Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Турбины газовые и давления

Коэффициент полезного действия современных ТЭС с паровыми турбинами достигает 40 %, с газовыми турбинами — не превышает 34 %. На ТЭС с паротурбинным приводом возможно использование любого вида топлива газотурбинные станции пока используют только жидкое и газообразное. Однако паровая турбина не столь маневренна, как газовая. Дело в том, что давление пара, подаваемого в турбину, высокое — до 23,5 МПа и корпус турбины для обеспечения прочности очень массивен. Это не позволяет быстро и равномерно прогреть паровую турбину при пуске. Газовые турбины работают при давлениях рабочего тела не более 1 МПа, их корпус много тоньше, прогрев осуш,ествляется быстрее. Поэтому газотурбинные агрегаты на ТЭС рассматриваются в перспективе как пиковые — для обеспечения выработки электроэнергии при кратковременном увеличении в ее потребности — для снятия пиков электрической нагрузки.  [c.185]


Топки с псевдоожиженным слоем под давлением могут применяться на ТЭС в комбинированном цикле производства электроэнергии, который по сравнению с традиционным дает преимущество в эффективности использования угля и тепла с большими возможностями по обеспечению требований к защите окружающей среды. Термодинамический к.п.д. таких установок увеличивается с ростом температуры поступающих в газовую турбину газов и повышением доли газотурбинной части в суммарной мощности установки.  [c.16]

МПа й последующим сжатием в дожимающем компрессоре до 1,6 МПа. Воздух на горение поступает в парогенератор с температурой 400 °С. Топочные газы, покидая его с температурой 970°С и давлением 1,45 МПа, проходят через высокотемпературный золоуловитель, где очищаются от твердых частиц размером более 2 мкм, в газовую турбину ГТ-125-950-ПГ. После газовой турбины газы с температурой 510 °С направляются в экономайзер и затем с температурой 198 °С идут на сушилку твердого топлива, где охлаждаются до 65 °С и сбрасываются "в дымовую трубу.  [c.23]

Задача 4.10. Турбина работает с начальными параметрами газа ро = 0,32 МПа, /о = 827°С и давлением газа за турбиной / 2 = 0,15 МПа. Определить эффективную мощность и удельный эффективный расход газа турбины, если расход газа = 28 кг/с, относительный эффективный кпд турбины >/ое=0,74, показатель адиабаты к= 1,34 и газовая постоянная Л=288 Дж/(кг К).  [c.152]

I 500—3 000° С. Это значительно выше того, что могут выдержать металлы, но стенки камеры, в которой происходит горение, можно охлаждать, к в этом случае такие температуры становятся приемлемыми. Однако конечная температура продуктов горения при расширении их в газовых турбинах до атмосферного давления оказывается еще значительно выше температуры окружающей среды, что неблагоприятно для термического к. п. д. цикла. Обратное наблюдается у другого рабочего тела — водяного пара. Он получается в перегревателе парогенератора путем подвода тепла от горячих газов через металлическую стенку труб перегревателя, и его температура всецело определяется жаропрочностью металла, которая не позволяет получать пар с температурами более 600—650° С, да и то при использовании весьма дорогих высоколегированных сталей. С другой стороны, как это было показано при анализе циклов паросиловых установок, конечная температура водяного пара при расширении его до принятых давлений в конденсаторе ненамного отличается от температуры окружающей среды, что благоприятно для экономичности цикла. Рассмотренные свойства того и другого рабочего тела привели к мысли о создании бинарного цикла, т. е. такого цикла, в котором участвовали бы два рабочих тела, каждое из которых вносило бы в цикл свое благоприятное для термического к. п. д. СВОЙСТВО. Такой бинарный цикл получил название парогазового цикла. В нем в высокотемпературной части рабочим телом служат продукты горения топлив, а в низко-  [c.193]


Абсолютный к. п. д. существующих ГТУ — 14... 34 %. В качестве примера на рис. 6.4 дан продольный разрез газовой турбины ЛМЗ низкого давления, состоящей из трех активных ступеней. Устройство турбины ясно из чертежа и подписей к нему.  [c.306]

Сопла Лаваля находят широкое применение для получения сверхзвуковых потоков газов и паров в паровых и газовых турбинах, в реактивных двигателях и т. д. В зависимости от соотношения между начальным давлением газа pi и давлением р внешней среды, в которую происходит истечение, т. е. от величины перепада давлений pi—p, в сопле возможны различные режимы течения.  [c.280]

Особенность паровой турбины ПТУ -ее работа при умеренной температуре свежего пара (Гп 810- -880 К), определяемой главным образом свойствами металлов турбин, котлов и пароперегревателей, и очень больших степенях понижения давления сОт = Рп/Рт 2 000 ч- 6000, определяемых высоким начальным (рп) и низким конечным (рт) давлением пара. Поэтому теплоперепад, срабатываемый в паровой турбине, в 2 — 3 раза больше, чем в газовой турбине, а число ступеней паровой турбины во много раз превосходит число ступеней газовой турбины.  [c.199]

В настоящее время преобладающую роль в топливном балансе страны играют газообразные и жидкие топлива. Их транспортировка осуществляется в основном по магистральным трубопроводам, которые оборудуют современными теплосиловыми установками мощными газовыми турбинами, двигателями внутреннего сгорания, электродвигателями, котельными агрегатами и др. Для нормальной эксплуатации систем транспорта и хранения нефтепродуктов и природных газов необходимо значительное количество электроэнергии, причем с повышением производительности труда и совершенствованием технологических процессов затраты электроэнергии как на одного работающего, так и на единицу вырабатываемой продукции непрерывно увеличиваются. Растущая потребность в электроэнергии будет удовлетворяться сооружением новых (в основном тепловых) электростанций, оборудованных котельными агрегатами паропроизводительностью до 300 т/ч и давлением пара до 300 бар, а также паровыми турбинами мощностью до 1,2 млн. кВт.  [c.3]

Модульный фундамент для газотурбинной установки ГТН-25И (рис. 8) — основание для осевого компрессора турбины высокого и низкого давления, вспомогательных механизмов и монтажная поверхность для газосборника выпускного и впускного патрубков. Фундамент вспомогательных механизмов используют одновременно и в качестве емкости для хранения смазочного масла. Фундамент, несущий газовую турбину, представляет собой стальную раму из двух частей, изготовленную из двутавровых балок и плиты. В собранном виде фундамент образует основание, на котором крепят опоры турбины.  [c.46]

Многочисленные труды, посвященные теории газовых турбин, содержат доказательства большего совершенства газотурбинных установок (ГТУ) для электрических станций по сравнению с паротурбинными установками (ПТУ). Эти доказательства построены на сравнении паротурбинных станций, работающих на низких температурах с идеализированными газотурбинными станциями, работающими при высоких температурах газа. Часто доказательства преимуществ газовых турбин построены на основе неправильных сведений о свойствах водяного пара в области высоких температур и давлений. Поэтому важной является проблема определения сравнительного термодинамического преимущества ПТУ и ГТУ перспективных электрических станций.  [c.14]

Смесь продуктов сгорания и воздуха, имеющая после камеры сгорания температуру, достигающую в современных газовых турбинах 800°, и при давлении от 5 ата (в схеме типа А) до 25 ата (в схеме типа Б), расширяется в газовой турбине 6 совершая работу, необходимую для вращения ротора. В простейшей установке типа А одна газовая турбина 6 приводит во вращение компрессор 3 и электрический генератор 11 после турбины воздух имеет давление атмосферы. В более сложной и более экономичной установке Б турбина высокого давления 6 приводит в действие только ком-прессор высокого давления 5. В этой установке воздух расширяется в турбине 6 до давления, значительно превосходящего атмосферное (6—8 ата)..  [c.9]


Трубопроводы относятся к числу узлов паросиловых и газотурбинных установок, характеризующихся широким применением сварки. В настоящее время сварные стыки трубопроводов в значительной степени вытеснили используемые ранее фланцевые соединения. Последние, как показал опыт эксплуатации трубопроводов среднего и высокого давления, являются одним из малонадежных узлов установок вследствие частых неполадок из-за нарушения плотности соединений и связанных с этим утечек пара или газа. При высоких рабочих температурах и давлениях толщины фланцев резко возрастают. Это имеет своим следствием трудности, возникающие при быстром прогреве трубопроводов и внезапных сбросах нагрузки. При этих обстоятельствах в элементах фланцевого соединения — в собственно фланцах, болтах и примыкающих участках трубопровода — возникают значительные разности температур. Разницы температур вызывают перенапряжение крепежа при быстром пуске, а затем потерю плотности соединения после выравнивания или снижения температуры. Кроме указанного, кованые фланцы, привариваемые к трубам высокого давления, вызывают существенное удорожание системы трубопроводов. Поэтому в трубопроводах современных паровых и газовых турбин фланцевые соединения встречаются относительно редко, в основном на участках, в которых по условиям работы необходим частый разъем соединения.  [c.159]

После охлаждения продуктов сгорания в парогенераторе достигается температура перед газовой турбиной (точка /) и одновременно снижается давление от до из-за сопротивления топочного устройства и газоходов. Далее следует расширение в газовой турбине (процесс 1—2) и охлаждение газов в водяном экономайзере и в окружающей среде (процесс 2—< ) до исходной температуры и начального давления р р.  [c.43]

Перемешивание потоков сведено к минимуму благодаря устройству уплотнений. Установка в целом и система регулирования должны быть рассчитаны.так, чтобы при всех режимах давление в паровом тракте турбины оказывалось выше давления в ее газовом тракте. Тем самым будет предотвращена возможность срыва вакуума в конденсаторе К-  [c.113]

Схема б может сочетаться со схемой а, показанной пунктиром, и, по существу, совпадает со схемой газопаровой установки, рассмотренной на рис. ГЗ, ж. Отличие лишь в том, что воду предлагается впрыскивать в быстродвижущийся газовый поток, замедляя затем его в диффузоре. При этом (в случае положительного результата) давление газопаровой смеси перед турбиной может превысить давление, создаваемое компрессором. В итоге полезная работа турбины при затрате того же количества тепла должна увеличиться.  [c.134]

Завод Экономайзер специализирован на производстве питательных турбонасосов для электростанций высокого и сверхвысокого давлений, питательных и конденсатных электро- и турбонасосов для судов. С 1959 г. завод начал выпускать газовые турбины малой и средней мощности.  [c.488]

В теплонапряженных топочных устройствах (камеры сгорания газовых и парогазовых турбин и парогенераторов) процесс сжигания газообразного или жидкого топлива происходит под давлением до 70 ama. Керамические поверхности в них не применяются, а термическая прочность их корпусов обеспечивается интенсивным охлаждением.  [c.63]

Применяются два способа повторного перегрева газовый и паровой. В первом случае перегрев пара, отводимого из промежуточной ступени турбины, производится за счет тепла газов в газовом перегревателе, обычно размещаемом в газоходе котла после первичного пароперегревателя. Во втором случае перегрев пара производится свежим конденсирующимся паром и, следовательно, перегрев возможен приблизительно до температуры насыщения, соответствующей давлению пара в котле.  [c.158]

Среди них прежде всего следует остановиться на циклах высокотемпературных газопаровых установок по схеме на рис. 20 [35]. В такой установке тепло, отбираемое паром при охлаждении проточной части высокотемпературной газовой турбины, используется в паровом цикле. При начальной температуре газа 1200° С и давлении газа 91-10 Па, давлении пара 240-10 Па, температуре пара 540° С и температуре уходящих газов 150° С к. п. д. нетто газопаровой установки может достигать 50%. Двукратный подвод тепла в газовом контуре [35] может дополнительно повысить тепловую экономичность газопаровой установки.  [c.39]

Разновидность схемы ПГУ с ВПГ—ПГУ с напорным экономайзером, расположенным по газовому тракту между газовыми турбинами высокого и низкого давления, в котором питательная вода нагревается продуктами сгорания при высоком давлении.  [c.13]

При выборе схемы, параметров и конструкции газотурбинного агрегата для ГТУ учитываются оптимальный к. п. д. установки на номинальном и переменном режимах, возможный предел начальной температуры газа, вид топлива, назначение установки, требования компоновки основного и вспомогательного оборудования. Паровая турбина для ПГУ обычно выбирается из числа типовых (стандартных), а ГТУ выбирается на основе анализа тепловой схемы ПГУ, включающего рассмотрение подходящих по расходу и давлению воздуха типовых газовых турбин или новых газовых турбин с оптимальными для данной схемы ПГУ характеристиками. Выбор типовой или подлежащей проектированию новой ГТУ производится путем сопоставления техникоэкономических показателей всей ПГУ.  [c.101]

Установка с высоконапорными парогенераторами имеет ряд преимуществ по сравнению с котельными обычного типа уменьн1ен габарит установки, снижен расход металла и др. Эти установки обеспечивают большую экономию топлива по сравнению с чисто паровыми и газотурбинными установками. Уже в насгоя цее время парогазовые установки позволяют получить к. и. д. до 0,33—0,36, что дает им возможность конкурировать с паротурбинными установками на давление 130 бар и температуру пара 565° С. Увеличив же начальную температуру газа в газотурбинных установках до 800— 900° С, применив многоступенчатое сжатие воздуха, промежуточный подвод тепла, регенерацию в газовой и паровой частях п усовер-ше 1ствование проточных каналов компрессоров и газовых турбин, можно получить к. п. д. парогазовой турбинной установки до 0,48 и вьпне.  [c.324]


Задача 4.11. Турбина работает о начальными параметрами газа о = 0,48 МПа, to = 12T и давлением газа за турбиной / 2 = 0,26 МПа. Определить внутреннюю мощность турбины, если расход газа Gr = 26 кг/с, относительный эффективный кпд турбины Г1о.е = 0,15, механический кпд турбины / = 0,98, показатель адиабаты А =1,4 и газовая постоянная Л=287 Дж/(кг К).  [c.153]

Существенным недостатком двигателей внутреннего сгорания являются возвратно-поступательное движение поршня н наличие больших инерционных усилий, что не позволяет создавать поршневые двигатели больших мощностей с малыми габаритными размерамй и массой. В газовой турбине, как и в двигателе внутреннего сгорании, рабочим телом являются продукты сгорания жидкого или газообразного топлива, но возвратно-поступательное движение заменено вращательным движением колеса под действием струи газа (рис. 7.3, а). Кроме того, в турбине осуществляется полное адиабатное расширение продуктов сгорания до давления наружного воздуха, с чем связан дополнительный выигрыш работы (ил. 4 414 на рис. 7.3, б). Это обстоятельство, а также ротационный принцип работы газотурбинного двигателя позволяют выполнять его быстроходным, с высокой частотой вращения, большой мощности в (Отдельном агрегате при умеренных размерах и небольшой массе.  [c.115]

Конструкция первой газовой турбины была разработана инжене-ром-механиком русского флота П. Д. Кузьминским. Построенная им в 1897 г. турбина предназначалась для небольшого катера. В камеру сгорания турбины, работавшую под давлением 10 бар, подавалось жидкое топливо — керосин и смесь воздуха с паром Продукты сгорания в смеси с паром подводились к центральной части радиальной турбины, состоявшей из неподвижного и вращающегося дисков, на которых были укреплены лопатки. Газовая турбина со сгоранием топлива при постоянном объеме была построена В. В. Караводиным в 1906 г.  [c.390]

Существует много схем комбинированных двигателей. Так, в схеме, показанной на рис. 5.2, выпускные газы из поршневого двигателя с высокой температурой и давлением расширяются в газовой турбине 2, приводящей в действие компрессор 5. Компрессор 3 засасывает воздух из атмосферы и под определенным давлением подает его через охладитель 4 в цилиндры поршневой части 1. В охладителе понижается температура воздуха, вследствие чего возрастает его плотность, а главное, понижаются максимальная и ср)едняя температура газов в цилиндре, что способствует повышению надежности работы двигателя. Увеличение наполнения цилиндров двигателя воздухом путем повышения давления на впуске называют наддувом. При наддуве увеличивается свежий заряд, заполняющий цилиндр при впуске, по сравнению с зарядом воздзоса в том же двигателе без наддува.  [c.221]

Циклический характер работы ДВС — один из его недостатков, но вместе е тем благодаря ему в ДВС реализуются высокие температуры и давления газа, которые до настоящего времени оказались недостижимы в других типах тепловых двигателей. Использование рабочего тела при высоких давлениях и температурах обусловливает наиболее высокую экономичность ДВС. Действительно, среди тепловых двигателей дизели преобразуют химическую энергию топлива в механическую работу с наивысшим КПД. Они примерно на 30% экономичней карбюраторных двигателей, а энергетические затраты на производство дизельного топлива примерно на 10% меньше, чем на производство бензина. Если отметить еще такие качества дизеля, как возможности использования тяжелых топлив и топливных суспензий, создания дизелей с больщой агрегатной мощностью, увеличения удельной мощности путем применения различных схем соединения с компрессорами и газовыми турбинами, а также меньщую, по сравнению с карбюраторными двигателями, токсичность, то очевидны причины все более широкого применения дизелей.  [c.249]

В установке, показанной на рис. 9.16, а, необходимый ддя горения воздух подается в котел I компрессором 10 продукты сгорания расширяются в газовой турбине 11 и используются для подогрева питательной воды в экономайзере 8. Основное количество теплоты рабочему телу паровой турбины 2 передается в котле 1 при максимальном давлении газовой среды цикла. Конденсатно-питательный тракт ПТУ тради-ционен и включает конденсатор 4,  [c.351]

Формула (215) показывает, что скорость звука в газе, т. е. скорость распространения упругих деформаций, зависит от при-)оды и состояния газа и является прямой функцией температуры. 1роцессы, связанные с большей скоростью движения газов (паров) по каналам, в которых происходит превращение потенциальной энергии сжатых газов в кинетическую энергию, широко применяются в современной технике в газовых и паровых турбинах, соплах реактивных и ракетных двигателей и др. Большими считаются скорости, близкие, равные или превышающие скорости звука в газе. Например, скорость звука в воздухе при 15° С составляет около 340 м/с. При движении с такими скоростями в потоке газа происходят большие изменения давления, температуры и плотности.  [c.67]

Газовые турбины широко применяются в газовой и нефтяной промышленности, особенно в качестве силового привода центробежных нагнетателей на компрессорных станциях магистральных газопроводов. Преимуш,естБа газовых турбин перед поршневыми двигателями — отсутствие инерционных усилий от дви-жуш,ихся возвратно-поступательно масс и более полное расширение продуктов сгорания (до давления наружного воздуха). Следовательно, газовые турбины можно изготовлять с высокой частотой враш,ения вала, что позволяет сосредоточить в отдельных агрегатах большие мош,ности при сравнительно небольших габаритных размерах и массе.  [c.206]

Другая область применения уплотнений — это герметизащ1я полостей в машинах, содержащих газы и жидкости при высоких давлениях или под вакуумом. В роторных машинах (в паровых и газовых турбинах, центробежных и аксиальных компрессорах и т. д.) необходимо уплотнение вращающихся валов и роторов в поршневых машинах — уплотнение возврат-но-поступательно движущихся частей (поршней, плунжеров, скалок).  [c.86]

ЦМ-322, при работе газовых турбин на твердом топливе показали, что минералокерамические детали имеют стойкость в - 40 раз выше, чем аналогичные детали из аустенитной стали 18—12 при температуре 650° С. Все другие металлические и керамические детали, за исключением твердосплавных, не обладали подобной стойкостью. Перспективным является применение минералокерамических изделий в виде проходных изоляторов и электродов и других деталей в аппаратах, работающих при высоких температурах и давлении (атомная энергетика, паросиловые установки сверхвысоких параметров и др.). Осуществление вывода из сосудов с высоким газовым давлением представляет больщие технологические и экспериментальные трудности. Особенно остро вопрос надежной герметизации аппаратуры стоит перед энергетикой и химической промышленностью, все более применяющих жидкости и газы (пары) при высоких давлениях и температурах. К электровводам предъявляются следующие требования.  [c.383]


Фиг. 12. Схема газогенераторной установки с турбокомпрессором (работа под давлением) / — газогенератор 2 — от-сто ник 3 — охладитель 4 — фнльтр 5 — вентилятор розжига 6 — смеситель 7 — выхлопной коллектор 8а— центробежный нагнетатель 56 — газовая турбина 9 и 10—рукоятки для регулирования качества и количества газовоздушной смеси //—пружины крышки загрузочного люка газогенератора /2 —бачок для конденсата 13 — отверстие для розжига газогенератора 14—воздухопровод от нагнетателя к газогенератору 75 — газопроводы /5 — трубопровод для выхлопных газов 17—выхлоп 18 — воздухопровод к смесителю. Фиг. 12. Схема <a href="/info/219826">газогенераторной установки</a> с турбокомпрессором (работа под давлением) / — газогенератор 2 — от-сто ник 3 — охладитель 4 — фнльтр 5 — вентилятор розжига 6 — смеситель 7 — выхлопной коллектор 8а— <a href="/info/77017">центробежный нагнетатель</a> 56 — <a href="/info/884">газовая турбина</a> 9 и 10—рукоятки для регулирования качества и количества газовоздушной смеси //—пружины крышки загрузочного люка газогенератора /2 —бачок для конденсата 13 — отверстие для <a href="/info/603406">розжига газогенератора</a> 14—воздухопровод от нагнетателя к газогенератору 75 — газопроводы /5 — трубопровод для выхлопных газов 17—выхлоп 18 — воздухопровод к смесителю.
С л е с а р ь-т рубопроводчик 5-г о разряда. Установка, сборка, проверка и ремонт трубопроводов различных систем и давлений из труб 3— 6". Испытание водопроводной сети и арматуры, изготовление шаблонов средней сложности для гибки труб по чертежа . и по месту. Разметка и гибка труб любых диаметров в горячем состоянии, гибка сложных змеевиков и колен, разметка мест прокладки труб водонапорной, газовой и нефтяной сетей, монтаж по схе иам отдельных секций водопроводов, пайка и загибка свинцовых труб, установка радиаторов и стояков отопления, ремонт вентилей и задвижек кранов (прочистка, притирка, смена сальников и др.), ремонт паровых котлов центрального отопления с установкой кранов и манометров, проверка контрольных и водомерных колонок. Ремонт пожарных линий, газовых линии высокого давления, производство прочных и герметичных соединений трубопроводов высокого и низкого давлений, установка канализационных приборов под руководством трубопроводчиков высших разрядов, проводка труб высокого давления к компрессорам, прессам, турбинам, инструктаж слесарей-трубопроводчиков низших разрядов, пользование сложными чертежами и схемами, поверочным и мерительным инструментом.  [c.119]

Развитием последней конструкции являются применяемые за рубежом форсунки с U-образным факелом (рис. 5-27). По окружности головки форсунки размещены выходные сопла, обеспечивающие необходимый угол раскрытия. В основание сопел подводится пар. В отличие от всех предыдущих конструкций форсунка выдает отдельные хорошо различимые струи и в этом отноще-нии подобна газовой горелке. Давление пара перед форсункой должно составлять 10—12 ат. Форсунки этого типа выпускают на производительность до 2 500 кг/ч. Очевидно, что, увеличивая число сопел, можно дополнительно поднять мощность форсунки без ухудшения тонкости распыливания. С форсунками описанного типа по данным [Л. 5-8] работает подавляющее число котлов, сжигающих мазут с малыми избытками воздуха. Расход пара на распыливание составляет 0,75—1% от производительности котла [Л. 5-10]. При использовании пара из отборов турбины это эквивалентно 0,4—0,5% топлива.  [c.152]

Для крупногабаритных изделий типа тонкостенных внутренних цилиндров и экранов газовых турбин, цилиндров низкого давления паровых турбин и других подобных узлов применение подогрева при сварке значительно усложняет работу. В этих случаях стараются в качестве материала конструкции подбирать стали, малочувствительные к закалке при сварке (малоуглеродистые и аустенитные), и сварку производить без подогрева. При необходимости использования 12-процентных хромистых сталей для внутренних экранов газовых турбин выбирают обычно сталь марки 0X13, имеющую содержание углерода менее 0,12% и не закаливающуюся при сварке. Для выхлопных частей цилиндров газовых турбин, работающих при температурах 450—500°, также обычно выбирают сталь марки 12МХ, которую в малых толщинах можно сваривать без подогрева.  [c.88]

Из формулы (3-22) видно, что при впрыске воды в газовый тракт увеличивается мощность установки, отнесенная к расходу воздуха. Это увеличение обусловлено как ростом общего расхода через турбину, так и увеличением теплоперепада 1гт в связи с большей удельной теплоемкостью потока. Увеличение мощноети проектируемой установки при данных размерах компрессора и степени повышения давления определяется из соотношения  [c.78]

Схемы электростанций высокого давления с двухвальными турбогенераторами. Электростанция высокого давления, схема которой показана на фиг. 142а, имеет двухзальный турбоагрегат с вторичным газовым перегревом и пятью регенеративными отборами пара давлением 37,2 26,9 5,5 2,6 0,6 ат.а. Первый отбор—из турбины высокого давления, второй—из перепуска между турбинами высокого и низкого давления, до вторичного перегрева остальные  [c.195]

В этих уравнениях — расход воздуха — расход продуктов сгорания /г. т и 7к УД - ьный расход тепла, затраченного на работу газовой турбины и возвращенного сжатым воздухом компрессора [первый и второй члены в фигурных скобках уравнения (8)1 а и a — коэффициенты избытка воздуха в уходящих газах и перед соответствующими газовыми турбинами L — теоретически необходимое для сжигания 1 кг топлива количество воздуха Ср и — теплоемкости газов и воздуха при постоянном давлении и средней температуре процесса — температура газа перед турбинами Гз и — температура воздуха перед компрессором и за компрессором е — степень повышения давления воздуха у — коэффициент потери давления в газовоздушном тракте ПГУ т)г. т и т) — изоэнтропные к. п. д. компрессоров и турбин Пу — коэффициент, учитывающий потери тепла с утечками газов и воздуха —показатель политропы сжатия воздуха — показатель политропы расширения газа.  [c.28]


Смотреть страницы где упоминается термин Турбины газовые и давления : [c.83]    [c.309]    [c.225]    [c.30]    [c.44]    [c.292]    [c.301]    [c.5]    [c.73]    [c.189]   
Технический справочник железнодорожника Том 2 (1951) -- [ c.371 ]



ПОИСК



Д давление для турбин АЭС

Давление за турбиной

Турбина газовая

Турбины Газовые турбины

Турбины газовые



© 2025 Mash-xxl.info Реклама на сайте