Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Материалы перлитные

Магнитная дефектоскопия используется для контроля деталей и заготовок из ферромагнитных материалом (перлитных сталей, чугуна). Выявляются поверхностные и подповерхностные пороки, которые не могут быть обнаружены внешним осмотром. Существуют индукционный метод магнитной дефектоскопии и метод магнитных порошков, или магнитно-порошковая дефектоскопия.  [c.215]


Другое сочетание сталей разнородных структурных классов в сварных конструкциях - сварка перлитных и высокохромистых сталей. При сварке перлитных сталей с 12 %-ными хромистыми сталями необходимо предотвратить образование мартенсита и холодных трещин, а также развития диффузионных прослоек при отпуске и высокотемпературной эксплуатации. При выборе сварочных материалов следует исключить образование хрупких переходных участков в зонах перемешивания сталей. Для обеспечения наибольшей пластичности шва применяют сварочные материалы перлитного класса (табл. 10.5). В этом случае в переходных участках со стороны высоколегированной стали, содержащих до 5 % хрома, сохраняется высокая пластичность, вязкость, а также длительная прочность соединения в целом. Для снижения размеров диффузионных  [c.399]

Соотношение (12) подтверждается результатами программных исследований длительной прочности, проведенных М. П. Розановым и Е. И. Русановой [135] на трех жаропрочных материалах перлитной стали, аустенитной стали, сплаве на никелевой основе.  [c.251]

Рис. 11.5. Влияние содержания никеля в аустенитном металле шва на ширину переходного слоя п. о и ширину мартенситной зоны вм. в при сварке аустенитным присадочным материалом перлитной сталн Рис. 11.5. Влияние содержания никеля в аустенитном металле шва на ширину <a href="/info/29480">переходного слоя</a> п. о и ширину мартенситной зоны вм. в при сварке аустенитным присадочным материалом перлитной сталн
Рис. 11.6. Влияние силы сварочного тока I на вм. в при сварке аустенитным присадочным материалом перлитной стали Рис. 11.6. Влияние <a href="/info/288975">силы сварочного тока</a> I на вм. в при сварке аустенитным присадочным материалом перлитной стали
Как показало исследование свойств наплавленного металла с переменным содержанием хрома в пределах 1- -11% [54], наиболее предпочтительным является применение для сварных соединений перлитной стали с хромистой сварочных материалов перлитного класса. Это обусловлено тем, что наплавленный металл с содержанием хрома в пределах 1- 5% (переходные составы перлитного шва) имеет более высокий уровень пластичности и ударной вязкости по сравнению с составами, которые могут быть при применении электродов на основе 12% хрома. Перлитный металл шва в средних слоях и в участках, примыкающих к перлитной стали, обладает меньшей склонностью к закалке и образованию трещин в процессе сварки по сравнению с металлом швов, содержащих около 12% хрома. Кроме того, при использовании перлитных электродов, как будет показано ниже, меньше интенсивность развития диффузионных прослоек в зоне сплавления после термообработки или в условиях эксплуатации при высоких температурах.  [c.144]


В настоящем разделе предпринята попытка сформулировать деформационно-силовой критерий зарождения усталостного разрушения применительно к ОЦК металлам, в частности к сталям перлитного класса, основываясь на некоторых физико-меха-нических представлениях о накоплении повреждений при усталости [74, 79, 85, 126]. Разрабатываемый подход позволит ответить на некоторые открытые вопросы в проблеме малоцикловой усталости материалов, в частности, касающиеся влияния на долговечность максимальных напряжений и нестационарности нагружения.  [c.136]

Эффективным направлением является использование в различных частях сварных конструкций разнородных материалов, наиболее полно отвечающих требованиям эксплуатации, применение двухслойного проката со специальными свойствами облицовочного слоя и других сочетаний. Примером может служить ротор газовой турбины. По ободу диск ротора подвергается действию высоких температур и относительно небольших усилий, а центральная часть работает в условиях невысоких температур и воздействия больших усилий Подобрать материал, одинаково хорошо работающий в этих условиях, очень трудно. Поэтому целесообразно изготовить сварной ротор центральную часть из высокопрочной стали перлитного класса, а обод диска из жаропрочной аустенитной (рис. 6.21).  [c.171]

Необходимо сразу же отметить, что последний фактор не относится к сталям с подавленной перлитной областью на диаграмме изотермического распада (например, к сталям, закаливающимся на воздухе). При обработке таких материалов не требуется резкого охлаждения после деформирования.  [c.78]

В тех композитах, где упрочнитель не является волокном, таких, как перлитные стали, реологические взаимодействия на поверхностях раздела континуума не имеют направленного характера, поскольку сами поверхности раздела ориентированы случайным образом в результате отсутствует направленность эффекта упрочнения армирующей фазы. Иная ситуация возникает в случае волокнистых композитов, особенно тех из них, где упрочняющие волокна строго ориентированы. Здесь континуум имеет направленный характер, и это обычно используется при эксплуатации волокнистых композитных материалов.  [c.43]

В [85] отмечалось, что с помощью критерия типа (4.10) были обработаны результаты многочисленных испытаний металлических материалов, включая технически чистую медь, перлитные и аустенитные стали, и никелевые сплавы. В большинстве случаев отклонение расчетных данных от экспериментальных не превышало 8%. Максимальное отклонение — около 12%.  [c.144]

Основой для составления банка данных, используемого для прогнозирования влияния химических элементов на свойства литейных ферритно-перлитных сталей, послужили материалы ГОСТ, ТУ, информация, содержащаяся в описаниях патентов, реферативных журналах и других литературных источниках. На данном этапе исследования проводился выбор формального критерия, позволяющего классифицировать эти элементы по интенсивности их влияния на свойства фер->  [c.220]

При изготовлении из перлитных сталей плакированных сварных трубопроводов с малым внутренним диаметром (300—350 мм) возникают трудности из-за невозможности сварки плакирующего слоя с внутренней стороны. Вариант сварки с применением соответствующих перлитных присадочных материалов для выполнения швов на основной части трубы с последующей подваркой плакировки аустенитными электродами в данном случае неприемлем. Поэтому для сварки плакированных труб относительно малых диаметров применяется трудоемкая технология, которую используют при сварке разнородных соединений из сталей перлитного и аустенитного классов [1].  [c.409]

Коррозия металлов в указанной смеси газов (кроме содержащих соединения серы) имеет такой же характер, что и в воздухе или в кислороде. При этом на поверхности металлов образуются плотные тонкие оксидные пленки, которые эффективно тормозят коррозионный процесс. Скорость коррозии в этом случае определяется скоростью диффузии катионов и ионов кислорода через оксидную пленку. Обычно она невысока, поэтому коррозия не является лимитирующим фактором при выборе материала. Это справедливо для перлитных сталей до 500 °С, хромистых нержавеющих — до 600 °С, аустенитных — до 700 °С, никелевых сплавов — до 800 °С. Как правило, определяющим при выборе материалов становятся характеристики жаропрочности.  [c.220]


Перлитные чугуны имеют значительно более высокую Износоустойчивость при трении, чем ферритные. Серый чугун с перлитной структурой является наиболее износоустойчивым материалом, обладающим высокими литейными (низкая температура плавления, высокая жидкотекучесть) и механическими (хорошая обрабатываемость, высокое сопротивление истиранию) качествами. Лучшие результаты показывают чугуны с перлитом тонкого сорбитообразного строения, с мелкими завихренными графитовыми выделениями и твердым компонентом — цементитом пли фосфид-ной эвтектикой, равномерно распределенной и не образующей сплошной цепочки, придающей чугуну повышенную твердость и хрупкость. Чем грубее структура перлита, тем хуже сопротивляемость чугуна истиранию. Ковкий чугун, имеющий повышенное содержание углерода и пониженное содержание кремния, обладает повышенной механической прочностью.  [c.573]

Правильный выбор материала притира оказывает большое влияние на производительность притирки. Основным материалом служит перлитный чугун, не содержащий твердых включений и пор, не имеющий рыхлостей и раковин, внедрений зерен цементита, с содержанием основной структуры —перлита 90— 95%. Свободный графит должен быть распределен равномерно в виде отдельны х мелких гнезд и тонких пластинок без значительных завихрений и переплетений. Обычно применяется чугун следующего химического состава, % 2,8—3,1 С  [c.296]

Конструкционными материалами для реакторных установок являются в основном аустенитные нержавеющие стали. Это вызвано стремлением уменьшить коррозию для сокращения возможности перехода продуктов коррозии в воду реакторов и их отложения на твэлах. Корпус реактора выполняется из перлитной стали с аустенитной нержавеющей наплавкой. Основные трубопроводы реакторного контура выполняются также из перлитных сталей с плакировкой аустенитной нержавеющей.  [c.52]

В исследованных материалах перлитного и аустенигного классов при нагреве в аргоне и охлаждении в расплаве щелочных металлов (в нейтральных средах) во всем диапазоне максимальных температур термического цикла возникали тонкие типично усталостные трещины без образования полостей. Это подтверждает существование двух механизмов возникновения и развития трещин термической усталости для сталей с ферритно-перлитной и аустенитной структурами,  [c.135]

Влияние состава стали распространяется также и на протекание пароводяной и щелочной коррозии. В 4.1 были показаны пределы устойчивости разных по составз марок сталей в зависимости от температуры пара. Из практики эксплуатации котлов известно, что конструкционные материалы — перлитные малоуглеродистые стали типа 15Х1МФ не обладают должной коррозионной стойкостью при высоких температурах, поэтому железоокисные отложения на трубах НРЧ примерно на 50% состоят из продуктов окалины. Нарушение консервации и особенно ее отсутствие способствуют накоплению продуктов коррозии и, следовательно, усугубляют процесс разрыва этих труб.  [c.117]

Прн сварке перлитных сталей с высокохромистыми ферритными пли феррнт-но-аустенитныл и сталями (с содержанием 17—28% хрома) применение электродных материалов перлитного класса нежелательно ввиду чрезмерного легирования переходных участков шва и опасности образования вследствие этого холодных трещин. Наиболее целесообразным является использование в данном случае электродов ферритио-аустенитного класса, обеспечивающих достаточную стабильность свойств тва ири наличии значительного перемешивания с перлитной сталью. Может быть допущено также применение аустенитных электродов, однако при этом необходимо учитывать структурную неоднородность соединения.  [c.209]

Существует вместе с тем большое число жаропрочных сталей п сплавов всех структурных классов, которые обладают весьма ограниченной способностью к пластической деформации в условиях ползучести. У материалов перлитного класса этот недостаток преимущественно присущ 0,5-процентной молибденовой и хромо-никелемолибденовым сталям, а также некоторым комплексно-легированным сталям на базе Сг—Мо—V и Сг—Мо——V при, неправильной термической их обработке или нри отступлениях от установленного соотношения составных элементов. Среди сталей аустенитного класса низкой длительной пластичностью выделяются стали, содержащие большие количества титана и других легирующих элементов, повышающих склонность аустенитных сталей к дисперсионному твердению. Жаропрочные сплавы на никелевой основе типа ЭИ437 также характеризуются низкой длительной нластичностью н потому могут применяться в длительной службе при высоких температурах только в условиях ограниченной деформации (как правило, не более 0,2— 0.5%) .  [c.284]

Другое сочетание сталей разнородных структурных классов в сварных конструкциях -сварка перлитных и высокохромистых сталей. При сварке перлитных сталей с 12%-ными хромистыми сталями необходимо предотвратить образование мартенсита и ХТ, а также развитие диффузионных прослоек при отпуске и высокотемператзфной эксплуатации. При выборе сварочных материалов следует исключить образование хрупких переходных участков в зонах перемешивания сталей. Для обеспечения наибольшей пластичности шва применяют сварочные материалы перлитного класса (табл. 13.4). В этом случае в переходных участках со стороны высоколегированной стали, содержащих до 5 % Сг, сохраняются высокая пластичность, вязкость, а также длительная прочность соединения в целом. Для снижения размеров диффузионных прослоек перлитный наплавленный металл должен легироваться определенным количеством более активных, чем хром, карбидообразующих элементов. При сварке деталей больших толщин целесообразно электродами типа Э-ХМ делать наплавку на кромки высоколегированной стали, а разделку заполнять без подогрева электродами типа Э-42 или Э-50 в зависимости от требований прочности перлитного шва. Температуру предварительного подогрева и отпуска определяют по характеристикам более легированной, т.е. 12%-ной хромистой стали, но для уменьшения размеров диффузионных прослоек применяют отпуск при минимально допустимой температуре.  [c.184]


Для сварки перлитных сталей с 12-процентными хромистыми нержавеющими сталями наиболее предпочтительным является, как было показано ранее, использование сварочных материалов перлитного класса. В этом случае обеспечивается, во-первых, более высокое качество металла шва, а во-вторых, снижается интенсивность развития диффузионных прослоек в зоне сплавления разнородных материалов. Для сварных соединений первой группы (углеродистых или хромомолибденовых сталей с хромистыми) могут быть рекомендованы при ручной дуговой сварке электроды типа Э-ХМ (по ГОСТ 9467—60), а при сварке в среде углекислого газа — проволока марки 08ХГСМА.  [c.193]

Таблица 00. Рекомендации по выбору сварочных материалов для разнородных сварных соединении перлитных и мартенситиых сталей с аустенитными и аустенитно-фсрритными Таблица 00. Рекомендации по <a href="/info/451311">выбору сварочных</a> материалов для разнородных <a href="/info/2408">сварных соединении</a> перлитных и мартенситиых сталей с аустенитными и аустенитно-фсрритными
Подобные эксперименты применительно к материалам со сложной структурой, характерной для большинства конструкционных материалов, были проведены в работе [212], где в качестве объекта исследования были взяты перлитные стали средней прочности 15Х2МФА и 15Х2НМФА.  [c.53]

Рассмотрим принципиальную возможность моделирования влияния пластического деформирования на 5с, исходя из увеличения сопротивления распространению микротрещины в результате эволюции структуры материала в процессе нагружения. Можно предположить, по крайней мере, две возможные причины увеличения сопротивления распространению трещин скола в деформированной структуре. Первая — это образование внут-ризеренной субструктуры, играющей роль дополнительных барьеров (помимо границ зерен), способных тормозить мнкро-трещину. Наиболее общим для широкого класса металлов структурным процессом, происходящим в материале при пластическом деформировании, является возникновение ячеистой, а затем с ростом деформации — фрагментированной структуры [211, 242, 255, 307, 320, 337, 344, 348, 357, 358]. Второй возможный механизм дополнительного торможения микротрещин — увеличение разориеитировок границ, исходно существующих взернз структурных составляющих (например, перлитных колоний). Первый механизм, по всей вероятности, может действовать в чистых ОЦК металлах с простой однофазной структурой. Второй, как можно предполагать,— в конструкционных сталях.  [c.77]

Карзов Г. П., Марголин Б. 3., Швецова В. А. Деформационно-силовой критерий хрупкого разрушения и трещиностойкость перлитных сталей// Трещиностойкость материалов и элементов конструкций. Тезисы докл. III Всесоюэн. симпозиума по механике разрушения. Житомир, 30 окт.— 1 нояб.  [c.369]

Антифрикционные материалы на основе Ре с добавкой графита в зависимости от технологии изготовления могут содержать как свободный, так и связанный С, поэтому они имеют ферритную, ферритоперлитную, перлитную, а также перлитно-цементитную структуры (рис. 17.8, табл. 17.6).  [c.311]

Высокие остаточные напряжения возникают при термообработке, особенно при закалке с резким охлаждением. В результате неодинаковых условий теплоотвода от поверхностных и внутренних слоев металла, а также на участках переходов образуются, зоны повышенных напряжений, нередко приводящие к появлению закалочных трещин. У материалов, которым свойственна низкая прокаливаемость, это явление усугубляется взаимодействием прокаленных и непрокаленных зон Зоны мартенсита, который обладает наибольшим удельным объемом, подвергаются сжатию действием с.межных более плотных слоев трооститной, еорбитной или перлитной структуры, в которых возникают реактивные напряжения растяжения.  [c.151]

Степень завершения гомогенизации при сварке зависит от 7 тах, диффузионной ПОДВИЖНОСТИ элементов, времени пребывания при температурах гомогенизации и исходной макро- и микрохимической неоднородности. Максимальная степень гомогенизации соответствует участкам ОШЗ, нагреваемым до Тс, учитывая, что коэффициенты диффузии элементов увеличиваются с повышением температуры в экспоненциальной зависимости. С наибольшей скоростью гомогенизация происходит по С, с меньшей — по S, Р, Сг, Мо, Мп, Ni, W в приведенной последовательности (коэффициенты диффузии в железе при 1373 К составляют для С 10 " и для остальных элементов 10 ...10 м / ). Время пребывания при температурах гомогенизации зависит от теплового режима сварки, а также от класса применяемых сварочных материалов. Последнее связано с дополнительным нагревом ОШЗ выделяющейся теплотой затвердевания шва (аналогично их влиянию на степень оплавления ОШЗ). Степень влияния металла шва определяется Гс.мш.Чем она выше, тем при более высоких гомологических температурах происходит дополнительный нагрев ОШЗ. При переходе от сравнительно тугоплавких ферритно-перлитных сварочных материалов к более легкоплавким аусте-нитным время пребывания ОШЗ свыше 1370 К уменьшается примерно в 1,5 раза. Весьма существенно влияет исходное состояние стали. Наличие труднорастворимых крупных скоагули-рованных частиц легированного цементита и специальных карбидов, например после отжига стали на зернистый перлит, заметно снижает степень гомогенизации.  [c.515]

Сероводородное растрескивание отвода 90x114 мм дожимной компрессорной станции (ДКС-1) произошло после 10 лет эксплуатации. Материалом отвода являлась ферритно-перлитная сталь A420WPLG (твердость 120 НВ). Сквозная трещина длиной 90 мм располагалась в нижней части отвода, на участке сгиба, и развивалась по скоплениям неметаллических включений (рис. 10).  [c.35]

Выше показано, что хромоникелевая аустенитная сталь 12Х18Н12Т имеет в продуктах сгорания мазута относительно низкую коррозионную стойкость и в широком интервале температур газа ее сопротивляемость к коррозии ниже, чем у низколегированных перлитных сталей. Причиной этого является образование при взаимодействии золы мазута с компонентами металла соединений, температура плавления которых ниже рабочих температур труб. Таким компонентом в хромоникелевых сталях является никель. Материалами, где отсутствует в существенных количествах никель и которые должны иметь более высокую коррозионную стойкость в продуктах сгорания мазута, считаются аустенитные хромомарганцевые стали.  [c.183]

Движущей силой этого типа нестабильности является межфаз-ная поверхностная энергия, которая снижается по мере уменьшения величины межфаз ной поверхности. Сфероидизация в сталях перлитного класса — один из наиболее известных примеров такой нестабильности. Грэхем -и Крафт [12] рассмотрели факторы, влияющие на высокотемпературную стабильность эвтектических композитных материалов. Они указали на существование особого кристаллографического соответствия между фазами, которое не меняется при огрублении эвтектической структуры. Они установили также, что, хотя механизм роста фаз состоит в растворении одной из них и в повторном осаждении ее на имеющихся зернах, процесс лимитируется скоростью диффузии, а не скоростью растворения. Для анализа иопользовались уравнения Томсона — Фрейндлиха, определяющие концентрацию элемента у поверхности волокна известного радиуса кривизны.  [c.90]

Большинство исследований влияния ввда напряженного состояния на закономерности ползучести выполнены на чистых металлах (алюминий, медь, свинец и др.). Из материалов энергетического машиностроения наиболее часто в качестве объекта исследования использовалась сталь аустенитного класса Х18Н10Т, иногда стали перлитного класса.  [c.163]


Исследованиями установлено, что более перспективным материалов для изготовления износостойких деталей углеразмольных мельниц являются высокоуглеродистые экономнолегированные стали перлитно-карбидного класса, которые по износостойкости превосходят аустенитные стали. Присущая же высокоуглеродистым сталям хрупкость устраняется путем микроле-гировния их титаном и бором и последующей специальной тер мической обработкой  [c.240]

Приведены результаты испытаний иа статический разрыв и малоцикловую усталость плоских образцов, вырезанных в продольном направлении пз сварных стыков труб, выполненных из перлитной стали 10ГН2МФА с антикоррозионной наплавкой внутренней поверхности материалом 08Х19Н10Г2Б. В сварном соединении имелись натурные дефекты типа мелких пор, рыхлот, шлаковых включений, неоплавлений протяженностью от 0,3 до 3,5 мм. Изучено влияние ремонтной операции на малоцикловую усталость сварного соединения. Условия испытаний те.мпература 293 К, частота нагружения 0,5—2,0 Гц, коэффициент асимметрии цикла по напряжению На — 0,006. Описаны особенности возникновения II развития разрушения по критерию длины трещины в зависимости от наличия и расположения исходных дефектов.  [c.439]

Этому виду коррозии подвержены металлические материалы, в составе которых есть фазы с различной химической стойкостью. Наиболее распространенными видами избирательной коррозии являются графитизация серого литейного чугуна (избирательное растворение ферритных и перлитных составляющих), обесцинкование латуней (селективная коррозия цинка), обезалюмиииваиие алюминиевых бронз (растворение фаз, обогащенных алюминием).  [c.53]

В качестве конструкционных материалов в системах, работающих с жидкометаллическими теплоносителями, наряду с нержавеющими употребляют низколегированные стали типа 1Х2М, 1Х2МБФ. При совместной работе с аустенитными сталями в потоке теплоносителя ферритно-перлитные стали обезуглероживаются. Дополнительное легирование таких сталей ниобием, титаном, ванадием (см. табл. 17. ) снижает скорость их обезуглеро-  [c.262]

Сварные соединения, в том числе соединения, составленные из разнородных материалов, являются основными элементами конструкций атомных энергетических реакторов типа ВВЭР. Примером тому могут служить и рассмотренные выше элементы корпуса реактора - патрубковая зона (см. рис. 5.2) и обечайка активной зоны, поперечное сечение которой приведено на рис. 5.6, соединенные между собой с другими элементами корпуса сварными швами. Корпус парогенератора ПГВ-440, изготовленный из стали перлитного класса, с приваренными к нему коллекторами из нержавеющей стали - другой пример разнородных соединений, составленных из трех различньи материалов.  [c.180]


Смотреть страницы где упоминается термин Материалы перлитные : [c.317]    [c.317]    [c.319]    [c.152]    [c.320]    [c.87]    [c.140]    [c.136]    [c.229]    [c.286]    [c.540]    [c.572]   
Сварка Резка Контроль Справочник Том2 (2004) -- [ c.210 ]



ПОИСК



Материалы для напыления перлитные

Общие рекомендации по выбору материалов и повышению работоспособности сварных соединений перлитных сталей с нержавеющими

Перлитные материаМартенситные материалы

СПРАВОЧНЫЕ КАРТЫ НА МЕТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ ТУРБИНО- И МОТОРОСТРОЕНИЯ Нелегированные, низко- и среднелегированные стали перлитного класса



© 2025 Mash-xxl.info Реклама на сайте