Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозия Влияние на предел металлов

На предел выносливости существенное влияние оказывает коррозия. Это влияние будет различным в том случае, когда металл, подвергавшийся коррозии до испытания на усталость, не подвергается ей при испытаниях, и в случае, когда металл подвергается коррозии во время испытаний. В обоих указанных случаях, особенно во втором, коррозия вызывает резкое снижение пределов выносливости (до 70—80%). При этом снижение предела выносливости при наличии коррозии тем более сильно выражено, чем выше предел прочности металла и чем больше последний склонен к коррозии.  [c.608]


Влияние температуры на усталостно-коррозионное разрушение материалов прежде всего связано с процессом подвода деполяризатора, природой и свойствами пленок, образующихся на поверхности металла, их способностью раскрывать и залечивать коррозионные поражения. Результаты коррозионно-усталостных испытаний при повышенных температурах, проведенных применительно к бурильным трубам в аэрированном буровом растворе, приведены на рис. 53. С ростом температуры до 60 °С увеличивается растворимость кислорода в буровом растворе, условный предел коррозионной усталости на базе 10 млн. циклов снижается, а при температуре 90 °С в связи с уменьшением растворимости кислорода скорость коррозии снижается. Условный предел коррозионной усталости при 90 °С растет более чем в 1,5 раза по сравнению с испытаниями при 60 °С.  [c.110]

Фретинг-эффект. Сильное влияние на усталостную прочность титановых сплавов оказывает фретинг-эффект, или контактная коррозия в местах сопряжения. Наличие контактного трения при циклическом нагружении у всех металлов приводит к заметному снижению усталостной прочности, особенно в коррозионных средах. Титановые сплавы в этом отношении мало отличаются от сталей, близких к ним по прочности [106, 158—160]. Возникающее контактное трение (в местах заделок, прессовых посадок, креплений и пр.) резко снижает усталостную прочность, действуя подобно концентратору напряжений. Степень снижения ее в основном зависит от сопряженного материала, вызывающего фретинг-эффект, удельного давления в месте сопряжения и окружающей среды. Удельное давление [ 158, 160] сильно влияет только при низких значениях. При более прочных креплениях или плотных посадках при удельных давлениях более 30—50 МПа усталостная прочность изменяется мало. Так, прессовая посадка втулки с удельным давлением 50 МПа снижает усталостную прочность технически чистого титана с 320 до 112 МПа [ 158]. Дальнейшее увеличение удельного давления посадки до 200 МПа снизило O j до 103 МПа. В среднем предел выносливости при наличии фретинг-эффекта у титановых сплавов на воздухе при контактировании с однородным сплавом 20- 40 % от исходного предела  [c.161]


Как и язвенная коррозия, коррозионное растрескивание под напряжением происходит преимущественно на пассивированных металлах в пределах области критических потенциалов. На уровень предельных потенциалов кроме специфических свойств материалов и сред оказывают влияние также вид и величина механических нагрузок. Съем металла (потеря массы) при коррозионном растрескивании под напряжением может быть чрезвычайно малым или даже равным нулю. Разрушение может развиваться вдоль границ зерен (межкристаллитно) или через зерна (транскристаллитно).  [c.71]

Помимо метеорологических факторов, оказывающих влияние на продолжительность нахождения влажной пленки на поверхности металла, не менее важное значение при атмосферной коррозии металлов имеет химический состав атмосферных осадков. Осадки, выпадая, увлекают за собой частицы твердых, жидких и газообразных веществ самого различного происхождения, благодаря чему происходит увеличение концентрации электролитов. Постоянными компонентами атмосферы являются азот, кислород, углекислый газ, атмосферная вода и инертные газы. Концентрация промышленных газов, а также морских солей колеблется в довольно широких пределах в зависимости от характера промышленных районов, географических условий и сезонных циклов. В приморской зоне в атмосферных осадках доминируют хлоридно-натриево-сульфатные соли, а вдали от моря — гидро-карбонатно-кальциево-сульфатные. Атмосферные осадки в промышленных районах содержат в основном сернистые соединения, являющиеся коррозионноактивными веществами. Так на территории Батумского машиностроительного завода, расположенного на расстоянии примерно 1,5 км от морского побережья, скорость коррозии стали почти в 3 раза больше, чем в промышленном районе, удаленном от побережья, и приморских районах.  [c.19]

Влияние коррозии на предел выносливости металлов  [c.465]

Резиновые материалы, за исключением силиконовых, рекомендуется применять при температурах не выше +70 С. Сохранение эластичных свойств при низких температурах является характеристикой, которая меняется в широких пределах в зависимости от типа базового каучука, однако состав смеси и особенно пластификаторы также оказывают значительное влияние на эту характеристику. Благодаря отсутствию у резин способности поглощать и удерживать влагу, они не вызывают коррозии фланцев, но в случае применения некоторых металлов на поверхности их может появиться коррозия или другие дефекты, обусловленные наличием в резиновой смеси различных ингредиентов. Например, серебро при соприкосновении с резиной, в состав которой входит сера, покрывается пленкой окислов и тускнеет.  [c.241]

Величина pH котловой воды оказывает заметное влияние на стойкость слоя магнетита. Минимальная коррозия стали наблюдается при значении pH, замеренном при комнатной температуре, в пределах 11 —12. Коррозия при более низких значениях pH происходит вследствие разрядки ионов водорода, которые составляют основную массу находящихся в воде восстанавливающих ионов, и невозможности образования защитного окисного слоя. При значениях рН>12 появляется тенденция к утолщению слоя магнетита в результате диффузии железа из металла, находящегося ниже, что может привести к разрушению этого слоя. Интенсивность такого щелочного воздействия на сталь быстро возрастает при значениях рН>14. Из приведенных соображений следует, что поддержание щелочности воды в требуемых пределах играет весьма важную роль в предотвращении коррозии паровых котлов.  [c.201]

Влияние коррозии. Резкое снижение пределов выносливости получается при воздействии коррозионной среды (например, пресной или морской воды) на металл детали или образца в процессе их усталостных испытаний. Явление постепенного накопления повреждений в металле под воздействием переменных напряжений и коррозионной среды называется коррозионной усталостью.  [c.120]

Температура оказывает влияние на концентрацию веществ, в частности растворенных в электролите газов, участвующих в процессе. Это типично для коррозии металлов в нейтральных средах при восстановлении кислорода на катоде. Из-за десорбции кислорода из раствора при повышении температуры его содержание в среде может уменьшаться до такого предела, что процесс коррозии замедляется.  [c.179]


Определенное влияние на скорость коррозии металлов в морской воде оказывают ее.температура и степень насыщения кислородом. Наибольшую температуру, которая в зависимости от географического положения колеблется в пределах от —2 до +30 °С, имеют поверхностные слои воды. Вследствие значительного перепада температур между поверхностными и более глубокими слоями воды на корпусах судов или каких-то других конструкциях могут образовываться участки с различной аэрацией, причем поверхности, соприкасающиеся с более нагретыми слоями воды, усиленно корродируют.  [c.94]

Увеличение концентрации кислорода или других окислителей обычно повышает скорость коррозии, как это, например, имеет место в рассматриваемом нами случае (см. рис. И), однако обычно одновременно уменьшается площадь коррозионного воздействия (вероятность коррозии). Часто скорость коррозии увеличивается до определенного предела, после которого наблюдается ее торможение. Противоречивое влияние окислителей на коррозию металлов связывают с тем, что они, с одной стороны, являются деполяризаторами, а с другой, могут значительно укреплять защитные пленки на поверхности металлов.  [c.61]

Содержащиеся в щелочной воде хлориды и сульфаты способствуют рассредоточению коррозии по поверхности стали, контактирующей с этими растворами. Однако практическая польза от такого рассредоточения является кажущейся, так как эти вещества при температуре в пределах 40—90° С способствуют одновременному усилению общей, а в конечном счете и местной коррозии. Влияние ионов ЗО " на развитие коррозии в щелочной воде, насыщенной кислородом по конечному коррозионному эффекту, мало чем отличается от воздействия на металл ионов хлора.  [c.332]

Переменное напряжение при циклической нагрузке, не влияя на ход общей коррозии, вызывает развитие глубинной>у коррозии (этот термин можно ввести для обозначения коррозии, протекающей в микротрещинах усталости. Межкристал-литная и внутрикристаллитная коррозии — частные случаи глубинной коррозии). Глубинная коррозия, как показали наши исследования, вызывает на поверхности металла значительное число (в основном внутрикристаллитных) микротрещин, содержащих в себе продукты окисления. В неактивной среде, количество микротрещин, появляющихся под влиянием переменных напряжений, гораздо меньше и зависит от величины коэффициента циклической перегрузки, причем при малых коэффициентах может наблюдаться появление. лишь одной трещины усталости. В отличие от этого в коррозионной среде, даже при коэффициенте циклической перегрузки, равном 1 (расчет по условному пределу выносливости при 20 10 ), исследуемый металл весь покрывается перпендикулярными к действующим нормальным напряжениям микротрещинами [48].  [c.174]

Совокупность первого участка околошовной зоны и пограничного участка металла шва именуют зоной сплавления или переходной зоной. Свойства переходной зоны оказывают подчас решающее влияние на работоспособность сварной конструкции. На этом участке часто образуются трещины, ножевая коррозия, усталостные разрушения при вибрационной нагрузке, хрупкие разрушения и т. п. Поэтому дальнейшее изучение свойств переходной зоны представляет первостепенный интерес. Ширина переходной зоны зависит от природы источника нагрева, теплофизических свойств, состава и толщины (до определенных пределов) основного металла, режима сварки и других факторов.  [c.92]

Хром повышает коррозионную стойкость стали, образуя на поверхности металла плотную пассивирующую пленку железохромистых окислов или адсорбированного (химически сорбированного) слоя кислорода. Содержание хрома в количестве 17—20% достаточно для создания высоких антикоррозионных свойств у стали. Однако кажущееся, на первый взгляд, безусловно полезным дальнейшее повышение содержания хрома, в самом деле не целесообразно, так как избыток хрома сверх этого предела приводит к более раннему (по времени при более низких температурах) выпадению карбидов хрома, а вместе с тем к более раннему появлению склонности к межкристаллитной коррозии. Действительно, как показывают эксперименты, дальнейшее увеличение концентрации Х рома не оказывает существенного влияния на стойкость стали в окислительных средах (рис. 13) [73]. Положительное влияние легирования хромом в количестве около 17—20% на коррозионную стой- кость железохромистых сплавов состоит в резком, скачкообразном смещении потенциала в положительную область (рис. 14) 30  [c.30]

На практике в широких пределах плотностей тока изменяется вместе с плотностью тока в гораздо меньшей сте-лени, чем до тех пор, пока не наступает пассивное состояние или не появляется твердый осадок. Так как Р сильно изменяется от одного металла к другому, то очевидно, что природа катодного материала (его способность использовать кислород) будет оказывать очень большое влияние на скорость коррозии. При полном отсутствии кислорода выделение водорода является единственно возможной катодной реакцией, и тогда при данной э. д. с. и сопротивлении цепи катодный металл с низким напряжением (стр. 339) будет способствовать гораздо большей коррозии на аноде, чем металл с высоким перенапряжением.  [c.61]

Примеси с низким перенапряжением оказывают очень большое влияние на коррозию магния в растворах хлоридов. Если содержание примесей ниже некоторого критического значения (0,017% для железа и 0,0005% для никеля), то скорость коррозии вскоре становится незначительной. Это, по-видимому, связано с тем, что гидроокись, получаюш,аяся в результате взаимодействия между хлористым магнием, образующимся на аноде, и гидроокисью натрия, образующейся на катодных участках, закрывает эти участки и коррозия прекращается. При содержании примесей в количествах, превышающих эти пределы, коррозия не прекращается и продолжается с большой скоростью. Было высказано предположение, что если число частичек примеси достаточно большое (и поэтому они расположены близко друг к другу), то коррозия, вызываемая одной частичкой, приведет к обнажению новой частички еще до того, как сама она обособится (в результате коррозии под ней) от массы металла или покроется гидроокисью магния. Наблюдения Бека, очевидно, подтверждают такое предположение. По этим наблюдениям при добавлении 8% алюминия к чистому магнию упомянутое выше критическое значение для железа значительно меняется по величине, но оно отмечается при том же расстоянии между железосодержащими частичками, которые, как полагают, являются катодами. Если расстояние между частичками настолько велико, что одна частичка отделяется от массы металла до того, как вскрывается следующая, то скорость коррозии не достигает больших значений [25].  [c.299]


Коррозионно-эрозионные повреждения твердых металлов повышаются при увеличении потока жидкого металла и его плотности. Они не наблюдаются для сталей в жидком литии даже при высоких скоростях, возникают в жидких натрии и калии при скорости выше 8—10 м/с, а в жидких висмуте, свинце и ртути — при скорости выше 3 м/с. Указанные пределы скоростей превышать не рекомендуется. Более подробно эти вопросы так же, как и эффекты влияния среды на металл, испытывающий действие напряжений, рассматриваются в ч. II применительно к коррозии металлов в жидких электролитах (см. с. 332).  [c.147]

Влияние коррозионного процесса на усталость выражается главным образом в ускорении пластической деформации, сопровождающейся образованием выступов и впадин. Именно поэтому разрушение от коррозионной усталости не является результатом аддитивного действия коррозии и усталости, а всегда больше их суммы. Такое влияние коррозии объясняет также, почему уровень устойчивости к коррозионной усталости в большей степени определяется коррозионной стойкостью, чем прочностью на растяжение. При низкой частоте нагружения предел коррозионной усталости снижается, так как увеличивается время коррозионного воздействия за один цикл [81]. КРН и коррозионная усталость имеют разные механизмы, поэтому чистые металлы, устойчивые к КРН, подвержены действию коррозионной усталости в той мере, в какой они подвержены общей коррозии.  [c.163]

Было обнаружено, что в нейтральных растворах хлоридов включения серы в прокатанную сталь действуют как инициаторы питтингообразования [36,37]. С другой стороны, отмечено, что, примесь серы в стали, содержащей более 0,01 % Си, не оказывает существенного влияния на скорость коррозии в кислотах [33, 38]. Измерения скорости проникновения водорода сквозь катодно-поляризованную. листовую сталь, содержащую игольчатые включения (FeMn)S, показывают, что H S, образующийся на поверхности металла в результате растворения включений, стимулирует (промотирует) проникновение водорода в сталь. Скорость проникновения увеличивается с повышением содержания серы в пределах 0,002—0,24 % S, но только на тех участках, где поступление HjS идет в результате растворения включений [39]. Включения игольчатых сульфидов способствуют водородному охрупчиванию, которое может приводить к быстрому или постепенно развивающемуся растрескиванию, например, стальных трубопроводов [40].  [c.125]

Для того чтобы коррозионный процесс оказывал влияние на усталостную прочность, скорость коррозии должна превышать некое минимальное значение. Эти величины удобно определять путем анодной поляризации опытных образцов в деаэрированном 3 % растворе Na l. При этом скорость коррозии рассчитывают по закону Фарадея из плотностей тока и определяют критические значения, ниже которых коррозия уже не влияет на усталостную прочность. (Эти измеренные плотности тока не зависят от общей площади поверхности анода.) Значения минимальных скоростей коррозии при 30 цикл/с для некоторых металлов и сплавов приведены в табл. 7.5. Можно ожидать, что эти значения будут увеличиваться с возрастанием частоты циклов. Для сталей критические скорости коррозии не зависят от содержания углерода, от приложенного напряжения, если оно ниже предела усталости, и от термообработки. Среднее значение 0,58 г/(м сут) оказалось ниже общей скорости коррозии стали в аэрированной воде и 3 % Na l, т. е. 1—10 г/(м -сут). Но при pH = 12 скорость общей коррозии падает ниже критического значения и предел усталости вновь достигает значения, наблюдаемого на воздухе [721. Существование критической скорости коррозии в 3 % Na l объясняет тот факт, что для катодной защиты стали от коррозионной усталости требуется поляризация до —0,49 В, тогда как для защиты от коррозии она составляет —0,53 В.  [c.160]

Известно, что влияние природы и концентрации солей в водном растворе может быть различным. Влияние гидролизующихся солей зависит от того, повышают или понижают они pH среды при гидролизе. С увеличением концентрации таких солей растет кислотность или щелочность раствора и соответственно меняется скорость коррозии. Если растворенные в воде соли способствуют образованию труднорастворимой защитной пленки, то скорость коррозии металла уменьшается по сравнению с коррозией в воде. С увеличением концентрации соли этот эффект растет, но обычно до определенного предела. В этом плане равновесие между карбонатом, бикарбонатом и двуокисью углерода имеет определенное значение. Двууглекислые соли кальция или магния при разложении по реакции Са(НСОз i2 СаСОз + С02 + Н2О образуют осадок углекислых солей в виде защитного слоя на поверхности металла. В присутствии значительного количества СО2 в воде приведенная реакция идет в обратном направлении, осадок не выпадает, и даже ранее выпавший осадок может раствориться, и защитный слой разрушается.  [c.27]

Контакт воды с металлической поверхностью приводит к коррозии металлов, протекающей по электрохимическому механизму. Величина водонефтяного соотношения, характерного для конкретного месторождения, при котором система нефть — вода становится неустойчивой, может быть использована в качестве параметра для прогнозирования скорости коррозионного разрушения оборудования. Углеводороды практически не вызывают коррозию металлов. Однако неполярная фаза в системе нефть — вода оказывает значительное влияние на коррозионную активность водонефтяной системы в целом, повышая или понижая ее. Повышение защитного действия углеводородной составляющей в эмульсионной системе вода — нефть связано в основном с ингибирующими свойствами ПАВ, входящими в природную нефть. Наиболее активные ПАВ — нафтеновые н алифатические кислоты и асфальтосмолистые вещества. Содержание ПАВ в нефтях различных месторождений колеблется в широких пределах. Молекулы нафтеновых и алифатических кислот состоят из неполярной части — углеводородного радикала и полярной части карбоксильной группы, что обусловливает их способность адсорбироваться на границе раздела фаз. Соли нафтеновых кислог более полярны, чем сами кислоты, и более поверхностно-активны. Величина поверхностного натяжения на границе раздела вода — очищенная фракция нефти (например, вазелиновое масло или очищенный керосин) составляет 50—55 мН/м, в то время как поверхностное натяжение на границе раздела вода — сырая нефть не превышает 20—25 мН/м. Это свидетельствует об адсорбции поверхностно-активных компонентов нефти на границе раздела сырая нефть—вода. В щелочной пластовой воде происходит реакция взаимодействия нафтеновой кислоты с ионом щелочного металла. Образующееся соединение более поверхностно-активно, чем нафтеновые кислоты.  [c.122]

Разрушение защитных пленок может также наступить при химическом воздействии на них концентрированных едкого натра или кислых солей при упаривании воды. При этом едкий натр наиболее опасен для металла, так как он не упаривается досуха вследствие того, что при 320 °С переходит в расплав, обладающий весьма высокой коррозионной агрессивностью. При оценке влияния солей на устойчивость пленок необходимо иметь в виду, что в результате испарения на поверхности нагрева возникает тонкий пленочный слой воды с большой концентрацией веществ, находящихся в растворенном и нерастворенном состоянии в воде всего объема котла. Естественно, что температура в граничном слое выше температуры всего объема воды. Протекание всех водно-химических реакций и коррозионного процесса завершается в данном слое. В граничном слое могут образовываться отложения веществ, хотя концентрация их в объеме воды далека от предела растворимости. Поэтому на поверхности металла при испарении воды могут осаждаться легкорастворимые в воде соли, концентрация которых быстро достигает предела растворимости при испарении воды в граничном слое. Эти соли затем снова переходят в раствор, т. е. в ядерный слой воды всего объема котла при его остановке. Явлению хайд аута наиболее сильно подвержены МззР04 и другие фосфаты натрия, растворимость которых при 340 С снижается до 0,2 %, (25—30 % при комнатной температуре). Под слоем соединений фосфатов, выпадающих на поверхности стали, может развиваться пароводяная коррозия с образованием бороздок, что обусловлено разрушающим действием отложений на защитные пленки. В реакции с железом принимает участие как кислый фосфат, так и концентрат щелочи — продукты гидролиза тринатрийфосфата. Продуктом хайд аута является НагНР04, который разъедает металл.  [c.180]


Особенно большое влияние на долговечность конструкций при колебаниях температуры оказьщает коррозия, так как при коррозии на поверхности образуется мелкая сетка трещин, которые повреждают наружный слой металла и являются концентраторами напряжений. В свою очередь, переменные напряжения способствуют разрушению окисной пленки и облегчают непосредственный контакт металла с теплоносителем, что также усиливает коррозию. С(сорость роста трещин при этом увеличивается во много раз. При воздействии коррозионной среды предел вьшосливости сталей значительно снижается, причем различные стали имеют существенно различную чувствительность к воздействию коррозионной среды.  [c.47]

Исследования Уоткинса и Райта [233] коррозии стали под влиянием растворенных в воде О2, СОа, H2S в концентрациях, встречающихся при эксплуатации нефтяных скважин (О2 = 2-ь8лг/тг СО2 = = 20 750 мг1л H2S = 20—2640 мг л ) показали, что скорость коррозии под влиянием растворённого кислорода почти пропорциональна его концентрации в растворе, однако только до определенного предела. Коррозия в этом случае имела точечный характер, типичный для кислородной коррозии. В результате коррозии под влиянием растворенного углекислого газа язв на поверхности металла было меньше, чем при коррозии под влиянием кислорода, но эти язвы были более глубокими.  [c.22]

Коррозионное повреждение оказывает серьезное влияние на механические свойства металла. При образовании окисла на металлической поверхности количеств остающегося металла умень шается, и при его нагружении действующие напряжения возрастут. То же самое справедливо при растворении металла. В любом случае при превышении предела прочности при растяжении металла образец разрушится. Однако помимо этих простых соображений следует считаться с особыми видами механического разрушения металлов, которые либо имеют место только в условиях коррозии, либо значительно усиливаются в коррозионных средах. Они представляют собой главнейшую причину разрушения конструкций и включают  [c.166]

Для сварного соединения наибольшее значение имеет электрохимическая коррозия, происходящая из-за образования гальванических пар и протекания электрического тока вследствие взаимодействия металла с электролитически проводящей средой. Различные зоны сварного соединения имеют на поверхности разные электрические потенциалы и вследствие этого могут выступать в роли микроэлементов. Такими микроэлементами являются сварной шов, зоны перегрева, перекристаллизации, максимальной пластической деформации и основной металл. Наибольшее влияние на скорость и распределение коррозионных процессов оказывает разница в хилмическом составе участков, образующих гальванические пары. В случае макропары, образованной сварным швом и основным металлом, усиленному разрушению подвергается шов, если он является анодом. Это наиболее неблагоприятный случай электрохимической коррозии. Кроме того, коррозионные процессы (табл. 30) происходят за счет образования микропар вследствие микронеоднородности (структурной и химической) в пределах каждой зоны сварного соединения.  [c.168]

Электрохимический механизм протекания процесса предполагает, что окисление и восстановление подчиняются свойственным им зависимостям между потенциалом и током, где ток выражает скорость процесса. Кинетика коррозии определяется кинетикой окисления металла и восстановления окислителя. Необязательно, чтобы эти два процесса происходили на одной точке поверхности металла. Электрон, освобожденный металлом в одной точке, может переместиться в соседнюю и там присоединиться к окислителю. Перемещение электрона в пределах металла на малые расстояния происходит практически беспрепятственно, вследствие высокой электронной проводимости. Точки, где осуществляются элементарные акты оКЙсления или восстановления, могут мигрировать на поверхности металла, меняться местами и т. д., подчиняясь законам случайности. Под влиянием различных причин они могут быть фикси-  [c.164]

В тех случаях, когда при коррозии на поверхности металла образуется окисный (или солевой) слой в виде сплошного, изолирующего ее от раствора чехла, дальнейшее анодное окисление металла непременно будет включать стадию доставки участников реакции через этот слой. Поскольку перенос вещества через твердую фазу в обычных условиях процесс довольно медленный [1], можно предполагать, что стадия переноса через слой окисла, по крайней мере в некоторых случаях, окажется наиболее медленной стадией, определяющей скорость процесса окисления металла в целом. Экспериментальное выявление концентрационной поляризации в твердой фазе представляет, однако, известную трудность. Прямые методы обнаружения концентрационной поляризации, применяющиеся при исследовании реакций с переносом реагентов в растворе (по влиянию конвекции или по изменению концентрации реагентов), в данном случае непригодны. Из косвенных, релаксационн ых методов исследования высокочастотные методы имеют ограниченную применимость. Они не могут обнаружить концентрационную поляризацию тогда, когда для ее проявления требуется время, более длительное, чем длительность единичного импульса, которая у этих методов очень мала. При импедансном методе, например, она не превышает нескольких миллисекунд, так как нижний предел рабочих частот у этого метода не ниже 200 гц. Следовательно, в случаЖс, когда для проявления концентрационной поляризации необходимо, например, несколько секунд или минут, этот метод обнаружить ее не сможет. Такие случаи, оказалось, не так уже редки на практике, и применение к ним высокочастотных методов может привести к ошибочным выводам относительно природы скорость определяющей стадии процесса [2]. Вероятность возникновения такого случая увеличивается, как увидим ниже, при замедлении электрохимической стадии процесса, т. е. при его истинной пассивации . Поскольку именно пассивные металлы представляют для нас наибольший интерес, требовалось изыскать метод, который был бы в принципе свободен от указанного ограничения. В поисках его мы обратили внимание на метод потенциостатической хроноамперометрии, предложенный и апробированный на реакциях, протекающих с пе-  [c.80]

При оценке влияния солей на устойчивость пленок необходимо иметь в виду, что в результате испарения воды в котле на поверхности нагрева возникает тонкий пленочный слой воды с большой концентрацией веществ, находящихся в растворенном и нерастворенном состоянии. Температура воды в граничном слое выше температуры ее внутри объема котла, т. е. в ядре потока. В силу этого обстоятельства на поверхности металла при испарении воды могут высаживаться легкорастворимые в воде соли, концентрация которых легко достигает предела растворимости при испарении воды в граничном слое. Эти соли затем снова переходят в раствор, т. е. в ядерный слой воды всего объема котла при его останове. Подобному явлению так называемого хайдаута ( прятанию солей) наиболее сильно подвержены КазР04 и другие фосфаты натрия, растворимость которых при температуре 340°С понижается до 0,2% против растворимости 25—30% при нормальной температуре. Под слоем соединений фосфатов, выпадающих на поверхности стали, может развиваться пароводяная коррозия в виде бороздок, что обусловлено разрушающим действием отложений на защитные пленки.  [c.152]

Агнью, Труит и Робертсон [16] провели детальное исследование факторов, оказывающих влияние на коррозию металлов в растворах этиленгликоля. Они установили, что скорости коррозии исследованных металлов при всех параметрах или линейно зависят, или уменьшаются со временем. Скорости коррозии, измеренные в одном и том же растворе, были равны пли ниже тех скоростей, которые наблюдались в условиях замены раствора свежим во время испытания. При этом коррозия меди и латуни оказалась заметно более чувствительной к замене раствора, чем коррозия стали и припоя. Было установлено также, что для получения оптимальной защиты pH раствора следует поддерживать в пределах от 6 до 9. Отклонение от этого предела (в сторону как более высоких, так и более низких pH) приводило к значительному увеличению скорости коррозии. Увеличение pH до значений больше 10 способствовало особенно быстрому разрушению алюминия и припоя. В 40%-ном водном растворе гликоля зависимость скоростей коррозии от температуры не подчиняется обычным закономерностям. По мере приближения к тем пературе кипения раствора скорость коррозии не уменьщается, как можно было бы ожидать, учитывая быстрое снижение растворимости кислорода. В случае меди и латуни отмечается явная зависимость скорости коррозии от содержания кислорода, влияние которого на коррозию других металлов оказывается значительно меньшим. Наличие в системе ионов хлора увеличивает скорость коррозии, что особенно заметно  [c.145]

В соответствии с электрохимической теорией коррозионной усталости, развитой Г. В. Акимовым [81], на поверхности металла появляются местные изт язвления, на дне которых, вследствие концентрации напряжений, возникает более положительный потенциал, чем у стенок или у внешней поверхности металла. Поэтому дно изъязвлений становится анодным участком, способствуя этим дальнейшей коррозии и углублению изъязвлений. ]Троцесс коррозии нарастает до тех пор, пока под влиянием циклического нагружения, усиленного концентрацией напряжений в данном месте металла, не будет превзойдена величина предела текучее и и но образуется тре-пдипа усталости.  [c.175]


В приведенных выше формулах для упрош ения пренебрегается влиянием азота [200]. Его содержание в хромоникелевых сталях редко превышает 0,05% и колеблется в пределах 0,02—0,03%. Но даже повышенное содержание азота (около 0,2%) не влияет на сйлонность к межкристаллитной коррозии [97, 104]. Это нельзя распространить на стабилизированные стали. Неблагоприятное действие азота в сварных швах сталей, стабилизированных титаном, объясняется его отрицательным влиянием на способность титана или других карбидобразующих элементов образовывать карбиды, оказывающие стабилизирующее действие. Но при малых количествах азота наблюдалось положительное влияние, вызванное измельчением и соответствующей дезориентацией микроструктуры наплавленного металла при одновременном уменьшении содержания феррита [240].  [c.85]

Анализ исследований, выполненных в нашей стране и за рубежом, позволяет отметить следующие характерные особенности воздействия сероводорода на металлы. Воздействие сероводорода проявляется тем сильнее, чем выше прочностные характеристики металла - твердость, предел текучести и предел прочности. Механические напряжения играют большую роль в процессе коррозионного растрескивания, стимулируя электрохимическое локальное растворение металла, и, как следствие, зарождение и развитие трещин. Степень коррозионного воздействия 3 1висит от отношения приложенного напряжения к пределу текучести. Исследования влияния pH раствора на коррозию малоуглеродистых сталей в системе НгЗ - СО - НгО показали значительное снижение коррозии с переходом от кислых к нейтральным и щелочным растворам. Считается, что при pH > > 10 коррозионное растрескивание не происходит. Необходимым условием для протекания активных процессов коррозии в сероводородсодержащих средах является наличие влаги, в которой сероводород нгосодится в диссоциированном состоянии. При этом коррозионные процессы приобретают электрохимический характер, катодный процесс протекает с водородной деполяризацией, в результате которой появляется водород в атомарной и молекулярной формг1х. При относительно малой влажности (4-26 %) сероводород оказывает незначительное влияние на углеродистые стали, вызывая за 30 сут только потускнение его поверхности. Наличие капельной влаги увеличивает коррозию сталей примерно в 100 раз по сравнению с сухим газом [138]. С повышением внутренних напряжений возникает  [c.18]

Азот оказывает косвенное влияние на коррозионную стойкость сварных соединений аустенитных сталей, предотвращая наклеп металла в околошовной воне [40]. Так, при сварке стали 03Х18Н11, содержащей 0,02% углерода, обнаруживается более интенсивная коррозия в зоне, прилегающей к шву (рис. 1.38). Это вызвано тем, что в околошовной зоне возникают напряжения в металле и его наклеп. В средах повышенной агрессивности наклепанный металл околошовной зоны в паре с металлом, расположенным вдали от шва, является анодом и растворяется более интенсивно. При введении в сталь 0,26% азота повышаются ее прочностные характеристики — предел текучести возрастает от 25 до 41 кГ/мм. Благодаря этому предотвращается наклеп металла в околошовной зоне и степень ее коррозии становится равной степени коррозии свариваемого металла.  [c.68]

Пленки, находящиеся на поверхности металла, будут подвергаться воздействию электролита в первую очередь. Под действием электролита пленки могут разрушаться, и тогда поверхность электрО Отрицательных участков будет увеличиваться, и общий потенциал металла будет смещаться в электроотрицательную сторону [10]. Но они могут и упрочняться под действием кислорода, находящегося в электролите, или в результате образования новых пленок из продуктов коррозии в этом случае потенциал электрода может смещаться в электроположительную сторону. На потенциал металла может оказывать влияние кислоро д, находящийся в элёктролите, если он является деполяризатором катодных участков потенциал металла в этом случае может смещаться в электроположительную сторону. В случае когда потенциал электрода является потенциалом второго рода, потенциал металла со временем будет медленно изменяться до наступления равномерного состояния, отвечающего насыщению раствора труднорастворимым соединением, образовавшимся в результате взаимодействия металла и раствора. Указанные факторы изменяют потенциал во времени в опытах с 3 /о-ным водным раствором Na l в пределах 10—100 мв, в зависимости от природы чистых металлов.  [c.105]

Тонкая обработка поверхности (тонкая шлифовка, полировка), как правило, повышает коррозионную стойкость металлов, облегчая образование более совершенных и однородных пассивных и других защитных пленок, а также повышает предел коррозионной усталости (см. с. 338). Это влияние сказывается главным образом в начальной стадии коррозии, пока не исчезает в результате коррозии металла его исходная поверхность, и имеет большое практическое значение в мягких условиях коррозии, например при атмосферной коррозии металлов. Ниже приведены данные В. О. Кренига о влиянии характера обработки поверхности углеродистой стали (0,8% С) на ее коррозионную стойкость во влажной атмосфере — время до начала коррозии, сут.  [c.326]

ВОДОЙ валки прокатных станов. Влияние коррозионной усталости значительно сильнее, чем сумма раздельных влияний коррозии и усталости. В табл. 48 приведены значения пределов усталости и коррозионной усталости различных металлов, а на рис. 235 — диаграммы Вёлера для стальной канатной проволоки в воздухе (кривая У) и в морской воде без защиты (кривая 6) и с различной защитой (кривые 2—5).  [c.337]


Смотреть страницы где упоминается термин Коррозия Влияние на предел металлов : [c.43]    [c.45]    [c.159]    [c.383]    [c.249]    [c.40]    [c.316]   
Справочник машиностроителя Том 6 Издание 2 (0) -- [ c.6 , c.85 , c.88 , c.91 ]



ПОИСК



Коррозия влияние

Коррозия металлов

Металлы Предел выносливости — Влияние коррозии



© 2025 Mash-xxl.info Реклама на сайте