Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Турбина в воздухе

Охлажденная вода нужна на тепловых электрических станциях для конденсаторов турбин, в компрессорных станциях для охлаждения воздуха и т. д.  [c.103]

При высокой температуре в воздухе, азоте или водороде. Окисление на. воздухе протекает при температурах выше 450 С с образованием оксидов титана и нитридов. Температура воспламенения падает с повышением давления воздуха, что иногда приводит к локализованному выгоранию изготовленных из титанового сплава лопаток компрессоров газовых турбин [42]. Гидрид титана легко образуется при температурах выше 250 °С, а при более низких температурах — при катодном выделении водорода. Абсорбция кислорода, азота или водорода при повышенных температурах приводит к охрупчиванию металла.  [c.378]


Для увеличения силы тяги нужно увеличивать либо массу поступающего воздуха Но. либо скорость с, с которой он вылетает, либо и то и другое вместе. Скорость с определяется тем, насколько расширяется воздух в камере, т. е. какая температура поддерживается в камере. Для увеличения количества воздуха, поступающего в дви-гатель, применяется компрессор, расположенный у входного отверстия двигателя и приводимый во вращение турбиной, помещенной у выходного отверстия турбину вращает вылетающая из двигателя струя газа. Такие воздушно-реактивные двигатели получили название турбореактивных. Турбореактивный двигатель может создать силу тяги и при скорости самолета v = О (т. е. на стоянке), в то время как воздушно-реактивный двигатель без турбины в этом случае тяги не создает (так как воздух в него не поступает). На самолетах, снабженных воздуш-  [c.576]

На рис. 7.11 представлена /—S-диаграмма, построенная для 1 моль воздуха. Для расчетов эта диаграмма используется следующим образом. Пусть известно, что в турбину поступает воздух с давлением pi и температурой Тй на диаграмме на пересечении изобары pi и изотермы Ti находим начальное состояние газа в точке 1 и на ординате определяем начальную энтальпию 1 моль воздуха 1 . В турбине происходит, теоретически, адиабатное расширение до за-  [c.91]

На рис. 15.10 показан разрез турбинного пневмодвигателя, встроенного в рабочее колесо осевого вентилятора местного проветривания. На ободе ротора 1 вентилятора насажены рабочие лопатки 2 турбины. Сжатый воздух, подводимый к суживающему соплу 3, расширяется и выходит из него с большой скоростью. Струя воздуха, воздействуя на рабочие лопатки, вызывает вращение ротора 1.  [c.263]

Как показано на рис. 10.6, атмосферный воздух сжимается в компрессоре 1 до давления 0,8—3,0 МПа. Затем воздух посту-.пает в камеру сгорания 2, куда подается жидкое или газообразное топливо В. Топливо сгорает практически при постоянном давлении, температура в активной зоне камеры сгорания, обеспечивающая полный и достаточно быстрый процесс окисления топлива, составляет 1800—2300 К, тогда как температура продуктов сгорания (газов) перед турбиной должна быть значительно ниже, исходя из прочности лопаток турбины. Температура перед турбиной в современных ГТУ может быть 1100— 1500 К. Для снижения температуры газов, выходящих из камеры сгорания, часть воздуха, подаваемого компрессором, проходит, минуя активную зону камеры сгорания, и, перемешиваясь с высокотемпературными продуктами сгорания, обеспечивает снижение температуры общего потока продуктов сгорания перед турбиной до заданного значения. Продукты сгорания поступают в турбину 3, где при их расширении кинетическая энергия преобразуется в работу на лопатках турбины, соединенных с валом. Вал установки 4 соединяет турбину, компрессор и полезную нагрузку 5, например электрогенератор или нагнетатель транспортируемого природного газа.  [c.146]

Определить эксергетический к. п. д. регенеративного теплообменника газовой турбины, в котором воздух нагревается от Тй = 400 К до Т = 535 К, а выхлопные газы охлаждаются от Т г = 615 К до Т г = 480 К. Для газов и воздуха принять теплоемкость Ср = 1,005 кДж/(кг К). Температура окружаюш,ей среды Т = 275 К.  [c.152]


Основными проблемами для технической термодинамики традиционно считают изучение закономерностей превращения теплоты в работу. Типичный способ такого превращения включает два этапа подвод теплоты к рабочему телу с целью увеличения его внутренней энергии и расширение рабочего тела (чаще всего адиабатное) с целью получения работы. Поскольку превращение теплоты в работу осуществляется непрерывно (циклически), имеются и другие этапы, которые подробно рассмотрены в гл. 8. Расширение рабочего тела (газа или пара) часто осуществляется при истечении из сопла — канала, в котором происходит увеличение скорости потока. Высокоскоростной поток газа взаимодействует затем с лопатками турбины, в результате чего от потока отводится техническая работа. Так работают паровые и газовые турбины. Кинетическая энергия выходящего из сопла потока может использоваться и для других целей, например для создания направленного движения воздуха в отапливаемой или вентилируемой зоне, для дробления воды или жидкого топлива в пневматических форсунках, для создания горючей смеси на  [c.174]

Газотурбинная установка с подводом теплоты при постоянном давлении работает по следующей схеме (рис. 8.6,а). Атмосферный воздух всасывается компрессором 1 и адиабатно сжимается (линия 1—2, рис. 8.6,6), а затем поступает через регенератор 5 в камеру сгорания 3. В регенераторе воздух подогревается за счет теплоты газов, выходящих из турбины. В камеру сгорания топливный насос 4 подает топливо, которое, сго-  [c.201]

Турбореактивный двигатель (рис. 6.2) устанавливают на самолетах с околозвуковыми скоростями полета (при высокой начальной температуре газа перед турбиной скорость полета может увеличиваться до М > 2). Параметры рабочего тела (воздуха и продуктов сгорания топлива в воздухе) - давление р, температура Т и скорость w — вдоль газовоздушного тракта ТРД изменяются так, как показано в нижней части рис. 6.2. На взлете воздух из внешней среды засасывается через воздухозаборник I. Вследствие потерь в нем давление перед компрессором 2 становится несколько ниже давления внешней среды. В полете с большими скоростями воздух подвергается динамическому сжатию в свободной струе и сверхзвуковом диффузоре, затем сжимается в компрессоре, скорость его несколько уменьшается, а температура возрастает. За камерой сгорания 3 при определенном коэффициенте избытка воздуха температура Т продуктов сгорания меньше температуры пламени Тпл и имеет значение, при котором обеспечивается надежная работа турбины ГТД. Давление р продуктов сгорания в камере несколько падает, скорость  [c.256]

На рис. 32-12 показана принципиальная тепловая схема парогазовой установки со сбросом уходящих продуктов сгорания топлива из газовой турбины в топки обычных котельных агрегатов с видоизмененной хвостовой частью. Топливо и воздух сжимаются соответственно в компрессорах 7 и 2 и направляются в камеру сгорания 3, в которой происходит сжигание топлива при повышенном коэффициенте избытка воздуха, обеспечивающем после камеры сгорания 3 расчетную температуру газов перед турбиной 4 ( 750°С).  [c.381]

Регулирование изменением скорости вращения. Вследствие больших мощностей, необходимых для привода крупных воздухо-газодувок, их обычно непосредственно соединяют с паровыми или газовыми турбинами. Паровые или газовые турбины в этом случае  [c.410]

Укупорка уплотнений газовых турбин. Протечки даже небольшого количества продуктов сгорания из турбин в машинное отделение недопустимы. Поэтому выходные части вала обычно уплотняют воздухом. В камеру переднего концевого уплотнения воздух  [c.57]

Для сжатия воздуха перед подачей его в цилиндр двигателя применяют нагнетатели, приводимые в действие от вала двигателя или вспомогательного теплового двигателя (газовой турбины), в котором рабочим телом служат продукты сгорания, выходящие из цилиндра двигателя.  [c.166]

Рабочий процесс в ГТУ происходит следующим образом. Воздух из окружающей среды через фильтры засасывается воздушным компрессором 2, адиабатно сжимается до требуемого давления и подается в камеру сгорания 5. В нее же подается топливо. Продукты сгорания при расчетной температуре, которая регулируется количеством воздуха, подаваемого в камеру сгорания, поступают к соплам газовой турбины. В них энергия в процессе расширения преобразуется в кинетическую энергию истекающих из сопел струй. Струи попадают на лопатки рабочего колеса турбины, где кинетическая энергия газа преобразуется в механическую (во вращение вала).  [c.207]

Для направления потока газа из компрессорной турбины в силовую предназначен проставок 17, который заполнен изоляционным материалом. Проставок охлаждается воздухом, подаваемым от Осевого компрессора по трубопроводу 18. Из проставка воздух подается к дискам турбины и охлаждает венцы диска и хвосты рабочих лопаток.  [c.230]

К третьей обойме со стороны выхода привинчивают сварнолитой диффузор. В паз корпуса диффузора устанавливают обойму уплотнения с тремя подвижными кольцами, сводящими к минимуму утечки воздуха из компрессора (за одиннадцатую ступень) в турбину. В паз обоймы уплотнения со стороны камеры сгорания устанавливают защитный тепловой экран ротора ТВД.  [c.33]


Турбину охлаждают воздухом от компрессора, чем обеспечивают понижение температуры статорных деталей корпуса турбины, дисков и хвостов лопаток обеих турбин, а также создание воздушных затворов в уплотнениях.  [c.55]

Другая часть потока воздуха из главного трубопровода через нормально открытый клапан поступает к двум ограничительным шайбам диаметром 14,6 и 14,1 мм на 54 сопла. В соплах предусматриваются форсунки, образующие 54 высокоскоростные струи, которые увлекают воздух из пространства, окружающего корпус турбины, в 54 отверстия, просверленных в стенках корпуса турбины. Стенка корпуса охлаждается, и образующийся при этом поток воздуха охлаждает шесть радиальных опор, поддерживающих наружную стенку коф>пуса на выходе турбины. Охлаждающий воздух касается несущей внутренней стенки корпуса турбины на вы-  [c.56]

В некоторых местах воздух для охлаждения отбирается из промежуточного корпуса. Через прорези в бандаже направляющего аппарата охлаждающий воздух подается из промежуточного корпуса на лопатки направляющего аппарата первой ступени. Через отверстия между держателями, которые передают осевое усилие направляющего аппарата первой ступени на корпус турбины, охлаждающий воздух выходит из промежуточного корпуса в полое пространство между наружной стенкой корпуса турбины и наружной стенкой канала рабочего газа между ступенями турбины. Таким образом, горячий газ удаляется из этого пространства.  [c.57]

В газотурбинных ГПА системы охлаждения предназначены главным образом для охлаждения масла смазки подшипников, предельная температура которых обычно не превышает 348 К. Основные параметры системы охлаждения зависят от количества тепла, отбираемого от масла, а это определяет подачу циркуляционных насосов, выбор диаметра трубопроводов и размеры теплообменников (масло—вода, масло—воздух, вода—воздух). Требования, предъявляемые к теплообменникам, заключаются в том чтобы в жаркое время года температура масла на входе в турбину после охлаждения его в теплообменнике не превышала допустимой для данного типа турбины. В зимнее время, особенно в условиях Севера, масло может охлаждаться ниже допустимого предела работа турбины будет при этом неустойчивой, так как доступ масла к трущимся поверхностям затруднен.  [c.126]

Одна лошадиная сила газовой турбины на земле весит всего 0,1 килограмма. В воздухе же в 10 километрах над землей, лошадиная сила газовой турбины может весить в десять раз меньше, чем дизеля  [c.66]

Частоты определялись с точностью до 2,5—3% по отношению к вычисленным по теоретическим формулам. Так были определены амплитуда вибрации системы ротора ГТД при резонансе — 62 мк, что соответствует максимальному прогибу вала ротора при резонансе 31 м.к разница с теоретически определенным прогибом составляла менее 3% собственная частота системы ротора в воздухе получилась равной 137,5 гщ, т. е. 2850 кол мин собственная частота ротора компрессора в воздухе — 264,37 гц или 15 862 кол1мин собственная частота ротора газовой турбины в воздухе 1005,1 гц или 60 035 кол мин.  [c.492]

Эффективным средством является охлаждение роторов. Этот прием щироко применяют в газовых турбинах. Охлаждаюший воздух, отб мый из первых ступеней компрессора, омывает рабочие диски, после чего вводится в общий газовый тракт турбины. Охлаждение роторов паровых турбин затруднительнее. ,  [c.387]

Таким образом, использование вихревых энергоразделителей целесообразно при решении специальных задач теплообмена в энергетических установках и ГТД охлаждение статорных лопаток турбины, в системе подвода сжатого воздуха в турбину высокого давления, для нагрева лопатки направляющего аппарата с целью предупреждения обледенения при работе в условиях большой влажности воздуха и низкой температуры.  [c.383]

На рис. 183, а дан разрез радиально-осевой турбины в сварной спирали Мингечаурской ГЭС, где 1 — подвод воздуха 2 — подача воды к направляющему подшипнику 3 — клапан срыва вакуума 4 — дренажный насос 5 — магнитное струйное реле  [c.284]

Рассчитать распределение локальных значений коэффициентов теплоотдачи и плотности теплового потока на выпуклой и вогнутой поверхности лопатки газовой j турбины в предположении, что турбулентный погранич- в ный слой развивается от пе- /Г редней кромки лопатки. Рас- 13 четная схема лопатки представлена на рис. 16.1. Рабо- Рис. 16.1 чее тело — воздух. Параметры  [c.247]

Т1 - ТЕМПЕРАТУРА ВОЗДУХА НА ВХОДЕ В КОМПРЕСС В ГРАД. К / ТЗ - ТЕМПЕРАТУРА ПРОДУКТОВ СГОРАН Й ИЯ НА ВЫХОДЕ /24Х ИЗ ТУРБИНЫ В ГРАД. К / Р1 - Д, АВЛЕНИЕ ВОЗДУХА НА ВХОДЕ В КОМПРЕССОР В МПА /  [c.209]

Выберем восемь регулируемых параметров и восемь характеристик ГТУ. Регулируемые параметры (левая половина рис. 10.13) давление и температура окружающей среды (ри tl) температура газа перед турбинами = расход воздуха через ГТУ О] внутренние относительные КПД турбин т]ог и компрессора ро давление р2 в КСВД давление р в КСНД.  [c.263]

Турборасширительные машины представляют собой газовые турбины, в которых энергия газа при расширении преобразуется в работу одновременно с понижением температуры газа. Они применяются для охлаждения газов в технике сжижения и разделения газов (турбоде-тандеры), в технике кондиционирования воздуха (турбохолодильники) и в воздушно-холодильных установках.  [c.307]

Термодинамические и конструктивные принципы, заложенные в установку ГТ-100-750, позволяют совершенствовать ее двумя путями увеличением числа промежуточных охлаждений и подогревов и повышением начальной температуры газа между обеими турбинами без изменения тепловой схемы. В результате увеличения числа промежуточных охлаждений и подогревов можно при умеренных температурах газа (1050—1100 К) обеспечить КПД установки, равный 38 — 40%. Такой же КПД можно получить в ГТУ более простой схемы, но с более высоким значением Т. Так, в установке АОТЗ-100А (Япония) мощностью 122 МВт, по схеме и компоновке близкой к установке ГТ-100-750, на валу низкого давления кроме ТНД расположена турбина среднего давления (ТСД), и подогрев газа осуществляется между ТСД и ТНД. На валу высокого давления находятся КВД и ТВД. Промежуточное охлаждение воздуха между КНД и КВД происходит путем впрыскивания воды в воздух в воздухоохладителе испарительного типа.  [c.197]

Если в частях контура, находящихся под избыточным давлением, происходят утечки пара и воды, то в тракзах и агрегатах, находящихся под разрежением, создаваемым конденсатором (последние ступени турбины, отборы и подогреватели), происходит присос воздуха в питательную воду. Содержащиеся в воздухе кислород и углекислота являются агрессивными примесями, приводящими к коррозии металла. Правила технической эксплуатации ограничивают содержание кислорода в питательной воде до 20 мг/кг при давлении  [c.338]

При достаточно длинной трубе (газохода), соединяющей камеру сгорания с сопловым аппаратом, в массе газа можно осуществить автоколебательный процесс. Использование этого процесса для периодического заполнения объема воздуха и для сжатия топливновоздушной смеси позволяет отказаться от компрессора. Схема подобного пульсирующего двигателя, который использовался на немецких самолетах-снарядах V-1, изображена на рис. 6.16, в. Воздух поступает в камеру сгорания при атмосферном давлении через автоматически действующие пластинчатые клапаны, которые открываются при возникновении разрежения в камере. Истечение газов продолжается в силу инерщ[и их массы в длинной трубе 6 и после достижения в камере атмосферного давления, что и создает разрежение. В газах, выходящих из трубы, под действием атмосферного давления возникает волна повышенного давления, которая перемещается в сторону камеры сгорания и сжимает свежий заряд. Частота процесса сгорания соответствует частоте колебания газа в трубе. Подобный двигатель может использоваться в качестве генератора газа для турбины для уменьшения длины двигателя трубу навивают вокруг него.  [c.209]


На рис. 7.18 изображена кольцевая камера сгорания турбовинтового двигателя, мощность которого = 2750 кВт. Внутренний кожух камеры служит тоннелем вала турбины. В передней стенке пламенной трубы расположено 10 конических головок (диффузоров) с лопаточными завихрителями. в центре которых установлены односопловые центробежные форсунки. Для лучшего смешения вторичного воздуха с продуктами сгорания в задней части пламенной трубы расположены сопла-смесители.  [c.262]

Формула (215) показывает, что скорость звука в газе, т. е. скорость распространения упругих деформаций, зависит от при-)оды и состояния газа и является прямой функцией температуры. 1роцессы, связанные с большей скоростью движения газов (паров) по каналам, в которых происходит превращение потенциальной энергии сжатых газов в кинетическую энергию, широко применяются в современной технике в газовых и паровых турбинах, соплах реактивных и ракетных двигателей и др. Большими считаются скорости, близкие, равные или превышающие скорости звука в газе. Например, скорость звука в воздухе при 15° С составляет около 340 м/с. При движении с такими скоростями в потоке газа происходят большие изменения давления, температуры и плотности.  [c.67]

В турбинных двигателях единичная мощность зависит от различных факторов для паровых и газовых турбин. Водяной пар, обладая большой газовой постоянной [(Лн,о = 196 кДж/(кг-К) против i 02+Hj0 = 100—120 кДж/(кг-К)], большей теплоемкостью и лучшими теплопередаточпымп свойствами, чем продукты сгорания горючего в воздухе, является и более выгодным РТ.  [c.83]

На рис. 31 показана схема трубопроводов системы охлаждающей воды газовой турбины. В основную раму вмонтированы два маслоохладителя. Их можно поочередно включать и выключать при помощи переключающего вентиля. Вода циркуляционными насосами подается в охладитель с оребренными трубами. Снаружи трубы обдуваются воздухом, проталкиваемым через межреберное пространство двумя вентиляторами в направлении снизу вверх. Два электрических центробежных насоса охлаждающей воды, один из которых резервный, подают ее к масло- и водоохладите-лям.  [c.128]

Изучались алюминиевые, титановые, никелевые сплавы и нержавеющие стали. Отливки из алюминиевого сплава А-356 (стержни размерами 380x51 X Хб мм) закаливали в воде от температуры 811 К (выдержка 10 ч) и подвергали старению 16 ч при комнатной температуре и при 427 К 4 ч. Сплавы 6061-Т6 и 7075-Т6 были исследованы в виде листов толщиной 6 мм. Листы из нержавеющей стали 347 испытывали в го-чекатаном состоянии с последующим отжигом и травлением. Нержавеющая сталь 410 закаливалась в масле от температуры 1255 К и отпускалась при 839 К. Нержавеющую сталь А-286 в виде горячекатаных и травленых плит закаливали на воздухе от 1255 К (выдержка 1,5 ч) и старили при 1005 К в течение 16 ч. Титановый сплав имел очень низкое содержание примесей. Его испытывали после горячей прокатки н отжига. Образцы сплава Hastelloy С вырезали из листа толщиной 6 мм и испытывали после обработки на твердый раствор в соответствии с AMS-5530-С. Холоднокатаный и травленый лист толщиной 6 мм из сплава In onel Х-750 был состарен при 977 К в течение 20 ч с последующим охлаждением на воздухе. Образцы из сплава D-979 вырезали из штамповок для дисков турбины. В табл. 1 приведены механические свойства этих материалов при комнатной температуре.  [c.93]

Ингибитор ИФХАН-100, также являющийся производным аминов, получается на основе ИФХАН-1, но в отличие от него неприятным запахом не обладает. Молекулярная масса его 172. Эти ингибиторы обладают большой универсальностью, защищая от атмосферной коррозии как черные, так и цветные металлы. Ингибитор ИФХАН-1 не оказывает вредного действия на свойства большинства электроизоляционных материалов, лакокрасочных покрытий, резину и керамику. Срок защитного действия для стали, меди в зависимости от герметичности упаковки 5—10 лет. При консервации энергооборудования (в том числе турбин) применяется продувка ингибированным подогретым воздухом [27]. Для защиты от атмосферной коррозии концентрация ингибитора в воздухе внутри защищаемого оборудования должна составлять 10 —10 г/л. При использовании силикагеля, пропитанного ингибитором (линасиля), концентрация ингибитора в нем обычно равняется 30—40 %. Для консервации 1 м объема требуется не менее 15 г линасиля.  [c.191]

Гидравлические турбины самых различных конструкций и систем делятся на две большие группы активные и реактивные. Примером активной турбины может служить ковшовая турбина, рабочее колесо которой может вращаться прямо в воздухе. В его изопнутые лопасти с силой ударяет струя воды, вылетающая с большой скоростью из специальных сопел. Скорость воде сообщается высоким давлением ее перед входом в сопла, давлением, вызываемым подпором воды. Вылетавшая из сопла струя воды движется в воздухе и, значит, имеет атмосферное давление. Достигнув лопастей, она скользит по их углублениям, изменяя направление движения. При этом вода, нажимая на стенки ковшей, отдает свою энергию рабочему колесу турбины, заставляет его вращаться.  [c.131]


Смотреть страницы где упоминается термин Турбина в воздухе : [c.215]    [c.79]    [c.442]    [c.549]    [c.305]    [c.55]    [c.337]    [c.383]    [c.460]    [c.147]   
Смотреть главы в:

Машины энергии  -> Турбина в воздухе



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте