Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Линия диффузионная

Итак, равновесная кристаллизация происходит без переохлаждения, причем состав кристаллов (и ранее выпавших, и образующихся при данной температуре) одинаков. Это значит, что одновременно с процессом выделения кристаллов протекают диффузионные процессы выравнивания состава жидкой фазы и насыщения ранее выпавших кристаллов до концентраций,, определяемых соответствующими точками на линиях ликвидус и солидус.  [c.140]


Диффузионный перлитный распад без предварительного выделения феррита или цементита происходит в области I левее линии SE ему предшествует выделение феррита, а правее линии SG — выделение цементита.  [c.253]

Если изменить условия диффузии кислорода, перемешивая раствор, общая кривая катодной поляризации расположится несколько ниже первой (пунктирная линия), а предельный диффузионный ток возрастает.  [c.263]

Рис. 3,7. Схема газового термометра НБЭ для высоких температур. Штриховыми линиями обозначены те части схемы, которые могли быть изолированы для последующей откачки [31]. 1 — к форвакуумному насосу 2 — к манометру 3 — газоанализатор 4 — ионный манометр 5 — мембранный манометр 6 — к диффузионному насосу 7 — молекулярные сита 8 — колба газового термометра 9 — и-образный ртутный манометр 10 — регулятор II — откачка. Рис. 3,7. <a href="/info/432594">Схема газового</a> термометра НБЭ для <a href="/info/46750">высоких температур</a>. <a href="/info/1024">Штриховыми линиями</a> обозначены те части схемы, которые могли быть изолированы для последующей откачки [31]. 1 — к <a href="/info/104047">форвакуумному насосу</a> 2 — к манометру 3 — газоанализатор 4 — ионный манометр 5 — <a href="/info/384011">мембранный манометр</a> 6 — к диффузионному насосу 7 — молекулярные сита 8 — колба <a href="/info/3930">газового термометра</a> 9 — и-образный <a href="/info/115237">ртутный манометр</a> 10 — регулятор II — откачка.
Поэтому при больших степенях переохлаждения (низких температурах) вследствие уменьшения скорости диффузии (коэффициента диффузии D) (рис. 22) образование зародышей и их рост затруднены. Вследствие этого, число зародышей и скорость их роста уменьшаются. При очень низких температурах (большой степени переохлаждения) диффузионная подвижность атомов столь мала, что большой выигрыш объемной свободной энергии AF при кристаллизации оказывается недостаточным для образования кристаллических зародышей и их роста (ч. 3. = О, с. р. = 0). В этом случае после затвердения должно быть достигнуто аморфное состояние. Для металлов в обычных условиях реализуются лишь восходящие ветви скорости образования зародышей (ч. з.) и скорости роста (с. р.) (рис. 22 сплошные линии). Металл в этих условиях затвердевает раньше, чем достигаются степени переохлаждения, вызывающие снижение ч. з и с. р. Скорость образования зародышей и линейная скорость роста кристаллов определяют скорость кристаллизации. Средняя скорость изотермической кристаллизации о с увеличением степени переохлаждения, как и ч. 3. и с. р. сначала растет, достигает максимума, а затем падает (рис. 22).  [c.35]


Перемещение дислокации возможно н путем переползания. Переползание — это диффузионное смещение дислокационной линии или ее части вследствие присоединения межузельных атомов или вакансий. При этом дислокации из одной плоскости переходят в другую.  [c.44]

Оценим теперь толщину диффузионного следа за газовым пузырьком. Будем предполагать, что линия тока, ограничивающая область, занятую внешним диффузионным пограничным слоем, ограничивает и область диффузионного следа. Можно считать, что внешний диффузионный пограничный слой при 9 = 71/2 кончится на расстоянии порядка Я (11/Ре ) от начала координат. Тогда из выражения (2. 5. 4) для функции тока потенциального течения жидкости получаем, что значение функции тока на линии тока, ограничивающей область диффузионного следа за газовым пузырьком и область внешнего диффузионного пограничного слоя, изменяется в зависимости от значения критерия Ре следующим образом  [c.260]

Рис. 8.20. Изменение режима гетерогенной реакции в зависимости от температуры (слева от штриховой линии — кинетический, справа — диффузионный) Рис. 8.20. Изменение режима <a href="/info/103612">гетерогенной реакции</a> в зависимости от температуры (слева от <a href="/info/1024">штриховой линии</a> — кинетический, справа — диффузионный)
При травлении границы зерен проявляются в виде четкой тонкой линии шириной около 10 мкм, т. е. на два порядка меньшей, чем ширина зон срастания (рис. 13.11). Эффект травления границ связан со скоплением примесей в результате процесса их сегрегации в приграничных зонах с искаженной решеткой. В случае малого количества примесей в металле или быстрого охлаждения, когда диффузионный процесс сегрегации не успевает произойти, эффект травления ослабевает или исчезает полностью. На свободной, чистой от оксидов поверхности границы зерен выявляются в виде канавок термического травления. Канавки образуются в результате местной пластической деформации, вызванной уравновешиванием сил граничного и поверхностного натяжения. Термическое травление не связано с сегрегацией примесей, поэтому оно выявляет границы в низколегированных сплавах и чистых металлах, а также в случае больших скоростей охлаждения после затвердевания литого металла.  [c.503]

Для ускорения диффузионных процессов, выравнивающих содержание углерода в зернах аустенита, сталь обычно нагревают до температуры выше линии GSE на 30—50 °С и делают при ней выдержку, достаточную для выравнивания состава во всех зернах. Нагрев до более высоких температур нежелателен ввиду роста ау-стенитных зерен, влекущего ухудшение прочностных свойств стали.  [c.33]

Растягивающие остаточные напряжения с максимумом у линии раздела диффузионный слой—подложка (рис. 15, б, справа) могут иметь место, например, при химико-термической обработке поверхностно-обезуглероженных сталей. Иногда наибольшее значение сжимающих и растягивающих напряжений вследствие релаксационных явлений находится не у самой поверхности, а на некоторой глубине (рис. 15, в).  [c.75]

Эти методы применялись и к сплавам внедрения. Для случая атомов углерода, внедренных в а-железо [76], оказалось, что стабильной конфигурацией атома углерода является такая, когда он находится в центре октаэдрического междоузлия ОЦК решетки. При диффузионном перемещении атома углерода он двия ется вдоль прямых линий, проходя последовательно от октаэдрического в тетраэдрическое и в следующее октаэдрическое междоузлие. Находясь в октаэдрическом междоузлии, атом углерода раздвигает два ближайших атома железа, по четыре более удаленных атома слегка смещаются к атому С. Появляющееся поле деформации п вызывает деформационное упорядочение атомов углерода (см. 15).  [c.91]

Тогда отнесенные к единице объема величины И], П2 и вероятности р1, р2 тоже являются функциями ж. Рассмотрим отмеченные на рис. 61 плоскости 7 и II, перпендикулярные оси X и находящиеся одна от другой на расстоянии йх = я/4. В принятой модели диффузионные переходы атомов С между этими плоскостями возможны только с междоузлий М плоскости 7 на междоузлия М2 плоскости 77 по путям, отмеченным на рис. 61 толстыми линиями, и обратно. Прочие междоузлия плоскости 7 в переходах между плоскостями 7 и 77 участия не принимают.  [c.255]


В этом методе источником возбуждения спектра служит разряд между шлифом и установленным параллельно плоскости шлифа лезвием. Полученный таким путем линейный источник света резко фокусируется на щель спектрографа. В сфотографированном спектре изменение интенсивности по высоте спектральной линии соответствует изменению концентрации элемента вдоль исследуемого участка поверхности образца. Таким образом по данным спектрограммы можно построить график распределения элементов в диффузионной зоне.  [c.187]

Внедренные в 1950—1965 гг. в производство новые типы контактных машин, особенно многоточечных, разработанных ВНИИЭСО, заводом Электрик и другими заводами, обеспечивают высокую производительность, стабильность качества соединений, возможность сварки элементов из сталей и цветных металлов больших и малых толщин. В настоящее время в СССР рядом научных организаций и заводов созданы различные машины для контактной сварки, автоматы и полуавтоматы для дуговой сварки, источники питания с полупроводниками, а также машины, автоматы и поточные линии с использованием новых процессов сварки (электронным лучом в вакууме, сварка трением, диффузионная сварка и др.).  [c.137]

Пример построения вакуумной системы с предельным остаточным давлением выше 6,5-10 5, приведен на рис. 16. Высоковакуумный затвор 1 изолирует вакуумную систему от контакта с атмосферой во время установки нового образца. Применение байпасной линии с вентилем 11 позволяет исключить непроизводительные потери времени на охлаждение и разогрев пароструйного диффузионного насоса  [c.301]

Область диффузионного контроля скорости коррозии ограничена пунктирными линиями. Слева от этой области начинается заметное выделение водорода, а справа— падение скорости коррозии с увеличением значения pH. При рН >10,0 скорость коррозии стали ири всех концентрациях кислорода практически равна нулю [Л. 14].  [c.55]

Очистку можно проводить диффузионным методом (рис. 12.1) с периодическим заполнением емкости очистителя (ловушки) жидким металлом из запасного бака или теплообменного аппарата либо циркуляцией на байпасной линии (рис. 12.2).  [c.277]

Не 2 - Нг = 297 К. Сплошные линии — диффузионный термоэффект и термодиффузия учтены, пунктир — без учета этих эффектов.  [c.262]

Рис. 163. Изоконцеитрационные линии (пунктир) и линии диффузии (сплошные) при диффузии кислорода к поверхности круглого катода К через плоско-параллельный диффузионный слой Рис. 163. Изоконцеитрационные линии (пунктир) и линии диффузии (сплошные) при <a href="/info/183399">диффузии кислорода</a> к поверхности круглого катода К через плоско-параллельный диффузионный слой
На рис. 4.23, а показана небольщая часть фазовой диаграммы бинарного сплава А—В, обогащенного компонентом А. Основы фазовых диаграмм рассмотрены в работе [33]. Вместо плавления и затвердевания при единственной температуре Та сплав, содержащий примесь б в Л и имеющий концентрацию В, в идеальном случае плавится в интервале температур от Ту до 7з. Диаграмма на рис. 4.23, а составлена для растворенного вещества В, которое понижает точку плавления вещества А. Заметим, что обе температуры Ту н Тз лежат ниже точки плавления чистого металла А. При охлаждении сплава состава Ву из области жидкости и при условии, что переохлаждение отсутствует, зарождение твердой фазы начинается при температуре Гь Твердая фаза, появившаяся при этой температуре, имеет состав б] и оставляет жидкость состава Ьу. При дальнейшем охлаждении осаждается большее количество твердой фазы, имеющей состав, который изменяется вдоль линии солидуса. Состав оставшейся жидкости изменяется по линии ликвидуса. При температуре Т твердая фаза имеет состав бз, жидкая — Ьз, а при температуре Тз твердая фаза состава бз находится в равновесии с жидкостью состава бз. До сих пор считалось, что скорость охлаждения бесконечно мала, так что всегда поддерживается равновесный состав. Другими словами, твердая фаза состава б], появившаяся первой, успела диффузионно перейти в состав бз, пока температура падала до Тз. Поскольку диффузия в твердом состоянии всегда медленна, а скорость охлаждения не может быть бесконечно мала, концентрационное равновесие никогда не достигается, в результате чего при температуре ниже Тз состав твердой фазы оказывается между 61 и 63, а жидкость с избытком В не затвердеет окончательно, пока температура не достигнет Т .  [c.170]

Модель Ньюмена, учитывающая чисто диффузионный механизм массоперепоса в газовой фазе, может быть применена только для очень маленьких газовых пузырьков, диаметр которых не превышает 0.3 мм. Согласно эксперимента.льным данным [841, в пузырьках газа диаметром более 0.3 мм существует развитое течение газа, представляющее собой вихрь Хилла (см. рис. 6). Рассмотрим модель массопереноса, учитывающую наличие циркуляционного течения внутри газовых пузырьков [82 ( (модель Кронига — Бринк). Будем считать, что Ре со. Перейдем в уравнении (6. 1. 1) с краевыми условиями (6. 1. 2) —(6.1.4) и замыкающими соотношениями (6. 1. 5), (6. 1.6) к криволинейной системе координат (рис. 74). Семейство координатных линий I здесь выбрано таким образом, чтобы оно с точностью до постоянного множителя совпадало с линиями тока [)р=соп81. Второе семейство координат ортогонально первому  [c.239]

Из соотношения (6. 4. 40) следует, что в случае Ре 1 длина диффузионного следа намного больше радиуса зоны циркуляционного течения Ь р- И. На расстояниях порядка Я концентрация целевого компонента меняется па величину с Я/Ь) с(1/Ре -), т. е. почтине меняется. Поэтому можно считать, что при движении вдоль линии тока во внутреннем следе концентрация целевого компонента также остается практически постоянной.  [c.261]


Это уравнение называют логарифмическим. Соответственно, график, построенный в координатах у — g t + onst) или у — — Ig t (при t > onst) имеет вид прямой линии. Логарифмическое уравнение, впервые полученное Тамманном и Кестером [11], отражает поведение многих металлов (Си, Fe, Zn, Ni, Pb, d, Sn, Mn, Al, Ti, Та) на начальных стадиях окисления. Вначале справедливость этого уравнения ставилась под сомнение. Были сделаны попытки вывести уравнения на основе предположений о существовании специфических свойств оксидов, таких как наличие диффузионных барьеров и градиентов ионной концентрации и других. Эти предположения не получили экспериментального подтверждения. С другой стороны, было показано, что логарифмическое уравнение можно вывести из условия, 4TQ скорость окисления контролируется переходом электронов из металла в пленку продуктов реакции, причем эта пленка имеет пространственный электрический заряд во всем своем объеме (7, 12]. Преобладание заряда, обычно отрицательного, в оксидах вблизи поверхности металла, подобно электрическому двойному слою в электролитах, было установлено экспериментально. Таким образом, любой фактор, изменяющий работу выхода электрона (энергию, необходимую для удаления электрона из металла), например ориентация зерен, изменения кристаллической решетки или магнитные превращения (точка Кюри), изменяет скорость окисления, что и наблюдалось в действительности [13—15. Когда толщина пленки превышает толщину пространственно-заряженного слоя, определяющим фактором обычно становится скорость диффузии или миграции сквозь пленку. При этом начинает выполняться параболический закон, и ориентация зерен или точка Кюри перестают оказывать влияние на скорость окисления. Исходя из этого, можно сказать, что в начальной стадии оксидная пленка на металлах  [c.193]

На рис. 8.18 представлено решение этого уравнения в виде изо-хрон концентраций (линий для постоянного значения времени), причем с увеличением времени при данном значении х (расстояние от начального сечения) концентрация возрастает и стремится к значению Со/2. Расчет развития диффузионных процессов на основании второго закона Фика сохраняется для жидких и для твердых сред, но коэффициенты диффузии будут Значительно меньше, чем для газообразных систем.  [c.303]

Термодинамика полиморфного превращения. Термодинамический анализ основан на рассмотрении изменений свободной энергии в зависимости от температуры и состава (рис. 13.2). Полиморфное превращение в сплаве Со при охлаждении происходит в интервале температур гч—г. Свободная энергия фаз а и 7 (f и Fy соответственно) в системе твердых растворов А (В) зависит от состава и описывается кривой с минимумом. При понижении температуры Fa и Fy повышаются, а их минимумы смещаются по оси концентраций В При температурах Та и ниже fa и Fy пересекаются друг с другом. Общие касательные к кривым Fa и Fy определяют концентрацию фаз, при которых они будут находиться в равновесии (для а-фазы линия А В для 7-фазы линия А В"). Точки на касательных, соответствующие Со (k, I н п), определяют свободную энергию смеси равновесных фаз fa-i-v При температуре выше или равной TgFa Fy (точки р а q), поэтому полиморфное превращение с образованием смеси равновесных фаз может произойти Рис. 13.2. Изменение свободной ТОЛЬКО В результате ДИффуЗИОН-энергнн фаз в зависимости от тем- перераспределения в в ис-  [c.492]

Линия, отделяющая диффузионно устойчивые (метастабиль ные) состояния (7.70) от неустойчивых (лабильных) состояний, для которых d nildxi<0, дц21дх2<0, в этом случае также носит название спинодали. Точки 5 и С на рис. 7.2 расположены на спи-нодали участок ВС отвечает неустойчивы (лабильным) состоя ниям.  [c.163]

НАБЛЮДЕНИЕ ЛИНИИ ДЕКОРИРОВАННЫХ ДИСЛОКАЦИИ В СВЕТОВОМ МИКРОСКОПЕ. Метод декорирования дислокаций в прозрачных кристаллах заключается в том, что в кристалл при его выращивании или диффузионным путем вводят примесь, атомы которой притягиваются к дислокациям. При соответствующей термической обработке область вокруг линии дислокации оказывается пересыщенной примесью, которая выделяется в виде мельчайших частиц вдоль линии дислокации. Эти непрозрачные частицы, рассеивающие свет, делают видимой линию дислокации, хотя диаметр ее ядра находится за пределами разрещающей способности обычного микроскопа. Таким способом наблюдали дислокации в хлористом натрии, хлористом калии, галоидных соедине-  [c.100]

Прерывистый характер процесса ползучести при макросдвиге дает основание предполагать, что процесс макродвижения по границам зерен осуществляется вследствие двух процессов сдвига по островкам хорошего соответствия и самодиффузии, упорядочивающей области больших нарушений. Межзеренное проскальзывание можно наблюдать по рельефу на поверхности шлифа деформированного металла. По границам зерна образуются каемки, свидетельствующие о наличии выступов и впадин. Происходящее вертикальное смещение (перемещение зерна) по отношению к поверхности шлифа позволяет с помощью интерференционного микроскопа определять величину пластической деформации, вызванной межзеренным смещением. Результаты измерений (рис. 100) дают основание считать, что доля скольжения по границам зерен мала и составляет приблизительно 10% от полной деформации (егр/е л 0,1). Эта величина зависит от угла разориентации 0, температуры, скорости деформации, приложенного напряжения, величины зерна. Например, величина смещения, а следовательно, и erp/8j увеличивается с уменьшением величины зерна и возрастанием напряжения при данной температуре (рис. 101,а). С повышением температуры отношение 8rp/ej благодаря диффузионным процессам возрастает до 0,3 (рис. 101,6). Д, Мак Лин теоретически доказал, что вклад в общую деформацию от межзеренных смещений не может быть выше 33% от общей деформации. Только в том случае, если процесс деформирования сопровождается миграцией границ, доля зернограничной  [c.173]

Для обеспечения совместности и предотвращения разрушения в этом случае требуется диффузионное движение атомов, или дуффузионно-скользящее движение дислокаций. Мак Лин показал, что его аккомодационное движение вызывает пластическую деформацию в направлении действующего усилия. При выполнении этих условий можно ожидать практически неограниченную пластическую деформацию с достаточно высокой скоростью, зависящей от размера зерна. Следует отметить, что значительный вклад в деформацию зернограничное проскальзывание вносит лишь при достаточно высоких температурах. Обычно при этих температурах возможно действие и диффузионных механизмов деформации.  [c.180]

Для ряда покрытий сжимающие остаточные напряжения имеют максимум у линии раздела защитный слой — подложка (рис. 15, б, слева). Такая эпюра напряжений может иметь мёсто при насыщении углеродистых сталей некарбидообразующими элементами, оттесняющими углерод из зоны насыщения в глубь основного металла, а также при получении защитных покрытий гальванотермическим способом. При диффузионном отжиге деталей с гальваническими покрытиями, металл которых способен диффундировать в сталь, на границе раздела покрытие—подложка будет возникать диффузионный слой, обладающий большим удельным объемом, чем основной металл покрытия, что вызовет в этом месте появление сжимающих напряжений.  [c.75]


Рис. 17. Распределение остаточного аустенита в диффузионном слое стали марки 12Х2Н4, цементованной в твердом карбюризаторе на глубину мм (сплошные линии) и 2 мм (штриховые линии), закаленной с под-стуживанием с 840 С (кривая /) и обработанной холодом при — 72°С (кривая 2). Кривые построены на основании рентгеноструктурного анализа и магнитнотермического изучения стали с различным со-держан>1ем углерода Рис. 17. Распределение остаточного аустенита в <a href="/info/145767">диффузионном слое</a> <a href="/info/277022">стали марки</a> 12Х2Н4, цементованной в <a href="/info/152370">твердом карбюризаторе</a> на глубину мм (<a href="/info/232485">сплошные линии</a>) и 2 мм (<a href="/info/1024">штриховые линии</a>), закаленной с под-стуживанием с 840 С (кривая /) и обработанной холодом при — 72°С (кривая 2). Кривые построены на основании <a href="/info/1423">рентгеноструктурного анализа</a> и магнитнотермического изучения стали с различным со-держан>1ем углерода
На второй стадии старения, протекающей со значительно меньшей скоростью, чем первая, процесс распада идет путем диффузионного роста зародышей, образовавшихся на первой стадии. При высокой плотности дефектов строения в аустените, диффузия должна происходить в основном вдоль линий дислокаций и поэтому энергия .ак гивации процесса близка к энергии активации зёрнограничной диффузии. Однако в начале второй стадии некоторые из зародышей (сегрегаций), возникших на первой стадии, оказываются лестабйльными и растворяются, а более ста-44 .  [c.44]

Исследованиями установлено, что сварка теплоустойчивых сталей больших толщин должна производиться с применением предварительного и сопутствующего подогрева. Для уменьшения величины остаточных напряжений сварное соединение после сварки должно подвергаться отпуску при температуре, не превышающей температуру отпуска стали до сварки. Во избежание значительного укрупнения зерен и падения ударной вязкости по линии сплавления, сварка должна осуществляться на режимах с ограниченными тепловложе-ниями. Для предотвращения развития диффузионных процессов необходимо стремиться максимально приблизить химический состав шва к составу основного металла. Наилучшие результаты по получению заданного (требуемого) химического состава металла шва определены при легировании через сварную проволоку.  [c.121]

Слой выявляется в виде нетравящейся зоны или столбчатых зерен, отделенных от сердцевины линией раздела, глубже которой содержание А1 в стали незначительно. К линии раздела примыкает зона диффузионного слоя, состоящая из а-твердого раствора А1 в железе примерно в середине слоя наблюдаются иглы и сетка, по-видимому, соединения Fe Al, а у самой поверхности должны располагаться интерметал-лиды (главным образом FeAl и FeAl ).  [c.178]


Смотреть страницы где упоминается термин Линия диффузионная : [c.398]    [c.313]    [c.231]    [c.404]    [c.181]    [c.105]    [c.447]    [c.91]    [c.19]    [c.117]    [c.189]    [c.75]    [c.192]    [c.14]    [c.122]    [c.65]   
Теория термической обработки металлов (1974) -- [ c.367 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте