Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Атомное ядро заряд

Выделение спиновых систем в качестве обособленных макроскопических объектов оказьшается возможным в силу следующих обстоятельств. В основе всего лежит тот факт, что электрон и многие атомные ядра, помимо того, что они являются носителями элементарных электрических зарядов, являются еще и элементарными магнитными диполями. Это значит, что их можно представлять в виде магнитных стрелок невообразимо малых размеров.  [c.89]


Непосредственной предысторией ядерной физики можно считать годы от открытия периодического закона Д. И. Менделеева до открытия радиоактивности (1869—1895). Периодическая система элементов Менделеева выражала сложность строения атома, заключала в себе связь тогда еще не известных науке основных характеристик атомного ядра—его электрического заряда и массы.  [c.9]

Атомному ядру данного элемента, как и всякому материальному объекту, присущи определенные характерные свойства, выражающие индивидуальность этого ядра электрический заряд, масса, спин, электрический и магнитный моменты, энергия связи и т. д. К рассмотрению этих свойств мы и перейдем.  [c.81]

Электрический заряд является одной из основных характеристик атомного ядра, он определяет число электронов в нейтральном атоме, химические, оптические (уровни энергии) и другие физические свойства.  [c.82]

Атомные ядра представляют сложные квантовомеханические системы, построенные из нуклонов того и другого сорта (р, п), удерживаемых вместе специфическими силами притяжения. Лишь ядра водорода состоят из одного прогона. В таблицах атомных ядер изотопов обычно приводится нейтрон как ядро с Z = 0. Однако такое ядро, лишенное электрического заряда, не способно иметь электронную оболочку. Кроме этих случаев, неизвестны атомные ядра, построенные только из одних нейтронов или протонов. Некоторыми авторами теоретически исследуется вопрос о возможности существования тяжелых ядер, состоящих только из одних нейтронов, исследуется критический размер такого ядра —  [c.97]

Кроме электрического заряда и массы, каждое атомное ядро в данном стационарном состоянии обладает также определенным  [c.112]

Кроме магнитного момента, атомные ядра характеризуются также электрическим моментом. Если магнитные моменты обусловлены распределением электрических токов внутри ядра и определяют взаимодействие ядер с внешним магнитным полем, то электрические моменты ядер обусловлены распределением электрических зарядов и определяют взаимодействие ядер с внешним электрическим полем.  [c.125]

До 932 г. в физике были известны только два сорта первичных, или элементарных, частиц электроны и протоны. Поэтому в те годы было сделано предположение, что атомные ядра построены из протонов и электронов (протонно-электронная гипотеза). При этом считалось, что в состав ядра с порядковым номером Z и массовым числом А входит А протонов и А—Z электронов. Входящие в состав ядра электроны как бы нейтрализуют электрический заряд А—Z протонов и остается действующим лишь заряд Z протонов. Ядерные электроны по этой гипотезе, кроме того, выполняют роль цементирующего средства, связывающего положительно заряженные протоны в ядре. Непосредственное подтверждение справедливости протонно-электронной гипотезы ее сторонники видели в существовании Р -радиоактивности, при которой ядро испускает Р -частицу (электрон).  [c.129]


Известно ( 21, 11), что атомное ядро с зарядом +Ze для положительно заряженных частиц окружено потенциальным кулонов-ским барьером, высота которого для а-частиц равняется  [c.228]

Однако слияние атомных ядер не происходит при обычных условиях, так как атомные ядра, имеющие положительные заряды + Z e и + Z e, испытывают огромные силы кулоновского отталкивания. Энергия такого отталкивания равна U = . При  [c.324]

ЗАРЯД АТОМНОГО ЯДРА  [c.25]

Одной 3 важнейших характеристик атомного ядра является его электрический заряд Z, который дает представление о числе протонов в ядре и величине кулоновского потенциала и определяет химические свойства элемента. Однако заряд Z не может дать полного представления об электрических характеристиках ядра, так как с его помощью нельзя ничего узнать о свойствах ядра, зависящих от распределения нуклонов в ядре. Заряд Z  [c.94]

Легко предсказать свойства нейтрино. В соответствии с законом сохранения электрического заряда и с тем, что нейтрино че ионизует атомов среды, через которую оно пролетает, заряд нейтрино должен быть равен нулю. Масса нейтрино тоже должна быть равна нулю (или во всяком случае много меньше массы электрона — см. п.З этого параграфа). Это связано с тем, что нейтрино уносит большую часть энергии р-распада. Из отсутствия ионизации следует также равенство нулю или чрезвычайная малость магнитного момента нейтрино. Спин нейтрино должен быть полуцелым. Это связано с тем, что характер спина (целый или полуцелый) атомного ядра определяется, как было показано в 4, массовым числом А. В процессе р-распада А не меняется и, следовательно, характер спина ядра должен сохраняться. Вместе с тем вылетающий в результате р-распада электрон уносит с собой спин /г/2, что должно привести к изменению характера спина ядра. Противоречие устраняется, если приписать нейтрино полуцелый спин. Теоретический расчет формы р-спектра, сделанный в разных предположениях относительно значения спина нейтрино, показал, что его спин должен быть равен h /2. Проведенное рассуждение одинаково справедливо как для р--распада, так и для р+-распада.  [c.144]

Формула Резерфорда может быть использована для определения в прямом опыте заряда атомного ядра Z. Напомним, что идентификация заряда ядра с порядковым номером элемента в периодической системе была произведена при помощи закона Мозли. Этот способ дает точные результаты, однако он не является прямым. Формула Резерфорда позволяет сравнить величину заряда ядра Z с величиной непосредственно вызываемого им отклонения 9. Экспериментально удобнее сравнивать количество N падающих а-частиц с числом dN рассеянных а-частиц лод заданным углом 9. Тогда  [c.224]

Взаимодействия нейтронов с ядрами составляют, пожалуй, самый обширный и разнообразный класс ядерных взаимодействий. Объясняется это тем, что нейтроны (наряду с протонами) входят в состав любого атомного ядра, в котором они прочно связаны ядерными силами. Поэтому при сближении с ядром нейтроны должны с ним эффективно взаимодействовать, причем в отличие от протонов, которые из-за кулоновского барьера не могут эффективно взаимодействовать с ядром при малых энергиях, нейтроны, не имеющие заряда, взаимодействуют с ядром и при низких энергиях.  [c.283]

Открытие протона позволило построить протонно-электрон-ную модель ядра, согласно которой в атомном ядре содержится А протонов и А — Z) электронов. В этой модели становилась понятной пропорциональность атомного веса массовому числу и порядкового номера — заряду, но модель имела существеннейшие недостатки (см. введение к книге).  [c.544]

Дальнейшие опыты Резерфорда с а-частицами привели (1919 г.) к открытию расщепления атомного ядра азота, сопровождающегося вылетом положительно заряженной частицы с зарядом +е и массой, равной массе ядра атома легкого изотопа водорода (в 1836 раз большей массы электрона). Кроме азота опыт был сделан и на других веществах. В результате было установлено, что ядра этих веществ при бомбардировке пх быстрыми а-части цами испускают ядра водорода. Тем самым было доказано, что в составе всех ядер содержатся простейшие водородные ядра — протоны ( протон — простейший, первичный).  [c.96]


Высокое содержание в составе КЛ ядер Li, Be, В, элементов с зарядом ядра 21<2<25 и других редких в природе элементов и их изотопов (рис. 43.5, 43.6) объясняется тем, что они вторичны — возникают при фрагментации более тяжелых ядер, взаимодействующих с атомными ядрами межзвездного газа. Доля вторичных ядер уменьшается с энергией (рис. 43.7), что связано с соответствующим уменьшением времени удержания КЛ в Галактике. Определенный с учетом поправки на фрагментацию состав первичных ядер КЛ в источниках приведен в табл. 43.1.  [c.1174]

Рис. 2.13. Распределение плотности заряда в атомных ядрах. Плотность нормирована на J р (/ ) ir = 1. Рис. 2.13. <a href="/info/333799">Распределение плотности заряда</a> в <a href="/info/12435">атомных ядрах</a>. Плотность нормирована на J р (/ ) ir = 1.
Почти всеми приведенными выше статическими характеристиками обладают не только атомные ядра, но и все микрообъекты, и в частности элементарные частицы. Так, элементарные частицы обладают зарядом, спином, четностью, радиусом, магнитным моментом, статистикой. Вместо энергии связи и массового числа для элементарных частиц рассматриваются соответствующие эквивалентные понятия массы и барионного заряда.  [c.78]

Если представить себе атомное ядро в виде сложной системы с распределением плотности электрического заряда в пределах ядра по некоторому закону ер г), то потенциал V, вызванный ядром, равен  [c.551]

Из протонов и нейтронов состоит атомное ядро, электроны заполняют оболочки атома, компенсируя положительный заряд ядра. Строение ядра атома, периодичность заполнения оболочек электронами можно находить с помощью таблицы Д. И. Менделеева.  [c.9]

Появление и исчезновение электрических зарядов на телах в большинстве случаев объясняется переходами элементарных заряженных частиц — электронов — от одних тел к другим. Как известно, в состав любого аторла входят положительно заряженное ядро и отрицательно заряженные электроны. В нейтральном атоме суммарный заряд электронов в точности равен заряду атомного ядра. Тело, состоящее из нейтральных атомов и молекул, имеет суммарный электрический заряд, равный нулю.  [c.130]

Модель атома Региерфорда. Рассеяние отдельных альфа-частиц на большие углы Резерфорд сб7,яснил тем, что положительный заряд в атоме не распределен равномерно в шаре радиусом 10"м, как предполагали ранее, а сосредоточен в центральной масти атома в области значительно меньших размеров. В этой центральной положительно заря-лсенной части атома — атомном ядре — сосредоточена и почти вся масса атома. Расчеты Резерфорда показали, что для объяснения опытов по рассеянию аль-  [c.309]

Как известно, любое ускоренное движение электрических зарядов сопровождается излучением электромагнитных волн. Движение по окружности является ускоренным движением, поэтому электрон в атоме должен излучать электромагнитные волны с частотой, равной частоте его обращения вокруг ядра. Это должно приводить к уменьшению энергии электрона, постепенному его приближению к атомному ядру и, наконец, падению на ядро. Таким образом, атом, состоящий из атомного ядра и обращающихся вокруг него электронов, согласно законам классической физики неустойчив. Он может существовать лишь короткое время, за которое электроны израсходуют всю свою эиоргию па излучение и упадут 1 . дро. Но в действитвль-UO TIi атомы устойчивы.  [c.310]

Общие свойства и структура ядер. В этом разделе исследуются основные свойства атомных ядер электрический заряд, масса массовое число), спин, магнитный и электрический моменты, энергия связи, система энергетических уровней возбужденногс ядра, эффективные размеры ядра и т. д. В зависимости от перечисленных свойств может быть проведена систематизация стабильных атомных ядер. Делаются попытки объяснить основные свойства ядер, с этой целью выдвигаются различные модели атомного ядра, исследуются возможности этих моделей в объяснении ядерных свойств.  [c.8]

Это означает, что процесс образования электронно-позитронной пары может происходить только в присутствии какой-либо частицы, которая могла бы принять на себя импульс у-фотона. Такой частицей может быть атомное ядро с массой М и зарядом -j- Ze, или элек-  [c.36]

Итак, экспериментальные исследования Резерф< )рда по рассеянию а-частиц при их прохождении через тонкие металлические листки показали, что основная масса атома и положительный электрический заряд сосредоточены в небольшой (lO — 10 м) центральной области атома, именуемой атомным ядром. В нейтральном атоме вокруг ядра обращается Z электронов. Такая мОт дель получила название ядерной модели атома. Ядерная модель атома в сочетании с квантовыми закономерностями объясняет возникновение и структуру атомных спектров процессы возбуждения и ионизации атомов, свойства молекул, свойства твердых тел (металлов) и т. д.  [c.81]

Итак, атомное ядро содержит в своем составе А нуклонных частиц, из них Z протонов и N А — Z нейтронов. Атомные ядра (как и соответствующие им атомы) с одинаковым электрическим зарядом Ze, т. е. с одинаковым числом протонов, но разными массовыми числами Л, называются изотопами. Например, в природе встречаются три стабильных изотопа кислорода gQi , три стабильных изотопа кремния i4Si , i4Si и т. д. В сред-  [c.83]

В первом приближении атомные ядра можно считать сферическими и ввести понятие радиуса R ядра как радиуса той сферы, которая ограничивает ядерное вещество. Правда, у некоторв1х ядер имеется незначительное отклонение от сферической симметрии в распределении электрического заряда. Но в первом приближении мы не будем это учитывать.  [c.87]


Атомное ядро, обладающее электрическим зарядом Ze, распределенным квазиоднородио по ядериоп сфере радиуса в окружающем пространстве (на расстояш-шх г > / ), создает электрическое  [c.131]

Заряд атомного ядра Z определяется количеством протонов в ядре (и, следовательно, количеством электронов в атомных оболочках), которое совпадает с порядковым номером элемента в таблице Менделеева. Заряд определяет химические свойства всех изотопов данного элемента. Наиболее точно заряд ядер был измерен в 1913 г. Мозли, который нащел простую связь между частотой характеристического рентгеновского излучения V и зарядом Z  [c.25]

Атомное ядро с зарядом Z и массовым числом А состоит из А нуклонов 2 лротонов и А — Z нейтронов, связанных между собой ядерными силами. В ядре нет электронов.  [c.98]

Другой неупругий электромагнитный процесс — тормозное (радиационное) излучение — возникает при быстром торможении заряженной частицы в электрическом поле атомного ядра. Потери энергии на тормозное излучение для частиц с равными зарядами обратно пропорциональны квадрату массы частицы. Поэтому тормозное излучение существенно только для легчайших заряженных частиц — электронов, для которых в первом приближении справедлива формула  [c.255]

Закон сохранения числа нуклонов применительно к рассмотренным простейшим ядерным реакциям означает сохранение в них массового числа А. Поэтому можно ввесхи понятие нуклон-ного (ядерного) заряда, численное значение которого для нейтрона и для протона равно единице, а для атомного ядра совпадает с его массовым числом А. Однако, как мы увидим в 80, нуклонный заряд для всех тяжелых частиц (барионов) также равен единице. Поэтому в настоящее время более принято называть его барионным зарядом и обозначать буквой В(Вп = fip = 1).  [c.260]

Дальнейшие опыты Резерфорда с а-частицами привели (1919 г.) к открытию расщепления атомного ядра азота, сопровождающегося вылетом положительно заряженной частицы с зарядом -fe и массой, равной массе ядра атома легкого изото-  [c.543]

Резерфорд обнаружил nopa3HTejn>Hbm факт — некоторые а-частицы рассеивапись назад. Это казалось невозможным, если учитывать их массу и скорость движения. Но факт есть факт, и объяснение рассеяния в обратном направлении могло быть только одно внутри атомов есть крохотный тяжелый центр, несущий поло кительный заряд. В науке впервые появилось понятие атомного ядра. В результате расчетов Резерфорд получил, что размеры ядра составляют всего 10 10 см. Он предложил планетарную модель атома (рис. 47), в которой вокруг положительно заряженного ядра на относительно больших расстояниях двиасутся электроны.  [c.162]

ГИИ от 1 ГэВ до 10 ГэВ. Интенсивность синхрофазотронных пучков относительно низка, особенно при высокой энергии. Синхрофазотрон на 10 ГэВ в Дубне дает в среднем за цикл ускорения 3,3-10 протонов (7,5 импульса в минуту). Отметим, что Дубненский синхрофазотрон может ускорять не только протоны, но и атомные ядра до энергии 10 ГэВ на один протонный заряд. Так, полностью ионизованный атом изотопа углерода ускоряется на этом ускорителе до энергии 5 ГэВ/нуклон (интенсивность в импульсе 10 ядер С ). Ускорение атомных ядер до релятивистских энергий положило начало новому направлению в ядерной физике — физике релятивистских ядер.  [c.476]

Каждому из этих требований в отдельности удовлетворить нетрудно, но выполнить сразу оба удается лишь в редчайших случаях. Действительно, первым требованием возможные виды исходного горючего ограничиваются стабильными изотопами, встречающимися в природе, долгоживущими нестабильными изотопами и, наконец, частицами или изотопами, которые можно получить в больших масштабах в самих экзотермических реакциях. Вторым требованием крайне затрудняются макроскопические реакции, начинающиеся столкновениями ядер. Все атомные ядра обладают электрическими зарядами, причем одного и того же знака. Поэтому сближению ядер препятствует отталкивающий кулоновский барьер. Чтобы преодолеть отталкивание и сблизиться на расстояние, достаточное для вступления в реакцию, ядра должны сталкиваться с достаточно большими относительными кинетическими энергиями. Эти энергии сильно варьируются в зависимости от типа реакции, но в любом случае должны быть не меньше нескольких кэВ. Кроме того, ядер с такими энергиями надо иметь очень много. Действительно, при энерговыделении, скажем, 100 Вт/см в реакцию ежесекундно в каждом см должны вступать 10 —10 ядер, если считать, что в отдельной реакции выделяется энергия в несколько МэВ. Для того чтобы оценить масштаб килоэлектронвольтной кинетической энергии ядра с макроскопических позиций, укажем для примера, что в ракете, летящей с космической скоростью порядка 10 км/с, на один атом приходится кинетическая энергия не более десятых долей эВ, а при температуре 10 ООО К на одну степень свободы приходится энергия, равная примерно одному элект-ронвольту.  [c.562]

В любом веществе, независимо от наличия или отсутствия в нем свободных электрических зарядов (носителей заряда), всегда имеются связанные заряды электроны оболочек атомов, атомные ядра, ионы. Под действием внеишего электрического поля связанные заряды в диэлектрике смещаются из своих равновесных состояний положительные в направлении вектора напряженности поля Е, отрицательные - в обратном направлении. На рис.4.1 представлена простейшая конфигурация у частха изоляции - плоский конденсатор. В результате этого каждый элементарный объем диэлектрика V приобретает индуцированный (наведенный)  [c.85]

Вентильный фотоэффект. При облучении полупроводника, содержащего электронно-дырочный переход, помимо изменения проводимости нередко возникает разность потенциалов на электродах. Один из электродов, на который надаёт лучистый поток, должен быть полупрозрачным. Появление этой разности нотенциалов обязано так называемому вентильному- ютоэффекту. В результате поглощения лучистой энергии в полупроводнике образуются новые фотоэлектроны и фотодырки. Фотоэлектроны, оказываясь в зоне действия контактного поля, перебрасываются им в область/г. Аналогичные процессы переброса претерпевают дырки. В результате этого электрод на -области зарядится отрицательно, а прилегающий к дырочному полупроводнику электрод зарядится положительно. Таким образом, вентильный эффект можно рассматривать как появление избыточной концентрации электронов в -области и дырок в р-области, появившихся под воздействием лучистой энергии. Рост концентрации электронов в п-области и концентрации дырок во второй р-области будет постепенно замедляться, так как одновременно начнет увеличиваться создаваемое ими поле обратного направления, препятствующее переходу неосновных носи-, телей заряда через запорный слой в конце концов установится равновесная концентрация зарядов и соответствующая электродвижущая сила. На этом принципе основаны источники тока, непосредственно преобразующие энергию солнца или атомного ядра в энергию электрического тока — солнечные и атомные батареи.,  [c.180]

А. Н. Терениным [ ] и Шюлером Аналогичное расщепление простых по схеме линий на несколько компонент встречается у многих элементов. Паули впервые предложил искать объяснение сверхтонкой структуре спектральных линий в отступлении поля атомного ядра от поля точечного заряда.  [c.521]



Смотреть страницы где упоминается термин Атомное ядро заряд : [c.312]    [c.317]    [c.77]    [c.126]    [c.220]    [c.55]    [c.221]   
Введение в ядерную физику (1965) -- [ c.25 ]



ПОИСК



Атомное ядро

Атомное ядро электрический заряд

Атомное ядро ядра)

Атомный вес

Заряд

Заряд ядра

ОГЛАВЛЕНИЕ ПЕРВОЙ КНИГИ Часть первая. СВОЙСТВА НУКЛОНОВ, ЯДЕР И РАДИОАКТИВНЫХ ИЗЛУЧЕНИЙ Свойства стабильных ядер, нуклонов и ядерных Массовое число А и электрический заряд Z атомного ядра



© 2025 Mash-xxl.info Реклама на сайте