Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Технологическая жесткость станков

Технологическая жесткость станков 359 Тороидальная поверхность 380 Точность кинематических цепей 363 Точность станков  [c.467]

В вопросах технологии за основу приняты представления, выработанные советской школой ([12, 23, 1, 28] и др.) о технологической системе станок—приспособление—инструмент—деталь с параметром системы жесткость. Но в книге выделены настраиваемые элементы системы (станок—приспособление—инструмент) с параметром износ и элементы — проводники воздействия внешнего фактора, чаще всего соответствующие в обычной схеме элементу деталь. Предполагается, что управление системой, связанное с обеспечением качества продукции, осуществляется только в процессе таких наладок (подналадок), которые меняют распределение признака качества (они именуются в книге настройками). Между настройками система работает автономно, подчиняясь детерминированным законам механики, с одной стороны, и статистическим закономерностям (перманентностям), с другой. Особое внимание уделено физической природе и статистическим проявлениям ненормальностей технологической системы (гл. 2, 10).  [c.10]


Увеличенное рассеяние признака качества. Эта разновидность ненормальностей при механической обработке нередко состоит в уменьшении жесткости технологической системы станок—приспособление—инструмент—деталь, вследствие чего на признаке качества в большей степени сказываются дисперсии многочисленных случайных слагаемых вектора усилия обработки. Но нередко причиной могут оказаться нарушения допуска на припуски, загрязнение базисных поверхностей и др. Моменты возможного возникновения ненормальностей а) обычно возникает постепенно вследствие износа (засорения) станка или приспособления б) может возникнуть при наладке, например в результате использования пружинящих подкладок, установки резца с большим вылетом и пр. в) может возникнуть с доставкой очередной партии заготовок с чрезмерной дисперсией припуска. Форма проявления — увеличение среднего квадратического отклонения мгновенного распределения х, о чем судят по различиям между наблюденными значениями признака качества х в выборке (интуитивно или опираясь на математико-статистические методы).  [c.33]

На основании перечисленных особенностей разработана лабораторная автоматизированная система диагностирования шлифовальных станков-автоматов, включающая измерение и анализ их основных характеристик, отдельных узлов и параметров технологического процесса. Система позволяет установить взаимозависимость между отдельными параметрами и их связи с показателями качества. Она включает в себя (см. рисунок) датчики (Д ,. . Д,) основных параметров мощности, потребляемой в процессе шлифования и на холостом ходу, измерений вибраций шпинделя круга, биения шпинделя, давления масляного тумана в шпинделе, осевого смещения шпинделя, измерения статической и динамической жесткости станка, засаливания шлифовального круга, числа оборотов шлифовального круга, измерения уровня вибрации и отклонения точности перемещения узла правки, числа оборотов обрабатываемого изделия, измерения припуска, дифференцирования сигнала припуска, температурной деформации обрабатываемой детали, числа оборотов шпинделя изделия, уровня  [c.116]

Жесткостью технологической системы станок — деталь — инструмент называют отношение составляющей усилия Ру, направленной по нормали к обрабатываемой поверхности, к смещению лезвия инструмента у относительно детали, отсчитываемому в том же направлении  [c.88]

Схема алгоритма адаптивного управления точностью механической обработки представлена на рис. 8.2. Конкретизация алгоритмов функционирования отдельных блоков (функциональных модулей) осуществляется с учетом особенностей используемого оборудования и специфики решаемой задачи. Например, выбор алгоритмов в случае обработки резанием определяется числом деталей в партии, способом базирования заготовок, формой деталей и требованиями к точности их изготовления, технологическими возможностями используемых станков. Важную роль при этом играет технологическая жесткость заготовки, определяемая отношением ее длины к диаметру (в случае деталей типа тел  [c.276]


Расчет на жесткость предусматривает ограничение упругих перемещений деталей в пределах, допустимых для конкретных условий работы. Такими условиями могут быть условия работы сопряженных деталей (например, качество зацепления зубчатых колес и условия работы подшипников ухудшаются при больших прогибах валов) и технологические условия (например, точность и производительность обработки на металлорежущих станках в значительной степени определяются жесткостью станка и обрабатываемой детали).  [c.6]

При растачивании отверстий на токарных станках их жесткость значительно понижается из-за низкой жесткости расточной скалки и стыка скалка-суппорт. В этом случае жесткость станка зависит от вылета и диаметра скалки. Деформация часто достигает половины от общей деформации технологической системы.  [c.85]

При производственном методе испытания на жесткость проводят в процессе обработки заготовки с разной глубиной резания и неизменными остальными элементами режима резания. Обработку ведут на коротких участках, после чего измеряют высоту уступа на обработанной поверхности. Разница величин уступов является следствием различного отжатия заготовки, обусловленного глубиной резания. Чем меньше отжатие детали, тем меньше погрешность, тем выше жесткость станка или жесткость технологической системы (деформацией заготовки при испытании пренебрегают).  [c.48]

Модернизация металлорежущих станков производится в целях повышения производительности станков, облегчения условий труда при работе на станках, обеспечения более полного использования режущих свойств современных режущих инструментов (повышение быстроходности, увеличение мощности), повышения жесткости и вибро-устойчивости, концентрации операций и переходов, автоматизации цикла работы станков, расширения их технологических возможностей, расширение пределов размеров обрабатываемых деталей, обеспечение возможности обработки фасонных поверхностей и т. п., изменения технологического назначения станков, повышения точности обработки деталей на станках, обеспечения безопасности работы и достаточной долговечности отдельных деталей и станков в целом.  [c.244]

Влияние жесткости технологической системы станок — приспособление — инструмент — заготовка  [c.315]

Одна из основных причин — это деформация технологической системы станок—приспособление—заготовка—инструмент под влиянием усилий резания. В результате непостоянства припуска, обусловленного погрешностью формы заготовки, и переменной жесткости  [c.358]

Силы, возникающие при формировании резьбы на станках, передаются на упругую технологическую систему станок — приспособление — инструмент — деталь (сокращенно система СПИД), вызывая ее деформацию. Способность упругой системы оказывать сопротивление действию сил, стремящихся ее деформировать, характеризует ее жесткость /.  [c.53]

У — жесткость технологической системы да — податливость технологической системы Ус — жесткость станка гг с — податливость станка Уд — жесткость обрабатываемой детали те>д — податливость обрабатываемой детали Луп. — жесткость супорта суп. податливость супорта ] . б. жесткость передней бабки  [c.285]

Качественное своеобразие рассматриваемых операций приводит к тому, что заключение по аналогии не может дать достоверного вывода, так как всестороннего сходства между операциями не бывает, в частности различными у наблюдаемых и аналогичных им операций будут жесткости станков, размеры и погрешности выполнения обрабатываемых заготовок, режимные условия обработки, методы получения заданных размеров и другие технологические факторы.  [c.11]

Особенностью многорезцовых державок является установка в одном инструментальном гнезде револьверной головки (стойки) двух резцов и более. Применение таких державок создает возможность сокращения основного и вспомогательного времени, а также использования в наладке большего количества режущих инструментов, следовательно, расширения технологических возможностей станков. Однако в условиях мелкосерийного производства многорезцовые державки эффективны только в том случае, если они универсальны (т. е. возможна установка резцов на любом расстоянии друг от друга в пределах габаритов державки), обладают высокой жесткостью, простотой в изготовлении и удобством в настройке.  [c.55]


Выбор оборудования. Выбор станка — одна из важных задач при проектировании технологического процесса обработки резанием. Для любой операции всегда можно подобрать соответствующий станок. Исключениями являются некоторые операции в массовом производстве, для которых экономически целесообразно изготовлять специальные станки. При проектировании технологических процессов серийного производства, где наряду со специальными используют и универсальные станки, выбор последних производят по следующим показателям 1) вид обработки — токарная, фрезерная, сверлильная и т. п. 2) точность и жесткость станка 3) габаритные размеры станка (высота и расстояние между центрами, размеры стола) 4) мощность станка, частота вращения шпинделя подачи и т. п. 5) цена станка.  [c.48]

Технологическая система станок — инструмент — деталь представляет собой упругую систему, деформации которой под действием сил, возникающих при обработке, вызывают погрешности в точности обработки. Поэтому придание деталям и узлам машины достаточной жесткости и сохранение ее в процессе эксплуатации является гарантией обеспечения необходимой технологической точности.  [c.191]

Обычно ширина фасонных резцов не превышает 40ч-60 мм, лишь в отдельных случаях применяются более широкие плоские резцы (до 150 мм). Ширина фасонных резцов ограничивается жесткостью технологической системы станок — инструмент — обрабатываемая деталь при обработке широким резцом возникает  [c.269]

Эти станки обладают значительными преимуществами по сравнению с другими одношпиндельными автоматическими станками. Прежде всего необходимо иметь в виду широкую универсальность копировальных станков и большие технологические возможности их. Высокая мощность главного привода и жесткость станка обеспечивают возможность широкого применения современных твердых сплавов при значительных сечениях снимаемой стружки.  [c.290]

Входным сигналом для упругой системы и выходным для процесса резания является сила резания, входным сигналом для процесса резания и выходным для упругой системы является относительное перемещение режущего инструмента и обрабатываемой заготовки в направлении изменения толщины срезаемого слоя. Каждый из этих элементов имеет свою передаточную функцию, по которой может быть построена амплитудно-фазовая частотная характеристика. Величина вектора АФЧХ упругой системы при нулевой частоте, который обозначен через ky, называется статической характеристикой упругой системы. Она близка к величине, обратной технологической жесткости станка. Величина радиуса-вектора амплитудно-фазовой характеристики процесса резания при нулевой частоте называется коэффициентом резания и обозначается через kp.  [c.58]

Для создания теоретических основ технологии машиностроения большое значение имели работы Н. А. Бородачева по анализу качества и точности производства К. В. Вотинова, осуществившего обширные исследования жесткости технологической системы станок — приспособление — инструмент — заготовка и ее влияния на точность обработки А. А. Зыкова и А. Б. Яхина, положивших начало научному анализу причин возникновения погрешностей при обработке. В 1959 г. вышла книга В. М, Кована Основы технологии машиностроения , обобщившая научные положения технологии машиностроения и методику технологических расчетов, относящиеся к различным отраслям машиностроения. Задачи экономии металла и повышения производительности труда при механической обработке теоретически обоснованы Г. А. Шаумяном.  [c.7]

Технологические возможности станков с ЧПУ обусловлены их универсальностью, повышенными жесткостью, мощностью привода и точностью, многоинструментальностью, автоматизацией цикла технологических операций, широким диапазоном частот вращения шпинделя и подач, наличием корректоров положения инструментов, возможностью ручной коррекции подач, режимов интерполяции, сокращением вспомогательного времени благодаря высоким скоростям вспомогательных ходов и малым затратам времени на смену инструментов.  [c.218]

Точность технологического процесса является наиболее сложным его свойством, на которое воздействуют многие факторы (рис. 7). Работы автора и других исследователей [9—16 19 21 24 25] показали, что решающее влияние на точность обработки деталей на токарных автоматах и полуавтоматах оказывают точность и жесткость станка и технологической оснастки, методы наладки станков и износ режущего инструмента. Эти вопросы подробно расмотрены в гл. IV—VI данной работы.  [c.26]

Проектирование теоретической точностной диаграммы и расчет числовых значений ее параметров оа, b i), Ок, ао, l(t), аь и т. д.) должны производиться при проектировании технологического процесса или анализе действующего процесса, исходя из имеющихся сведений об аналогичных и ранее изученных процессах, стойкости и износе инструмента, режиме резания, технических условиях на заготовки, точности и жесткости станка, тепловом режиме, погрешностях работы оборудования при типичных технологических процессах и т. д. Расчет ведется теоретиковероятностным методом.  [c.36]

Механнзмы подач и их приводы. К основным критериям механизмов подач (обычно шариковых, винтовых и волновых передач в современных станках с ЧПУ и многоцелевых станках, гидро-или пневмоцилиндров в ряде других видов оборудовани ) относятся равномерность подачи выходного звена, сохранение в про цессе работы заданного усилия подачи, жесткости (предварительного натяга), малое время восстановления скорости при реакции на нагрузку, влияющее на точность положения и стойкость инструмента, динамические характеристики. С учетом температурных деформаций эти свойства определяют также и технологическую надежность. Дополнительно к механизмам подач предъявляется требование защиты от перегрузок, что особенно актуально в условиях полной автоматизации работы технологических модулей ж мелкосерийного производства, когда технология не всегда достаточно отработана. Для ряда видов обработки важное значение имеет также такой критерий, как точность и время позиционирова-лия выходного звена — каретки или стола (более подробно эти вопросы рассмотрены в следующем разделе). Требования к приводу те же, что и у привода главного движения,— высокий КПД, уменьшение затрат времени на переключение подач, снижение динамических нагрузок на детали привода, шума и вибраций, обес печение высокой равномерности движения и надежности привода. Длительность сохранения технологической надежности станков существенно зависит от долговечности и свойств поверхностного слоя направляющих, винтовых пар и редукторов механизмов но-дач.  [c.27]


Технологические исследования наладки включают исследования условий зажима заготовки, ее деформаций, изучение действующих усилий ргзания. Они сочетаются с исследованиями жесткости технологической системы станок — приспособление — инстру-мент-деталь (СПИД). Приведенные примеры исследований не исчерпывают всех видов эксплуатационных испытаний станков, но они иллюстрируют их взаимосвязь и связь с решением задач технической диагностики.  [c.8]

В курсе лекций, читаемых в МАТИ, большой раздел посвящается вопросам технологической надежности станков, зависящей от процессов, происходящих в самих станках во время их работы вибрации, изменений жесткости, температурных деформаций, износа и др. Для закрепления знаний по вопросу влияния изменений температурных полей станка на точность параметров изготавливаемых на этом станке деталей, сборник включает лабораторную работу Исследование влияния тепловых деформаций станка на его технологическую надежность . В работе студенты знакомятся с методикой исследования температурных полей и тепловых деформаций стенда на базе токарно-револьверного автомата 1Б118, изучают приборы и аппаратуру для измерения температуры и тепловых деформаций, производят настройку станка и необходимые измерения, а также оценивают во времени смещение уровня настройки станка и стенда. Смещение настройки станка из-за тепловых деформаций оценивается по изменению выбранных геометрических параметров типич ной детали, обрабатываемой на станке.  [c.307]

Микрогеометрия поверхности, обработанной одним и тем же методом, зависит от режимов резания, геометрических параметров рабочего инструмента, жесткости технологической системы станок — заготовка — инструмент, степени затупления инструмента и от сма-зывающе-охлаждающей жидкости. При одних и тех же условиях обработки чистота поверхности зависит от обра батываемого материала  [c.424]

В качестве входных переменных могут быть не только погрешности заготовок, но также и регистрируемые параметры, относящиеся к преобразующей (технологической) системе. Так, для конкретных технологических операций ими могут быть настроечный размер, температура нагрева, жесткость станков и т. д.  [c.72]

При оценке факторов, влияющих на технологическую наследственность, учитываются условия формирования поверхностного слоя, ми1фогеометрия поверхности, наклеп поверхностного слоя, остаточные напряжения, жесткость и тепловые деформации технологической системы станок - приспособление - инструмент - деталь. Может сказываться также несовершенство методов межоперационного контроля деталей.  [c.344]

Кроме того, жесткость станка, определяемая в статическом состоянии, лишь приблизительно характеризует упругие перемещения станка в процессе работы. Поэтому разработаны методы испытания станков в производственных условиях (в процессе обработки). Производственный метод испытания жесткости станков, разработанный кафедрой технологии мащиностроения СПбГПУ (ЛПИ), основан на том, что при обработке заготовки с неравномерным припуском (изменяющаяся глубина резания t) форма заготовки (эксцентричность, ступенчатость) копируется на обработанной поверхности (детали). Степень копирования тем больше, чем меньше жесткость технологической системы. При принятых условиях проведения опыта влияние всех факторов, кроме жесткости станка, практически исключается.  [c.74]

Технологическая система станок—заготовка—инструмент—приспособление не является вполне жесткой, а деформируется под влиянием усилий, возникающих в процессе обработки. Начало исследованиям жесткости металлорежущих станков и их узлов было положено К. В. Вотиновым в 1936 г. [9]. В последующее время исследования жесткости проводились в ЭНИМСе, Ленинградском политехническом институте. Московском станкоинструментальном институте, МВТУ им. Баумана и в ряде других втузов, а также на передовых машиностроительных заводах. Эти работы сыграли большую роль в познании явления упругих отжатий элементов технологической системы и позволили наметить пути повышения точности и производительности обработки.  [c.22]

Многоцелевой горизонтальный сверлильно-фрезерно-расточ-ной станок мод. 2204ВМ1Ф4 (рис. 23.31) предназначен для комплексной обработки сложных корпусных деталей размером до 400 X 400 X 400 с четырех сторон без переустановки. Широкие технологические возможности станка определяются значительным диапазоном частот вращения шпинделя, регулируемых бесступенчато (40...5000 об/мин), и рабочих подач (1...1000 мм/мин), большой мощностью привода глазного движения (11 кВт) и высокой статической и динамической жесткостью станка.  [c.473]

Примечания. 1. Для торцово-коничссхих фраз ргкомвн-дуется выбор наименьшей величины угла 9, допускаемой условиями жесткости технологической систедш (станок—инструмент— деталь).  [c.177]

Ресурс инструментов является функцией комплекса факторов. К их числу относятся свойства инструментального материала, включающие химический состав (марка материала), структурное состояние, твердость, пределы прочности на растяжение, изгиб и сжатие, температуростой-кость (красностойкость), износостойкость конструкция инструментов — оптимальная форма режущей части, жесткость, точность изготовления режимы резания — скорость резания, подача и глубина резания, смазывающе-охлаждающая жидкость, принятый критерий износа состояние металлорежущего станка — жесткость станка и технологической оснастки, виброустойчивость.  [c.13]


Смотреть страницы где упоминается термин Технологическая жесткость станков : [c.6]    [c.355]    [c.30]    [c.97]    [c.134]    [c.154]    [c.28]    [c.25]    [c.63]    [c.336]    [c.587]    [c.11]    [c.481]   
Металлорежущие станки (1973) -- [ c.359 ]



ПОИСК



Влияние жесткости технологической системы станок — приспособление — инструмент — заготовка

Расчеты жесткости, податливости и отжатий технологической системы станок — заготовка — инструмент

Станок жесткость

Точность и жесткость металлорежущих станков и технологической оснастки



© 2025 Mash-xxl.info Реклама на сайте