую атомную плоскость по часовой стрелке, приходим к краю второй атомной плоскости и т. д. В этом случае кристалл можно представить как состоящий из одной атомной плоскости, закрученной в виде винтовой поверхности (рис. 10). Винтовая дислокация так же, как и краевая, образована неполным сдвигом кристалла но плоскости Q. В отличие от краевой дислокации винтовая дислокация и вектор сдвига параллельны.  [c.22]

В дорезерфордовский период предполагалось, что заряд ядра рас пределен по всему линейному протяжению атома, имеющему порядок 10 см Пренебрегая влиянием атомных электронов, будем считать, что альфа-частица взаимодействует с положительным зарядом 79е, распределенным с постоянной плотностью внутри сферы радиусом 10 см. При какой максимальной энергии альфа-частица все еще может рассеиваться в направлении прямо назад таким ядром атома золота (Указание. Пользуясь методами, изложенными в гл. 9, нужно найти выражение потенциальной энергии в центре равномерно заряженной сферы.) Ответ. 3400 эВ.  [c.440]

В случае кристаллических порошков или поликристаллических тел структурное исследование можно выполнить по методу, предложенному в 1916 г. Дебаем и Шерером, а также Хеллом. Монохроматический пучок рентгеновских лучей направляется на столбик прессованного кристаллического порошка или палочку из поликрис-таллического материала (рис. 19.7) различные кристаллики препарата имеют всевозможные ориентации, так что падающий пучок образует с атомными плоскостями самые разнообразные углы. Лучи заданной длины волны к отразятся под разными углами от различных атомных плоскостей, соответствующих различным зна-ч, ниям 6 (см. (118.1)), создавая на фотопленке, окружающей препарат, соответствующую дифракционную картину. Рис. 19.8 воспроизводит полученную рентгенограмму в центре виден след прямого пучка вправо и влево расположены следы отраженных лучей, причем каждая пара симметричных следов соответствует отражению от кристаллографических плоскостей одного определенного направления. Зная длину волны % и измеряя углы скольжения 9, мы можем  [c.411]

На базе радиоактивного изотопа трудно построить прямой преобразователь большой мощности. Существенно большие возможности в этом отношении дает цепная ядерная реакция, позволяющая в принципе получать сколь угодно большое количество тепловой энергии. В августе 1964 г. в Институте атомной энергии им. И. В. Курчатова запущен первый реактор прямого преобразования тепла в электричество. Этот реактор-термопре- образователь получил название Ромашка . Основой Ромашки является высокотемпературный ( макс = 1800° С) реактор, активная зона которого состоит из не боящихся высокой температуры дикарбида урана и графита (используется как конструкционный материал). Активная зона реактора, имеющая форму цилиндра, со всех сторон окружена бериллиевым отражателем. На наружной поверхности отражателя находится термоэлектрический преобразователь, состоящий из большого числа кремний-германиевых пластин, внутренние стороны которых нагреваются теплом, выделяемым реактором, а наружные охлаждаются. Электрическая мощность Ромашки — 500 вт. Реактор-термопрео бразователь примерно такой же мощности построен также в США.  [c.408]

Исходя ИЗ определения однородности и учитывая атомную дискретную структуру, можно показать, что идентичные точки (в дальнейшем мы будем именовать их узлами), связанные с первоначальной, произвольно выбранной точкой тремя некомпланар-ньши векторами переноса, их трансляциями, образуют трехмерную периодическую решетку, охватывающую все пространство кристалла. Так решетку назвали потому, что идентичные точки кристалла можно соединить трехмерной сеткой из прямых линий, как это показано на рис. 1.1. Следует различать понятия структура кристалла и пространственная решетка. Структура кристалла— это физическая реальность. Когда говорят о структуре кристалла, то имеют  [c.10]

Видно, что при R oo отнощение NjL тоже стремится к беско нечности, т. е. прямая дислокация в бесконечном кристалле обладает бесконечной емкостью для примесных атомов. В реальных кристаллах, как обсуждалось выше, R lO b. Если принять v=0,3, У =1,1Уа, Го=2й, то при Йв7 = 0,05 эВ получим N/L 50b Io. Для кристаллов с содержанием примеси, например, 2%, это дает около одного растворенного примесного атома на атомную плоскость, пересекаемую дислокацией. В нелегированны кристаллах этот эффект незначителен.  [c.109]

Электронная тенлоемкост . в нормальном и сверхпроводящем состояниях. На фиг. 25 приводятся зависимости и jT от Т , вычисленные из результатов измерений Кеезома и ван-Лера для олова. Здесь п представляют собой соответственно атомные теплоемкости в нормальном и сверхпроводящем состояниях. Сплошными прямыми па фиг. 25 изображены значения полученные с помощью приближенной формулы Кока [178, 179] для температурной зависимости теплоемкости. Для атомной теплоемкости он принимает обычное выражение  [c.362]

Итак, прямым следствием объединения атомов (в приближении сильной связи) является расширение дискретных атомных энергетических уровней в энергетические зоны. Очевидно, такими же закономерностями должны характеризоваться внутренние энергетические уровни атомов, поскольку этот результат не зависит от положения уровня. При определенных условиях (больших Р) энергетические зоны могут не перекрываться, и отсутствие такого перекрытия может рассматриваться как сохранение элементов дискретности в расположении энергетических уровней. Уменьшение межатомных расстояний (например, за счет давления) может привести к столь значительному расширению соседних зон,, что ранее неперекрывавшиеся зоны станут перекрываться. В связи с этим промежуток между потолком одной (нижней) и дном другой (верхней соседней) зоны нередко называют энергетической щелью по аналогии с запрещенными зонами, возникающими в приближении почти свободных электронов (рис. 4.9,б).  [c.83]


Описываются опыты, давшие первое прямое экспериментальное доказательство дискрегнос-ти атомных состояний.  [c.75]

Если считать, что силы взаимодействия между атомами направлены по прямым, соединяющим их центры (гипотеза центральных сил), то в уравнениях равновесия атомной решетки будут фигурировать только координаты атомов, но не утлы их собственных вращений. Считая число атомов очень большим, а расстояния между ними очень малыми, мы можем получить отсюда закон упругости для сплошной среды, притом для среды, соответствующей класспческой модели. Такие вычисления действительно производились, однако точные законы междуатомного взаимодействия неизвестны н непосредственно установить их нельзя. Поэтому в основу анализа приходится полагать более или менее правдоподобные гипотезы.  [c.23]

Этим методом были получены, например, фотографии почти совершенного кристалла платины, ориентированного в направлении [001]. Каждая точка на фотографии (рис. 48) соответствует одному атому. Вакансия соответствует недостающему пятну в симметричных сериях пятен, внедренный атом соответствует лишнему пятну или пятну большого диаметра. С помощьк> последовательного испарения атомных слоев можно получить данные о концентрации и распределении дефектов. Так, в экспериментах по исследованию платины, закаленной при 1800 К, при изучении 71 последовательногс слоя атома в плоскости (102) было найдено, что на 8500 просчитанных атомов приходятся пять вакансий. Таким образом, концентрация вакансий, полученная прямым счетом, составляла n/N = = 5,9-10- .  [c.94]

Прямые Мозелея не обнаруживают никаких следов периодичности, столь характерной для графиков, дающих зависимость ионизационных потенциалов, атомных объемов, температур плавления и других физико-химических констант от атомных весов или атомных номеров элементов. На рис. 30 приведены два графика ионизационных потенциалов атомов, т. е. работы отрыва от них самого внешнего электрона и закона Мозелея для рентгеновых К-тер-  [c.56]

При больших атомных номерах Z, когда величина а становится мало Л по сравнению с Z, можно положить, что разность Ду пропорциональна пропорционален Z . Это соотношение, давно установленное в области рентгеноскопии, носит название закона регулярных дублетов. На графиках Мозелея он проявляется в том, что прямые, соответствуюш.ие, например, уровням и Z-ijj, идут под некоторым углом друг к другу, так что разности между ними увеличиваются с возрастанием зарядового номера.  [c.319]

На рис. 322 приведена структура двух линий платины. Сплошные прямые указывают положение линий, принадлежащих четным изотопам pti94 р 1% и пунктирные — положения центров тяжести сверхтонких компонент нечетного изотопа Как видно, линии, принадлежащие более легким изотопам, сдвинуты в фиолетовую сторону, т. е. противоположно наблюдаемой при нормальном эффекте. Одинаковым изменениям атомных весов изотопов A соответствуют одинаковые сдвиги линий Д .  [c.562]

Подвижность носителей в полупроводниках с атомной решеткой. В полупроводниках с атомной решеткой рассеяние носителей заряда происходит на тепловых колебаниях решетки и на ионизированных примесях. Эти два механизма рассеяния приводят к появлению двух участков в температурной зависимости подвижности. При рассеянии носителей на тепловых колебаниях решетки средняя длина свободного пробега одинакова для носителей заряда с различными скоростями и обратно []роиорциональна абсолютной температуре полупроводника. Это следует из того, что рассеяние носителей заряда должно быть прямо пропорционально поперечному сечению того объема, в котором шлеблется атом, а оно пропорционально квадрату амплитуды колебания атома, определяющему энергию решетки, которая с температурой растет, как известно, по линейному закону. Поэтому, так кап 3 формуле (8-11) /ср 1/7 , а УТ, то  [c.241]

Температура плавления соединений А" понижается с ростом суммарного атомного номера и атомных масс, входящих в соединение элементов. Точки плавления лежат выше соответствующих температур плавления элементов, из которых состоит соединение, за исключением антимонида индия, температура плавления которого (536 °С) лежит между температурой плавления сурьмы (630 °С) и индия (156 °С). С увеличением атомной массы н суммарного атомного номера соединений уменьшается ширина запреш,еиной зоны, так как происходит размывание электронных облаков ковалентных связей и они все белее приближаются к металлическим. Скачкообразный переход к металлической связи наблюдается у сплавов индия с висмутом, галлня с сурьмой и т. д. Прямые, характеризующие изменение ширины запрещенной зоны в зависимости от суммарного атомного номера соединения (рис. 8-27), и прямые, показывающие изменение температуры плавления соединений, приближенно можно считать параллельными. Следовательно, между шириной запрещенной зоны и температурой плавления соединений имеется прямая пропорциональность. Наблюдаемая закономерность объяснима, если исходить из теоретических представлений о ток, что ширина запрещенной зоны зависит от вида связи, а видом и прочностью связи определяется энергия кристаллической решетки и, следовательно, температура плавления вещества.  [c.262]

Атомные анергетвческие установки с прямым преобразованием тепловой анергии в алектрическую  [c.185]

В начале 60-х годов Институтом атомной энергии имени И. В. Курчатова совместно с другими научно-исследовательскими институтами была разработана первая энергетическая установка с ядерным реактором и прямым получением электроэнергии. В этой установке, получившей название Ромашка (рис. 55), впервые осуществлена оригинальная и простая конструктив-наьс схема, предусматривающая обт-единение в одном агрегате высокотемпературного реактора на быстрых нейтронах и термоэлектрического генератора электрической мощностью 0,5 кет. В активной зоне реактора, окруженной бериллиевым отражателем, помещены тепловыделяющие элементы (пластины из дикарбида уранаиСг с 90%-ным обогащением по урану-235) общим  [c.185]


Смотреть страницы где упоминается термин Атомные прямые : [c.388]    [c.8]    [c.280]    [c.334]    [c.857]    [c.20]    [c.688]    [c.157]    [c.99]    [c.143]   
Общий курс физики Оптика Т 4 (0) -- [ c.387 ]



ПОИСК



Атомные энергетические установки с прямым преобразованием тепловой энергии в электрическую

Атомный вес

Глава шестнадцатая. Атомные электростанции. Прямое преобразование энергии. Перспективы развития промышленных электростанций

Прямое восстановление железной руды с использованием атомной энергии



© 2025 Mash-xxl.info Реклама на сайте