Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Степень турбины

Гг, совершая техническую работу /тех и превращаясь во влажный пар с параметрами точки 2. Этот пар поступает в конденсатор, где отдает теплоту холодному источнику (циркулирующей по трубкам охлаждающей воде), в результате чего его степень сухости уменьшается от хч до Х2. Изотермы в области влажного пара являются одновременно и изобарами, поэтому процессы 5-1 и 2-2 протекают при постоянных давлениях pi и р2. Влажный пар с параметрами точки 2 сжимается в компрессоре по линии 2 -5, превращаясь в воду с температурой кипения. На практике этот цикл не осуществляется прежде всего потому, что в реальном цикле вследствие потерь, связанных с неравновесностью протекающих в нем процессов, на привод компрессора затрачивалась бы большая часть мощности, вырабатываемой турбиной.  [c.62]


Современные мощные турбины выполняют многоступенчатыми с определенной степенью реактивности, чаще всего Q = 0,5. В каждой ступени такой турбины расширение рабочего тела происходит не только в сопловых каналах, но  [c.170]

Наглядно показать степень энергетического несовершенства агрегатов, входящих в любое производство, можно с помощью энергетической диаграммы, составленной на основе баланса потоков энергии в каждом агрегате (см. пример баланса топки — рис. 17.1). На рис. 24.1, а приведена энергетическая диаграмма ТЭС. Основное количество энергии (55%) теряется в конденсаторе турбины. Повышая давление, а соответственно и температуру пара в конденсаторе, эту энергию полностью или частично можно использовать на теплофикацию (см. 6.4).  [c.203]

Кроме того, требуется разработать конструкцию дожимающего компрессора с приводной паровой турбиной конденсационного типа на средние параметры пара. Однако можно исключить дожимающий компрессор. Для этого на выходе из компрессора ГТ-125 устанавливаются дополнительно две ступени, позволяющие увеличить степень сжатия компрессора. Предварительные расчеты показывают, что в этом случае потребуется увеличение длины корпуса и ротора на 0,5 м.  [c.23]

В современных турбинах и реактивных двигателях важнейшей деталью является лопатка турбины. Мощность реактивного двигателя в большой степени зависит от максимальной температуры рабочего тела (газа), при которой длительное время могут работать лопатки. В современных реактивных двигателях лопатки турбин разогреваются до 700—900°С, и имеется тенденция повышения этой температуры.  [c.473]

Одним из способов повышения степени сухости пара на выходе из турбины является вторичный его перегрев. Этот способ состоит в том, что перегретый пар из котла с начальными давлением и температурой поступает в первую ступень турбины, состоящей из нескольких ступеней, где расширяется по адиабате до некоторого давления р. . Образовавшийся пар отводят в специальный перегреватель, где он подвергается вторичному перегреву при постоянном давлении. Затем его снова возвращают в турбину, где пар продолжает расширяться до давления в конденсаторе. Такой цикл с вторичным перегревом пара представлен на рис. 19-10. Точка / соответствует начальному состоянию пара точка 2 — конечному состоянию пара за турбиной после вторичного перегрева точка 2 соответствует  [c.303]

Неприменимы ряды предпочтительных чисел и для определения параметров прогрессивно развиваемых и модернизируемых машин, параметры которых на каждой стадии зависят от технических возможностей и потребностей соответствующих отраслей народного хозяйства. Так, мощность тепловых машин зависит от их начальных параметров (давления и температуры) и частоты вращения. Ни один из этих параметров невозможно произвольно увеличить. В некоторых случаях они имеют оптимальное значение (например, степень сжатия в газовых турбинах), изменение которого ухудшает показатели машины. Увеличение температуры и частоты вращения возможно только на базе технических усовершенствований (повышения жаропрочности материалов, улучшения охлаждения термически напряженных деталей). Результаты этих поисковых работ невозможно уложить в ряды предпочтительных чисел.  [c.63]


ТИ — топливный насос КС—камера сгорания ГТ — газовая турбина ВК — воздушный компрессор ПД — пусковой двигатель Р — регенеративный подогреватель. Цикл этой установки представлен на рис. 42. Известны параметры Ц = 30° С и = 400° С, а также степень повышения давления в цикле А, = 6. Рабочее тело — воздух  [c.156]

Исследования, проведенные рядом авторов [173], показали, что доля лучистой теплопередачи весьма значительна в общем тепловом балансе камеры сгорания газовой турбины. Следовательно, степень черноты как внутренней, так и наружной поверхностей камеры оказывает существенное влияние на температуру стенки. Поэтому очевидно, что увеличение степени черноты стенок камеры сгорания позволит снизить их температуру и тем самым увеличить надежность газотурбинной установки.  [c.208]

Под степенью уменьшения давления в турбине будем по-прежнему понимать отношение значений полного давления за и перед турбиной  [c.56]

Этот класс двигателей в настоящее время наиболее широко применяется в авиации. В этих двигателях сжатие воздуха осуществляется в диффузоре вследствие скоростного напора и в компрессоре (осевом или центробежном), имеющем высокую степень повышения давления. Из компрессора воздух подается в камеру сгорания, а затем продукты сгорания поступают на газовую турбину, где, расширяясь, производят работу, идущую на привод компрессора. Окончательно расширение газа до атмосферного давления происходит  [c.172]

В реактивном сопле. На рис. 14.4 представлена схема и изменение параметров по тракту двигателя. Идеальный цикл этого двигателя по сравнению с прямоточным двигателем дополняется процессами, идущими в компрессоре и турбине (рис. 14.5). На р—о-диаграмме процесс а-/сжатие в дис узоре процесс /-с —сжатие в компрессоре процесс г-2 — расширение в турбине 2-е — расширение в реактивном сопле. Общая степень повышения давления я ==  [c.172]

Что касается циклов с распадающимся на две фазы рабочим веществом, в частности циклов паросиловых установок, то иа том участке, где рабочее тело является влажным паром, изотермичность процессов подвода и отвода теплоты обусловливается поддержанием постоянного давления. Поэтому для процесса отвода теплоты, который лежит в области двухфазных состояний, ступенчатого сжатия не требуется. Для процесса подвода теплоты на том участке, где рабочее тело находится в виде перегретого пара, ступенчатый подогрев целесообразен, однако главным образом для повышения средней температуры рабочего тела на этом участке и увеличения степени сухости пара в процессе расширения (рис. 15.4). В этом случае также эффективна регенерация теплоты, которая осуществляется ступенчатым расширением пара в турбине (правая ветвь цикла) с отбором между ступенями части пара для подогрева жидкого рабочего тела.  [c.524]

В установках с паровыми турбинами, как уже указывалось, не допускается, чтобы степень влажности пара при выходе из турбины была выше 13—14%. Наиболее простым способом уменьшения конечной влажности пара служит повышение степени перегрева пара.  [c.580]

Несмотря на то что идеальной жидкости в действительности не существует, многие теоретические решения, полученные в предположении идеальности жидкости, имеют большое практическое значение. Пригодность модели идеальной жидкости для многих задач обтекания тел объясняется прежде всего тем, что идеальная жидкость сохраняет основные свойства реальных жидкостей (непрерывность, или сплошность). Кроме того, при обтекании хорошо обтекаемых тел (крыла самолета, ракеты, лопатки турбины и пр.) влияние вязкости на распределение давления по поверхности этих тел сказывается лишь в очень слабой степени. Однако влияние вязкости оказывает решающее значение при подсчете сопротивлений тел в движущейся жидкости.  [c.86]


Форма профилей, применяемых для крыльев и винтов самолета, корабельных винтов, лопаток паровых, газовых и гидравлических турбин, лопаток компрессоров, насосов и вентиляторов, а также других машин, в большой мере определяет эффективность их работы. В зависимости от назначения имеется большое разнообразие форм профилей. Иногда форма профиля определяется в значительной степени требованиями прочности, качеством материала и пр.  [c.201]

Для получения формул термических к. п.д. циклов ГТУ обратимся к выражению (10.26). Из условия замыкания обобщенного цикла (10.24) находим при В = 1 полную степень расширения в цикле газовых турбин  [c.149]

Таким образом, на сжатие воздуха в реальном цикле затрачивается боль-ujan работа, а при расширении газа в турбине получается меньшая работа по сравнению с идеальным циклом. КПД цикла получается ниже. Чем больше степень повышения давления л (т. е. выше р2>, тем больше сумма этих потерь по сравнению с полезной работой. При определенном значении я (оно тем выше чем больше Гз и внутренний относитель ный КПД турбины и компрессора т, е. меньше потери в них) работа турби ны может стать равной работе, затрачен ной на привод компрессора, а полезная работа — нулю.  [c.175]

Поэтому наибольп1ая эффективность реального цикла, в отличие от идеального, достигается при определенной (оптимальной) степени повышения давления, причем каждому значению соответствует свое Яопт (рис. 20,11). КПД простейших ГТУ не превышает 14—18%, и с целью его повышения ГТУ выполняют с несколькими ступенями подвода теплоты и промежуточным охлаждением сжимаемого воздуха, а также с регенеративным подогревом сжатого воздуха отработавшими газами после турбины, приближая тем самым реальный цикл к циклу Карно,  [c.175]

Рис. 20.11. Зависимость термического КПД цикла ГТУ т], от степени повышения дазлеиия л и начальной температуры газа I (для компрессора и турбины г)и, = 0,9) Рис. 20.11. Зависимость термического КПД цикла ГТУ т], от степени повышения дазлеиия л и <a href="/info/122352">начальной температуры газа</a> I (для компрессора и турбины г)и, = 0,9)
В некоторых случаях при очень быстром движении коррозионной среды или при сильном ударном механическом действии ее на металлическую поверхность наблюдается усиленное разрушение не только защитных пленок, но н самого металла, называемое кавитационной эрозией. Такой вид разрушения металла наблюдается у лопаток гидравлических турбин, лопаете пропеллерных мешалок, труб, втулок дизелей, быстро-ходшчх насосов, морских гребных винтов и т. п. Разрушения, вызываемые кавитационной эрозией, характеризуются появлением в металле трещин, мелких углублений, переходящих в раковины, и даже выкрашиванием частиц металла. С увеличением а1-рессивности среды кавитадиоппая устойчивость конструкционных металлов и сплавов понижается. Кавитационная устойчивость металлов и сплавов в значительной степени зависит не только от природы металла, но н от конфигурации отдельных узлов машин и аппаратов, их конструктивных особенностей, распределения скоростей потока жидкостей и др. Известно также, что повышение твердости металлов повышает их кавитационную стойкость. Этим объясняется, что для борьбы с таким видом разрушения обыч)ю применяют легированные стали специальных марок (аустенитные, аустенито-мартенситные стали и др.), твердость которых повышают путем специальной термической обработки.  [c.81]

Какие нормы точности являются основнь[ми и назначаются по более высоким степеням точности для зубчатых передач а) делительных механизмов станочных приспособлений б) редукторов общего назначения в) редукторов грузоподъемных машин г) коробок передач автомобилей д) редукторов мощных турбин е) счетно-решающих  [c.177]

Термический к. п. д. ГТУ со сгоранием топлива при р onst растет с увеличением степени повышения давлений р. Однако с ростом р увеличивается и температура газов в конце сгорания топлива Тз, в результате чего быстро разрушаются лопатки турбин и сопловые аппараты, охлаждение которых затруднительно. Чтобы увеличить к. п. д. газотурбинных установок, частично изменили условия их работы. В установках стали применять регенерацию теплоты, многоступенчатое сжатие воздуха в компрессоре, многоступенчатое сгорание и т. п. Это дало значительный эффект и повысило [в уста-> овках степень совершенства превращения теплоты в работу.  [c.285]

В турбокомнрессорпых реактивных двигателях, нлп, как их называют, турбореактивных двигателях (ТРД), воздух, после сжатия в диффузоре дополнительно сжимается в турбокомпрессоре, который приводится во вращение газовой турбиной, расположеп-ной после камеры сгорания. Эффективность работы таких двигателей вследствие повышения степени сжатия значительно больше, чем  [c.290]

Пример 18-3. Определить температуру всех точек теоретического цикла ГТУ с подводом теплоты при р = onst и цикла ГТУ с предельной регенерацией (рис. 18-17), а также к. п. д. этих циклов, если известно, что Л = 25° С, степень повышения давления в компрессоре р = = 5, температура газов перед соплами турбины  [c.294]

Пример 18-4. Определить термический к. п. д. идеального цикла ГТУ, [)аботающей с иодиодом теплоты п Л1 р onst, а также тер-МИЧССКП11 к. п. д. действительного цикла, т. е. с учетом необратимости процессов расширения и сжатия в турбине и компрессоре, если внутренние относительные к. п. д. турбины и компрессора равны 1]турб == 0,88 и tIkom = 0,85, Для этой установки известно, что Л =-= 20° С, степень повышения давления в компрессоре Р =6 температура газов перед соплами турбины ts = 900° С. Рабочее тело обладает свойствами воздуха, теплоемкость его постоянна, показатель адиабаты принять равным /г -= 1,41.  [c.295]


Процесс 2 -3 (рис. 19-19) необратим из-за потери теплоты на трение, а процессы 3-4, 4-5, 5-1 и 2-2 необратимы из-за теплообмена при конечной разности температур, но степень необрати-люсти во всех этих процессах в обш,ем случае мала, и в расчетах обычно ее не учитывают. Основная необратимость в паротурбинной установке связана с потерей кинетической энергии на трение пара при его расширении в соплах и на лопатках турбины, поскольку течение пара происходит с большой скоростью.  [c.312]

В узле крепления турбинной лопатки в роторе на елочном замке (рис. 425, ж) рабочие поверхности трапецеидальных зубьев лопатки, воспринимающие центробежную силу Р, в исходном положении соприкасаются с упорными поверхностями пазов ротора. С приложением нагрузки комлевая часть хвостовика растягивается тело ротора, обладающее больщой жесткостью, деформируется в меньшей степени. Вследствие этого нагрузку воспринимают преимущественно первые зубья (см. эпюру).  [c.587]

Характерные особенности закрученного потока наиболее полно подходят для создания эффективной схемы конвективных и конвективно-пленочных систем охлаждения лопаток проточной части ГТД. В турбинных двигателях IV—VI поколений прослеживается тенденция использования больших степеней понижения давления газа в ступени (я > 2), что обусловливает возможность применения вихревых энергоразделителей (ВЭ) в охлаждаемых лопатках. По прогнозу к 2000 г. будут вводиться в эксплуатацию перспективные двухконтурные турбореактивные двигатели со степенью повышения давления в компрессоре до л = 60, с последней центробежной ступенью компрессора и противоточной камерой сгорания в этом случае на охлаждение соплового аппарата второй ступени удобно подвести воздух высокого давления из внутреннего кожуха камеры сгорания, и использование ВЭ становится перспективным.  [c.367]

Газовая турбина работает по циклу с подводом теплоты при р = onst. Известны параметры pi = =- 0,1 МПа П = 40° С = 400° С, а также степень увеличения давления Я = 8. Рабочее тело — воздух.  [c.155]

Газовая турбина работает по циклу с подводом тепла при р — onst без регенерации (см. рис. 39). Известны степень повышения давления в цикле А = pjpi = 7 и степень предварительного расширения р = vjv = 2,4. Рабочее тело — воздух.  [c.156]

Передача не может работать плавно при плохом контакте зубьев. Нели контакт смещен к головке или ножке зуба, то зуб работает кромкой на входе или выходе из зацепления, что вызывает неспокойную работу передачи. В большинстве случаев степени точности по нормам контакта совпадают со степенями точности по нормам плавности. Так, для тракторов, грузовых автомобилей применяют степени точности 7—6—6—G, 8—7—7—С для редукторов турбин — степени точности 6—5—5—В, для изделий металлургического машиностроения — 8—7—7—В для прокатных станов — 8—7—7—В для делительных и других отсчетных механизмов степени по нормам кинематической точности и плавности принимают одинаковыми, а иногда иормы кинематической точности на одну степень точнее норм плавности (например, 4—5—5—D).  [c.321]

Турбинные лопатки реактивных ГТД отливают из жаропрочных сплавав в основном методом литья по выплавляемым моделям по повышенной степени точности. Поскольку жаропрочные сплавы трудно поддаются обработке резанием, а некоторые из них (ЖС6У и др.) не поддаются пластической деформации, то единственным экономически целесообразным методом их производства оказался метод точного литья по выплавляемым моделям. Только таким методом можно отливать пустотелые турбинные лопатки из сплава  [c.117]

Согласно отраслевому стандарту авиационной промышленности ОСТ 1.41793-78 жаропрочные турбинные лопатки изпзтовляют методом литья по выплавляемым моделям без припуска на механическую обработку по перу. При этом отраслевой стандарт устанавливает только три класса повы[иенной степени точности размеров (Лт1, Лт2, ЛтЗ) (табл. 29).  [c.117]

Обычно температура затормошенного газа в выходном сопле значительно выше температуры заторможенного газа в диффузоре (Г > Уд). Тогда из равенства работ компрессора и турбины вытекает, что степень уве-диченпя давления воздуха в компрессоре выше степени уменьшения давления в турбине т. е. при Т) Т1 1 имеется избыточное давление в реактивном сопле двигателя. Это необходимо для того, чтобы скорость истечения из сопла Ша и соответственно реактивная тяга были достаточно велики (как на старте, так и в полете). Турбореактивный двигатель развивает обычно значительную стартовую тягу.  [c.57]

Ту или иную степень действия упругих сил наглядно иллюстрирует типичная схема гидроустановки, представленная на рис. 14-1. Напорный туннель АВ, примыкающий непосредственно к водохранилищу, переходит в напорный трубопровод (один или несколько), подводящий воду к турбинам. Ббльщая часть напора, образованная разностью уравнений в водохранилище и отводящем канале гидростанции, за исключением потерь в туннеле и трубопроводе, используется турбинами. При большей длине такой напорной системы в месте перехода от туннеля к трубопроводу обычно устраивается так называемый уравнительный резервуар (башня).  [c.134]

Это объясняется большей степенью расширения, которая будет в цикле V = onst, а следовательно, и большими значениями термического к. п. д. Несмотря на это преимущество, цикл с подводом теплоты при V = onst широкого применения в пра тике не нашел в связи с усложнением конструкции камеры сгорания и ухудшением работы турбины в пульсирующем потоке газа,  [c.167]

Для регулируемых и пуско-предохранительных гидром фт после выбора их основных размеров рекомендуется определить максимально допустимую степень заполнения рабочей полости, исходя из условий нормального пуска двигателя Л1 . < (0,9-г-- 0,95) Л4эп,а,(, где п — максимально допустимый передаваемый момент гидромуфтой при заторможенном турбинном колесе (см. рис. 14.12). Затем по Л4,. и уравнению (14.23) определяют максимально допустимый коэффициент момента  [c.248]

Из формулы (10.35) следует, что при постоянном значении показателя адиабаты к термический к. п. д. цикла с подводом теплоты при р = idem и ф = 0 зависит только от степени повышения давления в компрессоре С = рг1р1 и не зависит от интервала температур, в котором этот цикл осуществляется. Вместе с тем из соотношения (10.37) следует, что термический к. п. д. цикла ГТУ увеличивается с повышением максимальной температуры в процессе подвода теплоты Тз, так как при этом работа расширения в турбине увеличивается по сравнению с работой сжатия в компрессоре — соотношения (а), (б), (в). При заданном значении степени повышения температур в цикле 0 = Тз/Ti  [c.151]

Для действительного цикла максимальному значению к.п. д. ГТУ соответствует оптимальное значение степени повышения давления в компрессоре Сот = (Ра/рОопт, при этом заданной является степень повышения температур в цикле 0 = T /Ti Тз — абсолютная температура продуктов сгорания на входе в турбину, Tl — абсолютная температура воздуха на входе в компрессор.  [c.152]


Смотреть страницы где упоминается термин Степень турбины : [c.65]    [c.170]    [c.21]    [c.297]    [c.316]    [c.140]    [c.140]    [c.36]    [c.257]    [c.85]    [c.103]   
Теплотехника (1986) -- [ c.179 ]



ПОИСК



Изменение общей степени неравномерности при изменении условий работы турбины

Модельные ступени турбин степень реакции

Определение оптимальных степени парциальности и отношения исад одноступенчатой активной турбины

Расчет экономичности и степени реакции в турбинных ступенях

Степень диффузности турбины

Степень повышения давления турбины

Степень понижения давления в турбине

Степень расширения газа в турбин

Степень реактивности компрессора турбины

Степень реакции ступени турбины

Степень реакции. Активная и реактивная турбины

Турбинный цех степень использования



© 2025 Mash-xxl.info Реклама на сайте