Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дефекты Влияние на механические

Данные о влиянии уменьшения концентрации точечных дефектов на механические свойства противоречивы и неоднозначны. На золоте и алюминии обнаружено повышение предела текучести на стадии возврата, которое объясняют образованием вакансионных скоплений, препятствующих движению дислокаций. Но остается неясным, сохраняется ли при этом неизменной сама дислокационная структура, оказывающая решающее влияние на механические свойства.  [c.303]


Устойчивость и вероятность образования дефектов типа цепочки вакансий и внедренных атомов очень мала, и они распадаются на составляющие их точечные дефекты при наличии диффузии атомов. Дислокации являются более устойчивыми дефектами. Такие дефекты оказывают большое влияние на механические свойства твердых тел.  [c.11]

Теория дислокаций впервые объяснила причину огромного различия теоретически рассчитанной прочности кристаллов с совершенной структурой и экспериментально определяемой прочности дефектных кристаллов. И. А. Одингом еще в конце 50-х годов была предложена гипотетическая зависимость прочности кристаллов от плотности дефектов, в частности дислокаций в кристаллах, в соответствии с которой один из путей повышения прочности, сопротивления сдвигу состоит в увеличении плотности дефектов решетки и их оптимального распределения в объеме материалов. Поскольку облучение быстрыми частицами является мощным способом создания целого комплекса дефектов решетки, оно и должно оказывать существенное влияние на механические свойства кристаллических тел.  [c.60]

Фиг. 43. Влияние числа дефектов решетки на механические свойства ме> Фиг. 43. Влияние числа <a href="/info/6515">дефектов решетки</a> на механические свойства ме>
Степень изменения свойств при облучении зависит от суммарного потока (р, или числа нейтронов, прошедших через сечение, а также от температур облучения и рекристаллизации металла. При облучении число дефектов в металле возрастает с увеличением суммарного потока. По характеру влияния на механические свойства облучение напоминает холодную пластическую деформацию.  [c.518]

В третьем томе рассмотрено влияние дефектов структуры на механические свойства сплавов. Описаны виды точечных дефектов, условия их возникновения и аннигиляции, а также различные виды дислокаций, их зарождение, движение, взаимодействие друг с другом и точечными дефектами. Приведены способы деформации разрушения металлов и сплавов. Изложены сверхпроводящие свойства металлов и сплавов.  [c.224]

Неметаллические включения, содержащиеся в металле шва, также оказывают заметное влияние на механические свойства сварного соединения. Это влияние существенно зависит от величины, формы и места расположения включений, так как они являются концентраторами напряжений. Установлено, что шлаковые включения площадью до 10 % площади поперечного сечения шва предел прочности металла шва почти не изменяют. Однако при работе в агрессивных средах даже при статическом нагружении наличие шлаковых включений в сварном шве снижает долговечность конструкции. Неметаллические включения могут способствовать образованию других дефектов. Так, сульфидные включения, которые часто имеют температуру плавления ниже температуры кристаллизации металла, служат причиной появления горячих трещин, а наличие нитридов  [c.241]


Анализ микроструктуры сварного шва труб, сваренных по рекомендованным выше режимам, показывал полный провар металла. В некоторых образцах наблюдались незначительные разрозненные включения окислов и небольшие следы внутреннего окисления. Однако эти дефекты не оказывали существенного влияния на механические свойства.  [c.115]

Многообразие встречающихся в сварных и других неразъемных соединениях дефектов, различное их влияние на механические свойства соединений приводят к условному определению понятия дефект .  [c.6]

В связи с высокой напряженностью ответственных сварных конструкций, работающих в условиях больших скоростей, ударных, знакопеременных и тепловых нагрузок и т. д., вопрос о влиянии дефектов на механические свойства сварных соединений весьма актуален. Для оценки влияния дефектов шва на механические свойства сварных соединений необходимо знать чувствительность металла сварного шва к дефектам, которые представляют собой естественные надрезы различной геометрической формы — концентраторы напряжений.  [c.38]

Реально структура кристаллов отличается от приведенных идеальных схем, в них имеются дефекты. Точечными, нуль-мерными (по протяженности), дефектами являются пустые узлы, или вакансии (рис. 6, а) и межузельные атомы (рис. 6, б) число этих дефектов возрастает с повышением температуры. Важнейшими линейными (одномерными) дефектами являются дислокации (краевые и винтовые), представляющие как бы сдвиг части кристаллической решетки (см. линию ММ на рис. 6, в). Поверхностные (двухмерные) дефекты определяются наличием субзерен или блоков 1, 2 внутри кристалла (рис. 6, г), а также различной ориентацией кристаллических решеток зерен 3, 4 (рис. 6, д). По границам зерен решетка одного кристалла переходит в решетку другого, здесь нарушена симметрия расположения атомов. Дефекты кристаллов оказывают существенное влияние на механические, физические, химические и технологические свойства металлов (см. пр. 4).  [c.19]

Монокристаллы — это однородные анизотропные вещества, во всем объеме которых атомы расположены регулярно, так что все вещество состоит из одинаковых периодически повторяющихся кристаллических ячеек. Согласно исследованиям свойств симметрии кристаллов, все кристаллы можно разделить на 32 класса, объединенные в 7 кристаллических систем (рис. 1.1.1). Кристаллические системы отличаются друг от друга формой единичной ячейки, определяемой отношением длин ребер а Ь с и тремя углами а, р, у, образуемыми кристаллическими плоскостями или гранями. Электрические и магнитные свойства кристаллов из разных систем и классов существенно отличаются, и это должно получить надлежащее разъяснение. Структурные дефекты разного рода (точечные дефекты, дислокации) нарушают упорядоченное расположение атомов и могут оказать значительное влияние на механические, электрические и магнитные свойства кристаллов.  [c.20]

В течение последних нескольких лет был обнаружен более сложный тип дефекта — дефект упаковки, который является плоским дефектом. Его влияние на механические свойства металлов также велико. Он может быть определен как нарушение последовательности атомных слоев.  [c.51]

Чувствительность сварных соединений к дефекту сварки определяется не только соотношением между механическими характеристиками металлов, входящих в сварное соединение. Для целого ряда материалов понижение температуры эксплуатации, острота вершины дефекта, остаточные сварочные напряжения, местоположение дефекта в сварном шве традиционно рассматриваются как факторы, оказывающие существенное влияние на работоспособность сварных соединений и конструкций. При неблагоприятном сочетании данных факторов и неудачно выбранных конст-р)Т тивно-геометрических параметров сварные соединения оказываются в области повышенной чувствительности к дефекту и наоборот, правильный выбор сочетания материалов, оптимальных форм размеров сварных швов может предотвратить неожиданные разрушения сварных конструкций и сооружений.  [c.32]

Приведенным небольшим обзором по влиянию основных дефектов на работоспособность сварных соединений не исчерпывается полученная в данном направлении информация. Однако в своей основной части следует отметить, что систематических исследований по совместному влиянию фактора механической неоднородности, геометрических параметров сварных швов, типов дефектов и их размеров на прочностные свойства соединений не проводилось.  [c.39]


Можно указать на несколько факторов, вызывающих появление подобных дефектов. К ним относятся в первую очередь кинетические факторы, связанные с тем, что кристалл не успевает стать идеальным в процессе кристаллизации и последующей обработки. Далее следует указать, что при не слишком низких температурах из-за конкуренции энергетического и энтропийного факторов присутствие в кристалле некоторого количества дефектных мест будет отвечать термодинамическому равновесию. Наконец, уже созданные идеальные кристаллы могут оказаться испорченными под влиянием факторов (механической обработки, действия радиации), нарушающих строгую периодичность расположения атомов. По этим причинам реальные кристаллы имеют дефекты, и физические свойства кристалла формируются под совместным действием строгой периодичности и отступлений от нее. Можно привести немало примеров, свидетельствующих о важности учета вклада дефектов в формирование свойств материалов. Так, без учета этого вклада оказалось невозможным построение теории прочности и пластичности материалов, поскольку эти характеристики определяются степенью сопротивления тела действию сил, смещающих разные части тела относительно друг друга. Под действием радиации (мощные световые потоки, пучки электронов, нейтронов, заряженных ядер и т. д.). отдельные атомы или группы атомов оказываются выбитыми из своих правильных положений, и поэтому структура и свойства облученных материалов необъяснимы без оценки роли дефектов и т. д. В связи с этим важной составной частью физики твердого  [c.228]

Облучение сильно влияет на механические свойства. Обычно материал упрочняется из-за того, что возникшие под влиянием облучения дефекты тормозят движение дислокаций. Модуль упругости растет, разрушение вместо пластического становится хрупким ). Эти изменения иллюстрируются на рис. 13.3 графиками деформация — напряжение для малоуглеродистой стали при облучении ее различными потоками нейтронов.  [c.653]

Как известно, водород широко применяется во многих отраслях техники и промышленности. Вместе с тем, обусловленное водородом повреждение металлов считается в настоящее время причиной многих аварий и катастроф, приносящих значительный ущерб. Среди разнообразных проявлений вредного влияния водорода на механические свойства (предел прочности, пластичность, характеристики усталости, ползучести и т. п.) особого внимания заслуживает обусловленное водородом облегчение зарождения и роста трещин в металлах. Связано это с тем, что независимо от того, насколько совершенны технология и качество изготовления, практически все конструкционные материалы и изделия из них содержат дефекты (или врожденные, или возникшие в процессе эксплуатации). При этом водород, воздействующий на металлы, значительно увеличивает их чувствительность к трещинам и увеличивает вероятность разрушения конструкций, обладающих при обычных условиях достаточной несущей способностью. Таким образом, эксплуатация металлов в атмосфере водорода приводит к необходимости оценки их трещиностойкости, а исследование закономерностей роста трещин в таких условиях приобретает большое значение.  [c.325]

Внутренние металлургические дефекты в литых изделиях из жаропрочных сплавов, такие, как, плены, рыхлоты, засоры и т. д., могут не оказывать существенного влияния на термоусталость, если место их расположения на совпадает с местами наибольших температурных перепадов и концентрации деформации [92]. В обратном случае наблюдается существенное снижение работоспособности. Изменение формы и размеров детали из одного и то же материала может значительно изменить их термостойкость. Сильное влияние конструктивной формы дало основание сделать вывод, что этот фактор оказывает большее влияние, чем изменение физико-механических свойств материала [12].  [c.162]

И. В. Батенин и др. [36] исследовали влияние облучения на механические свойства металлов. После облучения микротвердость всех исследованных металлов и сплавов повысилась. Однако относительное изменение твердости было неодинаковым для различных материалов. Авторами высказано предположение, что при нейтронном облучении упрочнение связано не только с возникновением дисперсной структуры зерна, но и с изменением свойств кристаллов в микрообластях, повышением сопротивления движению дислокаций. Изменение свойств в случае облучения обусловлено наличием точечных дефектов (типа вакансия — внедренный атом ) и характером их распределения.  [c.238]

При измерении пораженной площади не учитывают дефекты, которые не оказывают непосредственного влияния на защитное действие покрытия, например меление, изменение оттенка, охрупчивание или ухудшение адгезии отдельных слоев покрытия, кроме его отслаивания и коррозии поверхности в результате механических повреждений (ЧСН 03 8250).  [c.112]

Дефектами структуры следует считать такие, которые снижают физико-механические характеристики, установленные соответствующими нормативными документами (ГОСТами, ТУ, нормалями и т. д.). Доминирующее влияние на качество изделия оказывают, как правило, дефекты, связанные с несовершенством технологии изготовления изделий. Каждому способу изготовления изделий свойственны характерные виды дефектов.  [c.9]

Усадочные явления, возникающие в полимерных материалах в результате химических, термических и механических процессов, оказывают существенное влияние на качество изделий, так как они изменяют не только геометрические размеры и форму изделия, но и физико-механические характеристики. Образование дефектов структуры вследствие усадочных явлений обусловлено нарушением условий протекания технологических процессов формирования изделий.  [c.11]

Величина зерна имеет большое влияние на свойства стали. Мелкозернистая сталь при одинаковой прочности по сравнению с крупнозернистой более вязка, менее склонна к перегреву и даёт меньше дефектов при термообработке. На деталях больших сечений из крупнозернистой стали удаётся получить высокие механические свойства благодаря лучшей её прокаливаемости.  [c.325]


Исследования влияния продольных царапин на предел усталости проволоки для клапанных пружин показали [64] а) предел усталости при скручивании проволоки с полированной поверхностью значительно выше, чем проволоки с царапинами на поверхности б) контуры поверхностных царапин оказывают более значительное влияние на изменение предела усталости, чем их глубина в) дефекты механической обработки (царапины), а также дефекты, полученные при волочении проволоки и изготовлении пружин, сказываются в меньшей степени на снижении предела усталости проволоки, чем волосовины, получающиеся в процессе выплавки и прокатки стали.  [c.409]

Радиационные дефекты оказывают влияние на механические свойства, по изменению которых оценивают радиационную стойкость конструкционных материалов. Для большинства металлов механические свойства начинают заметно изменяться при флюенсах быстрых нейтронов F больше 10 нейтр/см (инкубационная доза облучения). Степень изменения механических свойств зависит от прочности мен<атомной связи, типа кристаллической решетки, содержания примесей и характера легирования, структуры в исходном состоянии (табл. 8.44, 8.45) и условий облучения (температуры, дозы и др.). При этом можно отметить ряд типичных закономерностей. Кривая напряжение — деформация при одноосном растяжении под действием облучения смещается вверх на более высокий уровень напряжений (рис. 8,1). В наибольшей степени повышается предел текучести, что часто сопровождается поянлепие.м зуба и площадки текучести. Наибольший прирост предела  [c.300]

Однако существенным недостатком указанных работ, по нашему мнению, является тот факт, что при этом не обращается внимание на низкотемпературный источник образования данного типа дефектов. Хотя разрушение, как уже упоминалось, очень часто происходит именно при низкотемпературной обработке или после ее проведешя (скрайбирование, резка, шлифовка, полировка, термокомпрессия контактов и др.), все авторы, как правило, считают причиной его именно высокотемпературные процессы — режим выращивания, отжиги и пр. Не отрицая важную роль этих процессов в природе появления данных дефектов, однако необходимо учитывать тот факт, что именно силовые низкотемпературные воздействия (особенно циклические - резка, шлифовка, полировка) могут, во-первых, в существенной мере трансформировать спектр ростовых и высокотемпературных кластеров (увеличивать, например, в размерах один тип дефектов и уменьшать другой) и, во-вторых, создавать дополнительно свой чисто деформационный спектр, который в ряде случаев в зависимости от технологических режимов низкотемпературной обработки может даже существенно превосходить по своему отрицательному влиянию на механические и электрические свойства материала спектр исходных дефектов в материале. Таким образом, для решения указанной проблемы необходимо учитывать не только высокотемпературный канал возникновения данных дефектов, но и низкотемпературный, на который, к сожалению, в настоящее время не обращается серьезного внимания. Именно с учетом этого фактора необходимо выбирать оптимальные режимы низкотемпературной обработки полупроводниковых материалов и особенно связанные с циклическим силовым воздействием [368- 371].  [c.246]

Рис. 16.17. Влияние относительной нлошади дефектов (пор) на механические свойства стыковых соединений из легированной стали (Ов = 850 МПа после закалки и отпуска) Рис. 16.17. <a href="/info/95372">Влияние относительной</a> нлошади дефектов (пор) на механические свойства <a href="/info/4748">стыковых соединений</a> из <a href="/info/294756">легированной стали</a> (Ов = 850 МПа после закалки и отпуска)
Такое же влияние, как толщина стенок, оказывают на механические свойства и другие факторы, определяющие время затвердевания и обусловленные технологией формы. Однако при оценке влияния всех этих факторов необходимо учитывать также их влияние на механические свойства л осредством воздействия на формирование литейных дефектов. Существует оптимальный интервал температур заливки, обеспечивающий максимальную прочность чугуна  [c.435]

В процессе эксплуатации причиной многих отказов оболочковых конструкций является разрушение от трещиноподобных дефектов, которые возникают как в процессе сварки, монтажа и сооружения, так и в результате эксплуатационных повреждений. Обеспечение Tf)e6y Moro уровня надежности и работоспособности констр кций в процессе эксплуатации предполагает наличие информации о нагру женности стенки оболочки, которая является интегральной величиной действу ющих силовых воздействий на конструкцию (механических, температурных, монтажных и др.). Традиционно используемый для получения данных метод тензометрии позволяет получить информацию о напряженном состоянии конструкции при эксплу атационных нафузках. Начальное напряженном состояние конструкции при этом не измеряется. Однако известно, что начальные напряжения (монтажные, остаточные сварочные и др.) могут оказать значительное влияние на работоспособность и на-дежность при эксплуатации,В связи с этим на передний план выходят методы оценки реальной нафуженности конструкций, позволяющие  [c.63]

При достаточно высокой степени деформации (е> >80- -90%) максимальная разориентация соседних ячеек превышает 5—10° при средней разориентации 2—3°. Имеется критический угол 0кр разориентировки границы ячеек. При 0<0кр<2н-5° границы ячеек оказывают сопротивление движению дислокаций по типу сопротивления дислокаций леса . Если 0> 2-4-5°, границы ячеек становятся столь же эффективными барьерами для передачи скольлсения, как и границы зерен, повышая тем самым деформирующее напряжение. Передача пластической деформации через такие границы сопровождается нагромождением дислокаций. В отличие от разных стадий пластической деформации, когда длина плоскости нагромождения ограничена размером металлографически выявляемого зерна, при больших деформациях длина плоскости нагромождения ограничена размером ячейки. Формирование ячеистых дислокационных структур зависит от условий деформации, среди которых главными являются температура, степень и скорость деформации, вид напряженного состояния. Многочисленные экспериментальные данные дают основание утверждать что снижение температуры деформации, повышение скорости деформации, легирование (при условии, что легирование не сильно влияет на величину энергии дефекта упаковки) или загрязнение металла, повышая напряжение течения, одновременно затрудняют формирование ячеистой структуры. Ячеистая структура оказывает непосредственное влияние на свойства деформированного металла, причем структурно чувствительные механические свойства зависят не только от размера ячейки, но и от угла 0 между соседними ячейками.  [c.251]

Определяющее влияние на интенсивность растрескивания оказывает получение качественного сварного соединения без дефектов шва. Коррозионное растрескивание можно предотвратить снятием остаточных напряжений, например, механическим дефорг мированием.  [c.440]

Усталостная прочность сварных соединений. Усталостная прочность сварных соединений опреде 1яется глaвньJM образом тремя факторами конструктивным оформлением сварного соединения, качеством металла шва и околошовной зоны и наличием сварочных напряжений. Фактор конструктивного оформления—общий для сплавов различной основы, поэтому его влияние подобно влиянию на а сварных соединений стальных или алюминиевых конструкций. Исследованием усталостной прочности металла шва и околошовной-зоны установлена большая ее зависимость от качества присадочного материала, тщательности защиты от поглощения газов из воздуха расплавленным и нагретым металлом во время процесса сварки, наличия в сварном шве различного рода дефектов (непроваров, пористости и пр.) [ 148]. При определении пределов выносливости сварного соединения усиление шва механически удаляли, чтобы.в чистом виде вьшвить усталостную прочность сварного соединения по сравнению с таковой основного металла.  [c.156]


Более сильное влияние, чем пористость, оказывает на механические свойства усадочная рыхлота. Из-за наблагоприятной конфигурации полостей, представляющих собой усадочные раковины (рис. 147), этот дефект особенно нежелателен в малопластичных материалах. Наличие усадочных раковин вблизи круп-  [c.183]

Для многослойных конструкций принадлежность дефекта тому или иному слою имеет важное значение. Например, для трехслойных конструкций со средним слоем из пенопласта важно знать, на какой глубине обнаружен дефект, так как наличие дефекта в среднем слое мало влияет на физико-механические характеристики конструкции в целом. Но наличие дефекта клеевой прослойки может оказать существенное влияние на прочностные характеристики трехслойной конструкции. Определить же глубину залегания дефекта с помощью микрорадиоволн в настоящее время не представляется возможным.  [c.140]

Характерной особенностью дефектной структуры облученных кристаллов являются хаотичность в расположении точечных и объемных барьеров и неоднородность создаваемых ими полей напряжений. Но нельзя считать распределение дефектов в кристаллах изотропным. На начальной стадии облучения кристаллов наблюдается сильная анизотропия в распределении радиационных дефектов и анизотропия влияния радиации на механические свойства в )азличных кристаллографических направлениях. О. А. Троицкий 151 на монокристаллах цинка обнаружил в плоскостях базиса более высокую скорость накопления радиационных дефектов и большее влияние радиации на сопротивление движению дислокаций в базисных плоскостях по сравнению с другими кристаллографическими плоскостями. В. К. Крицкая с сотрудниками [16] по изменению интегральных интенсивностей рентгеновских рефлексов обнаружила ориентационную зависимость в распределении радиационных дефектов в облученных электронами монокристаллах молибдена и как следствие — анизотропию величины эффекта повышения сопротивления деформированию в различных кристаллографических направлениях монокристаллов молибдена.  [c.63]

Однако введение механической обработки не решает проблему эффективного использования материалов. Не говоря з же об увеличении затрат по изготовлению детали, механическая обработка часто усугубляет потерю прочности материала вследствие возникновения новых микро- и макротрещин, вырывов и др. Различный вид нагружения при точении, резании, фрезеровании, шлифовании и пр. обусловливает изменение текстуры, деформацию и степень проявления пластичности и хрупкости материала. Наряду с изменением физико-механических свойств поверхностного слоя металла наблюдается возникновение остаточных растягивающих напряжений. Механизм возникновения этих дефектов и их влияние на свойства деталей достаточно полно освещены в работах М. О. Якобсона, С. В. Серенсена, Г. В. Карпенко, Н. Ф. Сидорова, А. Д. Манасевича и других специалистов. Причинами возникновения остаточных напряжений являются неравномерный локальный нагрев поверхностных слоев металла и его неоднородная пластическая деформация. Их величина и знак зависят от физико-механических свойств обрабатываемого металла, теплового и силового воздействия  [c.7]

Большое влияние на масштабный фактор оказывают наличие дефектов, микротрещнн, ы лючений, дислокаций и пр. и увеличение их количества и размеров с укрупнением отливки. При увеличении диаметра образца уменьшается поверхность контакта кристаллизующегося металла, отнесенная к единице его объема (удельная поверхность или приведенная толщина), что замедляет процесс затвердения и кристаллизации и приводит к снижению механических свойств отливки (табл. 1). Математические выражения этой закопомерности приводятся в работах [13, 19]  [c.13]

Следует учесть, что в связи с пониженными смазывающими качествами этих жидкостей не все выпускаемые насосы, и в частности насосы высоких давлений, пригодны для работы на них. Удовлетворительные результаты получены при работе на этих жидкостях пластинчатых (см. стр. 239) и шестеренных (см. стр. 258) насосов при давлении 30—70 кПсмР. При применении аксиально-поршневых насосов (см. стр. 141) давление жидкости не должно превышать 100—125 кПсм . Важным параметром, характеризующим качество рабочей жидкости гидросистем, является воздействие ее на резину, из которой изготовляются многие детали гидроагрегатов. В результате длительного контакта рабочей жидкости с резиновыми деталями может изменяться объем и вес этих деталей вследствие происходящего при этом сложного физико-химического процесса вымывания отдельных компонентов резины и замещения их жидкостью. В результате этого наблюдается изменение физико-механических свойств резины и ее объема. Усадка, набухание и размягчение резиновых деталей уплотнительных узлов приводит к нарушению герметичности и к прочим дефектам в работе. С этой точки зрения наиболее неблагоприятное влияние на резину оказывают синтетические жидкости, одни из которых вызывают чрезмерное набухание уплотнительного материала, а другие, наоборот, значительную его усадку.  [c.54]


Смотреть страницы где упоминается термин Дефекты Влияние на механические : [c.13]    [c.244]    [c.127]    [c.127]    [c.42]    [c.45]    [c.153]    [c.192]    [c.240]    [c.546]    [c.561]   
Чугун, сталь и твердые сплавы (1959) -- [ c.0 ]



ПОИСК



Влияние дефектов на механические свойства сварных соединений и их работоспособность

Свойства механические сварных соединений влияние дефектов



© 2025 Mash-xxl.info Реклама на сайте