Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Движение планет точки

Ньютон мог бы добавить к этой однообразности движения Планет то, что все они движутся почти в одной и той же плоскости. Пространство, в которое заключены все их орбиты, составляет приблизительно только 17-ю часть поверхности сферы. Если, следовательно, примем орбиту Земли за плоскость, к которой отнесем все другие, и рассмотрим ее положение как результат случайности, то вероятность того, что 5 других орбит не заключены в этой Зоне, будет равна отношению 17 — 1 к 1, иначе говоря, отношению 1419856 к 1.  [c.43]


Должен сразу заметить, что проблема имитации движения и поведения человека и, более того, воспроизведения некоторых его высших психических функций далеко не нова. Давайте вспомним некоторые исторические примеры. В Афинах, в Национальном музее хранятся остатки счетной машины на которой еще в I веке до новой эры рассчитывали пути движения планет, то есть воспроизводили те интеллектуальные операции, которы-  [c.144]

Так как ЬЕз известна из теории движения планет, то это уравнение будет давать бу. Далее найдем  [c.569]

Кеплер, обрабатывая наблюдения за движением планет Солнечной системы, обратил внимание на то, что для них имеют место следующие три закона, впоследствии названные законами Кеплера.  [c.90]

Система материальных точек. Совокупность (множество) материальных точек (частиц) носит название системы материальных точек (частиц). Такую систему мы можем образовать из любого множества материальных точек, выбранных нами совершенно произвольно поэтому всякая данная точка может или принадлежать к рассматриваемой системе, или не принадлежать. Если система материальных точек обладает тем свойством, что движение каждой точки зависит от положения и движения остальных точек системы, то такая система называется механической системой материальных точек. Следовательно, для того чтобы система была механической, необходимо, чтобы точки системы были каким-либо образом связаны между собой при этом между точками системы будут действовать силы взаимодействия (как, например, между планетами солнечной системы, если их рассматривать как материальные точки). Любое материальное тело (твердое, жидкое или газообразное) представляет собой механическую систему, состоящую из очень большого числа материальных частиц (точек), связанных между собой силами интрамолекулярного действия, которые налагают определенные ограничения на взаимные расстояния между частицами сообразно природе тела. Всякая совокупность мате-  [c.174]

Заметим, наконец, что когда в поле тяготения тела 5 (Солнца) движется одновременно несколько тел Я, (планет), то точное решение задачи требует учета не только сил притяжения между телами и телом S, но и взаимного притяжения тел Pj. Точное решение возникающей отсюда задачи и тел, т. е. задача о движении п материальных точек, взаимно притягивающихся по закону Ньютона, связано с большими математическими трудностями, и его не удалось пока найти с помощью известных в анализе функций даже для случая трех тел.  [c.396]


Момент количества движения материальной точки относительно центра. Во многих задачах динамики, например в небесной механике при изучении движения планет или комет вокруг Солнца, приходится учитывать не только количество движения данной точки, его величину и направление, но и ее положение по отношению к центру (к Солнцу).  [c.313]

Чем меньше размеры тела, тем меньше, вообще говоря, отличаются друг от друга движения его материальных частиц. Абстрагируясь от различия в движениях частиц тела, можно представить себе материальное тело сколь угодно малым, принять его за точку. Материальная точка не имеет размеров, но отличается от геометрической точки тем, что обладает некоторой массой , равной массе того тела, которое она изображает, и способна, как и тело, передвигаться в пространстве. Так, например, если мы примем за материальную точку какую-нибудь планету, то будем считать, что материальная точка обладает массой этой планеты. Если же мы будем изучать движение артиллерийского снаряда и примем его за материальную точку, то такая точка имеет массу, равную массе снаряда.  [c.6]

Так, например, закон сохранения механической энергии справедлив при движении планет в поле ньютонианского тяготения чем ближе к Солнцу находится планета на своей эллиптической орбите, тем меньше ее потенциальная энергия и соответственно больше кинетическая (см. 36 — закон площадей). Скорость периодических комет, движущихся по очень вытянутым эллипсам, в перигелии во много раз превышает их скорость в афелии, но в любой точке орбиты сумма кинетической и потенциальной энергий кометы есть для этой кометы величина постоянная.  [c.242]

Для ответа на этот вопрос прел<де всего необходимо установить, какие силы действуют на планету А. В данном случае это только сила тяготения F со стороны Солнца. Так как при движении планеты направление этой силы все время проходит через центр Солнца, то последний и является той точкой, относительно которой момент силы F все время равен нулю, и момент импульса планеты будет оставаться постоянным. Импульс же р планеты при этом будет меняться.  [c.134]

При проведении предыдущих вычислений было принято, что Солнце неподвижно, т, е. мы рассматривали так называемую ограниченную задачу двух тел. Если принять во внимание движение Солнца, вызванное притяжением планеты, то оказывается, что третий закон Кеплера точен лишь тогда, когда отношение массы каждой планеты к массе Солнца равно нулю. В действительности в третий закон Кеплера нужно вводить поправки, зависящие от отношения массы каждой из планет к массе Солнца. Поэтому и постоянные Гаусса р различны для разных планет. Здесь мы не будем изучать этот вопрос.  [c.397]

Теория движения материальных систем и точек с переменной массой была разработана И. В. Мещерским между 1893 и 1904 гг. ). Впервые теория И. В. Мещерского была применена к некоторым задачам небесной механики. В частности, были проведены исследования влияния на движение планет увеличения их массы, количества движения и кинетического момента, вызванного падением метеоритов на их поверхность.  [c.482]

В течение первой половины девятнадцатого века, по мере повышения точности наблюдений и совершенствования теории, было установлено, что планета Уран движется не в полном согласии с законом всемирного тяготения, а также законом сохранения момента импульса. Странным образом эта планета то ускоряет, то замедляет свое движение на малую, но вполне заметную величину. Такое поведение планеты не могло быть объяснено на основе известных свойств Солнечной системы и законов физики. Наконец, в 1846 г. Леверье и Адамс, независимо друг от друга, пришли к выводу, что наблюдаемое аномальное движение Урана может быть полностью объяснено, если постулировать существование гипотетической новой планеты, обладающей определенной массой и определенной орбитой, внешней по отношению к орбите Урана ). Они решили соответствующие уравнения, с помощью которых определялось положение этой неизвестной планеты, и после всего лишь получасового поиска Галле была обнаружена новая планета,  [c.178]


Рассмотрим теперь задачу Кеплера требуется найти орбиты двух тел, силы взаимодействия между которыми определяются законом обратных квадратов. Классическим примером объекта для этой задачи является движение планет Солнечной системы. Другие важные примеры — это движение спутников вокруг планет и относительное движение компонентов двойной звезды. Уравнение движения F = М для i-й материальной точки из системы N таких точек имеет следующий вид  [c.280]

Давайте посмотрим теперь, как вычислить движение Нептуна, Юпитера, Урана и остальных планет. Можно ли сделать подобные расчеты для большого числа планет, учитывая к тому же и движение Солнца Разумеется можно. Найдем сначала силу, действующую на каждую планету, например на ту, которую мы Обозначили номером г и координаты которой xi, yi и Zi (i = 1 может означать Солнце, г = 2 — Меркурий, ( = 3 — Венеру и т. д.). Наша задача — найти координаты всех планет. По закону тяготения х-компонента силы, действующая на г-ю планету со стороны планеты номер / с координатами Xi, У/ и Z/, будет равна — — Если же учесть силы со стороны всех планет, то получим следующую систему уравнений  [c.310]

Если размеры тел малы по сравнению с описываемыми траекториями, то их также можно рассматривать как точки, например движение планет в солнечной системе.  [c.144]

Но присутствие или отсутствие сил инерции в системе отсчета, движущейся с ускоре-нием относительно коперниковой, есть свойство локальное. Выбирая те или иные точки пространства, мы обнаружим, что в одних точках, лежащих в какой-либо одной области пространства, в данной системе отсчета присутствуют силы инерции, а в точках, лежащих в какой-либо другой области пространства, в той же системе отсчета силы инерции практически отсутствуют. Чтобы выяснить, почему это мон<ет происходить, вернемся к рассмотрению движения планет в системе 3, сопоставив результат, полученный для движения Нептуна, с картиной движения Марса. По-прежнему будем рассматривать случай, когда Солнце, Земля и Марс лежат на одной прямой (рис. 154), причем обе планеты находятся по одну сторону от Солнца (так называемое противостояние Марса). Пользуясь теми же методами радиолокации, мы обнаружим, что в системе 3 ускорение Марса примерно вдвое меньше, чем ускорение Нептуна. Сопоставляя расстояния планет от Солнца (Марс от Солнца находится на расстоянии в 1,5 раза большем, чем Земля) и сравнивая ускорения Нептуна и Марса с ускорением Земли а, мы найдем, что ускорение, сообщаемое Марсу Солнцем, составляет а/1,5 0,4а, в то время как ускорение, сообщаемое Солнцем Нептуну, составляет а/900. Вследствие этого, хотя силы инерции, действующие в системе 3, сообщают Нептуну и Марсу одинаковые направленные от Солнца ускорения, равные —а, НО слабая сила притяжения Солнца, действующая на далекий Нептун, уменьшает результирующее ускорение Нептуна лишь на доли процента, а большая сила притяжения Солнца, действующая на близкий Марс, уменьшает результирующее ускорение Марса почти вдвое.  [c.337]

Эллиптическое движение точки М определяется в пространстве шестью постоянными. Проведем через центр сил О прямоугольные неподвижные оси х, у, z (рис. 90). Плоскость орбиты пересечет плоскость ху по прямой NN, которую называют линией узлов. Та из точек N орбиты, в которой 2 при движении планеты от отрицательных значений переходит к положительным, называется восходящим узлом. Другая точка N называется нисходящим узлом.  [c.111]

Поэтому можно считать, что на планету действует сила притяжения к неподвижной точке О. В этом и заключается оправдание рассматриваемой в динамике точки задачи о движении планет как задачи о движении точки, притягиваемой неподвижным полюсом.  [c.146]

К задаче о движении тел в центральном поле тяготения относится, например, изучение движения планет солнечной системы. В этом случае Солнце и планеты можно принимать за материальные точки. Рассматривая движение какой-либо планеты, будем считать, что она движется только под действием сил тяготения к Солнцу, пренебрегая при этом влиянием других планет. Это допустимо потому, что масса Солнца почти в 750 раз превышает массу всех вместе взятых планет. Кроме того, можно также пренебречь и силой, с которой рассматриваемая планета притягивает к себе Солнце, потому что вызываемое ею ускорение Солнца мало. При этих упрощениях задача, по существу, сводится к изучению движения материальной точки (планеты) в поле тяготения, созданном другой неподвижной материальной точкой (Солнцем), т. е. к изучению движения тела, принимаемого за материальную точку в центральном силовом поле.  [c.115]

В качестве исходных данных ири расчете движения ракеты в новой системе отсчета принимают параметры ее движения в точке выхода из сферы действия предыдущей планеты или Земли. Эти же параметры, в свою очередь, однозначно определяются полной энергией ракеты.  [c.120]

Тело можно рассматривать как материальную точку, т. е. его можно представить геометрической точкой, в которой сосредоточена вся масса тела, в том случае, когда размеры тела не имеют значения в рассматриваемой задаче. Например, при изучении движения планет и спутников их считают материальными точками, так как размеры планет и спутников пренебрежимо малы по сравнению с размерами орбит. С другой стороны, изучая движение планеты (например, Земли) вокруг оси, ее уже нельзя считать материальной точкой. Тело можно считать материальной точкой во всех случаях, когда все его точки совершают тождественные движения.  [c.5]

Установив движение планет по эллипсам, он вынужден был отказаться от кинематики равномерных движений, заимствованных Коперником у Птолемея, и искать причины убыстрения (замедления) движений — ускорения . По Аристотелю же, во власти учения которого все еще находился Кеплер, неравномерные движения без поддержки сил должны прекратиться. В поисках их источника в реальном мире Кеплер поднимает божественный промысел выше Солнца, делая носителем движущих сил, гармонии и света животную силу Солнца (то есть на современном языке запас энергии, заключенной в нем), которое располагается у него в центре Вселенной, представляющей собой ограниченную сферу. Животная сила обеспечивает вращение Солнца вокруг собственной оси, в результате чего оно увлекает за собой планеты, распространяя вокруг себя силовые нити (почти силовые линии, которые введет через 200 лет Фарадей). Движущая сила Солнца, по Кеплеру, тождественна магнитным силам, распространяющимся в плоскости, а потому, как и последние, обратно пропорциональна расстоянию. Так объяснялось самодвижение планет вокруг Солнца по эллиптическим орбитам со скоростями, обратно пропорциональными расстоянию от него.  [c.54]


Второй случай будет подробно рассмотрен в теории движения планет займемся здесь первым случаем и рассмотрим сначала точку, притягиваемую точкой О (рис. 145) с силой, пропорциональной расстоянию  [c.331]

Спутники. Наблюдения показывают, что спутники в своих движениях вокруг планет следуют очень близко законам Кеплера. Отсюда вытекает, что каждая планета притягивает своих спутников с силой, пропорциональной их массе и обратно пропорциональной квадрату их расстояний до центра планеты. Притяжение планет действует также и на тела, лежащие на их поверхности. Оно, как мы видели в главе III, приводит к понятию о силе тяжести. С каждой планетой связан некоторый коэффициент притяжения X таким образом, что притяжение этой планетой точки массы /И1, помещенной  [c.339]

Зная, что сила, вызывающая движение планеты вокруг Солнца, зависит только от расстояния и такова, что она заставляет свою точку приложения описывать замкнутую кривую, каковы бы ни были начальные условия, если только скорость не превосходит некоторого предела., найти закон этой силы.  [c.347]

Пусть т и — массы планеты Р и ее спутника X (рис. 149). Силы Ф и Ф — действия Солнца и других планет на рассматриваемую планету и ее спутник — почти параллельны и пропорциональны массам, так как расстояние r от планеты до ее спутника очень мало по сравнению с расстояниями от этой же планеты до других тел солнечной системы. Поэтому если мы обозначим через X, У, 2 проекции сил притяжения этими другими телами единицы массы планеты, то уравнения движения планеты и ее спутника будут  [c.352]

Элементы эллиптического движения. Эллиптическое движение планеты определяется в пространстве шестью постоянными. Проведем через центр 5 Солнца (рис. 152) три оси Sy, с неизменными направлениями. В настоящее время обычно принимают за плоскость ху плоскость эклиптики на 1 января 1850 г., за положительные оси 5л и —прямые, направленные в точку весеннего равноденствия и в точку летнего солнцестояния той же эпохи, и за положительную ось Sz направление на северный полюс эклиптики.  [c.363]

Это — точка, которую пересекает планета, когда ее координата z переходит от отрицательных значений к положительным. Другой узел N является нисходящим. Для определения плоскости орбиты задают угол б = xSN, который считается положительным от Sx к Sy и называется долготой восходящего узла, и угол наклонения <р между плоскостью орбиты и плоскостью эклиптики этот угол измеряется углом между перпендикулярами в точке N к прямой SN, из которых один лежит в плоскости эклиптики и направлен в сторону движения Земли, т. е. от Sx к Sy, а другой лежит в плоскости орбиты и направлен в сторону движения планеты (или кометы). После того как плоскость орбиты установлена, надо определить положение и размеры эллипса. Пусть А — перигелий обозначим через ш сумму углов xSN и NSA, причем последний угол отсчитывается от SN в сторону движения угол ш называется долготой перигелия. Угол NSA равен ш — б. Этот угол определяет положение эллипса для определения размеров этого эллипса задают его большую полуось а и его эксцентриситет е. Наконец, для указания закона, по которому планета описывает свою  [c.363]

Таким образом, при движении под действием центральной силы точка движется по плоской кривой с постоянной секторной скоростью, т. е. так, что радиус-вектор точки в любые равные промежутки времени ометает равные пло-щади (закон площадей). Этот закон имеет место при движении планет или спутников и выражает собой один из законов Кеплера.  [c.207]

Тогда из уравнения (35) следует, что при этом ЛГо=соп51. Таким образом, если сумма моментов относительно данного центра всех приложенных к системе внешних сил равна нулю, то главный момент количеств движения системы относительно этого центра будет численно и по направлению постоянен. Приложение этого результата к случаю движения планеты было рассмотрено в 86.  [c.294]

Так, например, при исследовании поступательных движений планет солнечной системы их можно рассматривать как материальные точки, обладающие массами этих планет, но при изученш вращений планет вокруг их осей рассматривать их как точки нельзя.  [c.119]

Пример. Движение планеты происходит под действием силы притяжения ее к Солнцу, т. е. силы ценгральиой. Следовательно, это движение подчинено закону площадей. Траекторией планеты является эллипс, в одном из фокусов С которого находится Солнце (рис. 315). Найдем, как связаны между собой скорости планеты в перигелии Р (точке, ближайшей к Солнцу) и в афелии Л (точке, наиболее удаленной от Солнца). Согласно уравнению (16), имеем  [c.331]

Разумеется, закон площадей справедлив не только для движения планет под действием притяжения к Солнцу. Движение каждой материальной точки под действием всякой центральной силы происходит с постоянной секторной скоростью (а = onst).  [c.223]

Если в некоторых случаях движения отдельных точек тела одинаковы, или различиями этих движений можно пренебрегать, то вопрос об изучении движения тела можно привести точно или приближенно к изучению движения материальной точки. Например, изучая движения планет вокруг Солнца, можно иногда пренебрегать различиями движений отдельных точек планет относительно Солнца. Поэтому в первом приближении при изучении двил<ения планет можно рассматривать их как материальные точки. Отметим, что одно и то же тело в одних случаях можно рассматривать как материальную точку, а в других — следует принимать во внимание его размеры. Например, изучая движение Земли вокруг Солнца можно, как уже 07мечалось, рассматривать Землю как материальную точку. Однако, изучая движение искусственного спутника Земли, следует принимать во внимание размеры Земли и в некоторых случаях даже форму рельефа земной поверхности.  [c.17]

Но в отличие от движения по окружности р меняется от точки к точке. Если тангенциальное ускорение отсутствует, то полное ускорение направлено по нормали и движение происходит со скоростью, постоянной по величине, но переменной по направлению, — это криволинейное равномерное движение. Когда движение происходит по окружности, для равномерного движения необходимо, чтобы полное ускорение было всегда направлено по нормали к окружности, т. е. по радиусу. При этом ускорение всегда направлено в одну и ту же точку — к центру. Если же при движении по любой другой криволинейной траектории ускорение всегда направлено в одну и ту же точку, то оно уже не может везде оставаться нормальным к траектории (так как только для окружности нормаль все время направлена в одну и ту же точку). В некоторых частях траектории непременно будет существовать тангенциальная составляюп ая ускорения, и скорость не может оставаться постоянной по величине. Отсюда, например, видно, что движение планет по эллиптическим орбитам должно происходить с переменной по величине скоростью, так как ускорение планет всегда направлено к Солнцу.  [c.48]

В системе отсчета Птолемея движения планет выглядели столь сложно, что в течение многих веков астрономам не удавалось найти обише и наглядные законы движения планет. В системе отсчета, введенной Коперником, характер движения планет настолько упростился, что Кеилеру удалось (в начале XVII в.) в самом общем виде сформулировать законы движения всех планет солнечной системы. Так была продемонстрирована та существенная роль, которую может играть выбор систем отсчета, и то упрощение характера движений, которое надлежащим выбором системы отсчета может быть достигнуто. Все это говорило в пользу применения введенной Коперником системы отсчега для изучения законов движения небесных тел.  [c.64]


Отсюда следует, что к этому движению применим первый закон Кеплера относительная траектория является коническим сечением, имеющим фокус в точке 5 и описываемым по закону площадей. Так как речь идет о планете, то это коническое сечение является эллипсом, и если вычислить элементы этого эллипса, то, обозначив через а больщую полуось и через Т — период обращения, мы получим соотнощение, связывающее эти два элемента  [c.351]


Смотреть страницы где упоминается термин Движение планет точки : [c.395]    [c.7]    [c.323]    [c.6]    [c.223]    [c.145]    [c.308]    [c.21]    [c.47]    [c.327]    [c.19]   
Теоретическая механика Том 2 (1960) -- [ c.135 , c.174 , c.453 ]



ПОИСК



Движение планет

Лекция первая (Задача механики. Определение материальной точки. Скорость. Ускорение или ускоряющая сила. Движение тяжелой точки. Движение планеты вокруг Солнца. Правило параллелограмма сил. Дифференциальные уравнения задачи трех тел)

Планеты

Точка — Движение



© 2025 Mash-xxl.info Реклама на сайте