Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пластичности измерение

Возникновение науки о механических свойствах в начале XX века базировалось на осредненных и статических представлениях, что каждой величине напряжения соответствует определенная величина деформации. При этом по аналогии с другими физическими свойствами предполагалось, что механические свойства материала могут быть измерены в чистом виде , как некоторые константы данного материала наподобие его плотности, параметров кристаллической решетки, коэффициента теплового расширения и т. п. Исходя из этих предположений, был получен ряд важных результатов опытное построение и применение в расчетах обобщенной кривой Людвика, лежащей в основе многих положений математической теории пластичности измерение сопротивления отрыву и его применение для различных схем перехода из хрупкого в пластическое состояние (Людвик, Иоффе, Давиденков, диаграммы механического состояния) и др. Однако дальнейшее более глубокое изучение показало ограниченную справедливость (а в ряде случаев и ошибочность) подобных представлений. Это, в частности, привело к понятию структурной чувствительности многих механических характеристик.  [c.15]


В. Г. Осипов справедливо отмечает, что большинство исследователей поняли термин сверхпластичность односторонне и стали считать, что материалы, обладающие эффектом большого удлинения, имеют чрезвычайно большую пластичность, не учитывая действительную пластичность, измеренную по сужению поперечного сечения [30].  [c.76]

По измеренным значениям компонентов собственных деформаций можно вычислить собственные напряжения с привлечением расчетного аппарата теории пластичности, так как в общем случае ири сварке происходят не только упругие, но и пластические деформации. Математическая связь между деформациями и напряжениями устанавливается на основе современных теорий пластичности. Для случаев сварки полнее подтверждается теория неизотермического пластического течения, которая позволяет проследить развитие напряжений на всех стадиях нагрева и остывания. Теория течения рассматривает связь между бес-е, А  [c.421]

III. Технологические испытания а) испытания для контроля пластичности б) измерение твердости в) испытание на вытяжку.  [c.48]

Измеренные методом раскрытия трещины значения поверхностной энергии удовлетворительно совпадают с другими ее оценками для стекол. Для металлов измеренная величина оказывается на три порядка выше, чем поверхностная энергия. Поэтому здесь приходится искать другие механизмы. У пластичных ме-  [c.664]

Чем выше концентрация, тем устойчивее распределение деформации из-за малости зон пластичности по сравнению с упругими. Это иллюстрируется данными измерений на стальных образцах с тремя уровнями концентрации (а,= 1,8 2,5 3,6) из циклически упрочняющегося алюминиевого сплава и представленных на рис. 5.10 для первого и сотого циклов. Перераспределение мест-90  [c.90]

Относительное удлинение при разрыве. Важной характеристикой пластичности материала является остаточное (относительное) удлинение при разрыве. На рис. 4.9 показан образец до и после разрушения. Для простого измерения удлинения на образец предварительно наносят две риски на расстоянии k после деформации  [c.77]

Наблюдаемая теплоемкость металлов меньше теоретической и такова, как будто электронный газ не поглощает теплоту при нагреве металлического проводника. Эти противоречия удалось преодолеть, рассматривая некоторые положения с позиций квантовой механики. В отличие от классической электронной теории в квантовой механике принимается, что электронный газ в металлах при обычных температурах находится в состоянии вырождения, В этом состоянии энергия электронного газа почти не зависит от температуры, как это показано на рис. 7-1, т. е. тепловое движение почти не изменяет энергию электронов. Поэтому на нагрев электронного газа теплота не затрачивается, что и обнаруживается при измерении теплоемкости металлов. В состояние, аналогичное обычным газам, электронный газ приходит при температуре порядка тысяч кельвинов. Представляя металл как систему, в которой положительные ионы скрепляются посредством свободно движущихся электронов, легко понять природу всех основных свойств металлов пластичности, ковкости, хорошей теплопроводности и высокой электропроводности.  [c.190]


Таким образом, как видно из данных рис. 2.25 и расчета по микроструктур-ным измерениям, вклад двойникования в пластичность материала сравнительно мал и, следовательно, основная роль механического двойникования в низкотемпературной пластической деформации поликристаллов заключается в инициировании скольжения за счет концентрации напряжений при высоком сопротивлении движению дислокаций.  [c.70]

Для оценки трещиностойкости пластичных материалов в некоторых случаях применяется критерий бс — критическое раскрытие в вершине трещины. Этот критерий определяет способность металла к пластической деформации в зоне трещины. Измерение критического раскрытия трещины (КРТ) проводится с использованием специальных приспособлений и характеризуется определенными методическими трудностями. Кроме того, в отличие от величины являющейся основной и постоянной характеристикой материала, б лишь сравнительная характеристика. Поэтому б< дает меньше информации о трещиностойкости материала.  [c.137]

Деформация образцов при высокотемпературных испытаниях наиболее просто определяется по перемещению подвижного захвата микромашины. Такой метод является основным при испытаниях малых образцов, проволок, фолы. Для более точного измерения характеристик пластичности нами разработано и применяется несколько специальных способов и устройств [42—44], которые также основаны на записи перемещения подвижного захвата машины.  [c.114]

При определении характеристик пластичности материалов гибких элементов в области высоких температур методически трудно обеспечить точное измерение и запись удлинения образцов. При расчете по перемещению под-  [c.120]

Оба предложенных способа испытания гибких образцов на растяжение позволяют увеличить точность определения характеристик пластичности материалов. Э( ект достигается исключением из результата измерения удлинения погрешностей, вызываемых деформацией нерабочих участков образца, его проскальзыванием и обжатием в захватах.  [c.121]

При механических испытаниях пластичных материалов более целесообразно применять механизм измерения шейки образца, дающий возможность непрерывно, автоматически определять изменение диаметра образца в процессе испытания при высоких температурах. Процесс измерения сопровождается выдачей соответствующих электрических сигналов, необходимых для записи диаграммы в координатах Р — Ad. Механизм указанного устройства монтируется в герметичном корпусе и крепится с помощью фланцевого соединения к боковой стенке вакуумной камеры. Конструкция механизма измерения шейки образца в основном такая же, как и у механизма измерения деформаций. Различие заключается в форме и расположении измерите ьных рычагов и индикатора (рис. 55). Оба механизма могут работать одновременно. Предусмотрена возможность их крепления к боковым стенкам камеры. Диаметр шейки измеряется с помощью двух рычагов 7 и S, измерительные щупы 9 которых касаются срединной части кольцевой выточки на образце 10. Рычаг 8 жестко закреплен на ползуне 5. Другой рычаг 7 может свободно поворачиваться вокруг оси 6.  [c.131]

Наличие частиц заметно влияет на пластичность, которая обычно измеряется по удлинению при разрушении, а истинная деформация при разрушении определяется по измерениям площади  [c.73]

Наряду с определением свойств длительной прочности вольфрамовых проволок в [38] проведены металлографические исследования, испытания микротвердости и измерения пластичности разрушенных проволочных образцов. Обнаружена корреляция между рекристаллизацией вольфрамовой проволоки (между 982 II 1093 °С) и изменениями, наблюдаемыми в значениях долговечности выше этих температур. Основной результат исследований состоял в том, что свойства длительной прочности вольфрамовой проволоки оказались лучше известных данных, полученных для других форм вольфрама, других тугоплавких металлов и жаропрочных сплавов.  [c.277]

Если и волокна, и матрица пластичные, не ясно, можно ли при помощи какой-нибудь элементарной теории рассчитать вклады в работу разрушения композитов за счет пластических деформаций волокон и матрицы, так как при переходе обеих фаз в пластическое состояние ни та, ни другая не обеспечивают ограничения пластической деформации и границы зоны деформирования нелегко рассчитать. Некоторые работы по этому вопросу [29, 30[ проводились на системе волокна нержавеющей стали — алюминий, и было обнаружено, что вклад волокон можно удовлетворительно описывать выражением типа уравнения (27), и, если затем просуммировать этот вклад с вкладом матрицы, определенным по соображениям, аналогичным приведенным в разд. III, В, 1, можно получить хорошее согласие с экспериментально измеренной величиной вязкости разрушения. Следовательно, по крайней мере в этом случае, вклады от пластических деформаций двух фаз могут быть, по-видимому, вычислены независимо, а затем просуммированы.  [c.468]


Известно [63], что если определение пределов длительной прочности по результатам испытаний гладких образцов сопровождать измерением пластичности при длительном разрыве, то можно значительно повысить оценки работоспособности материалов паросиловых установок.  [c.73]

Цирконий и его сплавы облучали в разнообразных условиях (см. табл. 5.6) интегральными потоками от 3-10 до 4-10 нейтрон 1см . Основную часть опытов проводили при комнатной температуре или температуре, несколько меньшей 100° С. В некоторых случаях изучение проводили при 380° С. Изучали как отожженные, так и прокатанные до различной степени деформации материалы. Большинство измерений произведено при комнатной температуре, относительно небольшое количество измерений — при повышенных температурах, причем максимальной была температура 380° С. Из таблицы следует, что облучение нейтронами приводит к ожидаемому увеличению предела прочности, предела текучести и твердости материалов. Пластичность при этом уменьшается. Можно также заметить, что свойства предварительно наклепанных материалов не имеют таких больших изменений, как свойства материалов, облучавшихся в отожженном состоянии.  [c.253]

При статическом и квазистатическом малоцикловом разрушениях определенный вклад в общее удлинение образца (особенно если материал имеет большой коэффициент ф) вносит участок окончательного долома, связанный с локализацией пластической деформации в шейке. Измерение поперечным деформометром не позволяет зафиксировать процесс на предельной стадии, что приводит к получению значений пластичности е , меньших е,),, так как последняя характеристика определяется для окончательного разрушения. В то же время при небольших значениях ф, когда осуществляется менее вязкое разрушение, процесс локализации деформаций и долома выражен слабее, так что Еф и Е/ оказываются практически равными. Таким образом, использование зависимости вида (1.1.2) позволяет уменьшить превышение расчетных данных в области высоких значений пластичности и сблизить расчет с экспериментом при малых ф.  [c.9]

Увеличение прочности этих сплавов является чистым эффектом дисперсионного твердения. Все системы, упрочняющиеся в результате дисперсионного твердения, обнаруживают одну и ту же последовательность старения образование зон, образование промежуточных выделений, образование равновесных выделений. Путем измерения электрической проводимости для сплава В93 были подобраны режимы старения, при которых достигается повышение пластичности сплава и допустимое снижение предела прочности.  [c.61]

Один из распространенных методов физико-механических испытаний — метод измерения твердости, позволяющий осуществить быстрый и точный контроль изделий и материалов, а также проводить разнообразные физико-химические исследования. Этот метод получил применение в связи с возможностью косвенной оценки других механических характеристик вещества (прочности, упругости, пластичности и др.) 1—4].  [c.236]

Критическое раскрытие трещины (бс) подсчитывали (см. рис. 1), исходя из смещения, отвечающего падению нагрузки или максимальному нагружению [2]. /-интеграл оценивали по площади под кривой изменения нагрузки Р в зависимости от смещения D вплоть до Рс [3]. Как показано на рис. 3, Рс соответствует падению нагрузки в случае испытания хрупких или максимальному усилию для более пластичных образцов. Величину J определяли, исходя из приближения J = 2A/Bb, где А — площадь под кривой нагрузка — смещение В — толщина образца Ь —ширина сечения нетто. Точность расчета J для компактных образцов можно повысить путем более точного измерения пло-  [c.48]

Другим важным методическим моментом является правильный выбор значений длительной пластичности. При этом в связи с выраженной зависимостью величины предельного повреждения по уравнению (6) от изменения во времени располагаемой пластичности материала необходимо использовать соответствующие корректно полученные данные о пластичности. Представляется, что оптимальным является привлечение результатов экспериментов, выполненных на материале одной плавки с сохранением основных методических подходов (тип испытания, образец, способ нагрева, методика измерения нагрузок и температур, точность аппаратуры) [16]. Для характеристики роли изменения располагаемой пластичности в формировании величин предельного повреждения на рис. 10 приведены данные расчета повреждений по уравнению (6) без учета зависимости = f (t). Там же приведены данные, полученные по формуле (5) при подсчете накопленного длительного статического повреждения в обычной временной форме  [c.49]

Необходимыми для рассмотренного выше расчетного определения долговечности элементов конструкций на стадии образования л развития трещин являются испытания гладких стандартных образцов при кратковременном и длительном статическом нагружении (с оценкой характеристик прочности и пластичности), а также образцов с начальными трещинами при малоцикловом нагружении при соответствующей температуре и времени выдержки (с измерением скорости развития трещин). Приведенные выше уравнения позволяют осуществлять пересчет получаемых из экспериментов данных на другие числа циклов и времена нагружения. Воспроизведение в опытах эксплуатационных режимов нагружения, уровней номинальной и местной напряженности, исходной дефективности с учетом кинетики изменения статических и циклических свойств представляется пока трудноосуществимым. В связи с этим разработка способов приближенной оценки несущей способности элементов конструкций, работающих при высоких температурах (когда имеет место активное взаимодействие длительных статических и циклических повреждений), приобретает существенное значение.  [c.120]

Механические свойства отливок со столбчатой микроструктурой аналогичны таковым у монокристаллов ориентировки <001>. Поликристалличность вносит некоторое стеснение в процесс деформирования и тем самым способствует возникновению множественного скольжения. Это приводит к усилению деформационного упрочнения и некоторому повышению предела прочности по сравнению с монокристаллическим материалом ориентировки <001>, однако на предел текучести или пластичность существенного влияния не оказывает. При испытании материала со столбчатой микроструктурой в поперечном направлении следует соблюдать осторожность и убедиться, что в рабочем сечении испытуемого образца заключено достаточно большое количество зерен. Большой разброс поперечных свойств обычно свидетельствует, что зерен слишком мало. Ориентировка зерен в поперечном направлении не упорядочена, так что свойства могут оказаться типичными для монокристаллического материала с любой ориентировкой от <001> до <110>. Пластичность, измеренная при растяжении в поперечном направлении, не является чувствительным индикатором прочности границ зерен, которую лучше оценивать по уровню пластичности в условиях ползучести.  [c.266]


ПК-9 (пластмасса) 58, 68, 78, 80 ПКН-Д5. ПКН-ДЮ. ПКН-Д14. ПКН-Д15. ПКН-Д20 (пластмассы) И, 26 Пластификаторы 3 Пластифицированные пленки 118 Пластические массы 3, 441 Пластичности измерение 584 Платинитовые стекла 281 Пленки из ароматических полиамидов 125  [c.605]

Цель испытаний состояла в получении дополнительной информации о дефектах материала сепараторов и их эволюции при действии рабочих и испытательных нагрузок. Заключения о возможности эксплуатации или необходимости ремонта аппаратов основаны на прочностных расчетах, при проведении которых наряду с прочими принимали во внимание данные акустико-эмиссионных измерений. Применение АЭД показало отсутствие тенденции к подрастанию дефектов при нагружении штатным испытательным давлением (1,25Рр). Следует отметить, что хотя отношение испытательного давления к расчетному было достаточно высоким, максимальные значения номинальных напряжений значительно уступали величине предела текучести, что связано с особенностями конструирования и расчета на прочность сосудов, предназначенных для эксплуатации в сероводородсодержащих средах. При испытаниях аппарата С-303 ставилась также задача контроля возникновения локальной пластичности металла в зоне вварки штуцера, что было необходимо для обеспечения корректности схемы расчета на прочность. Локальная пластичность не была обнаружена, что свидетельствует об упругом поведении материала при действии проектных нагрузок.  [c.190]

Заметим, что при рассмотрении отдельных частных задач теории пластичности вместо всего пространства напряжений можно рассматривать подпространства с меньшим числом измерений. Но здесь приходится проявлять известную осторожность. Так, например, при плоском напряженном состоянии пластическая деформация будет трехмерной и использование двумерной кинематической модели типа Прагера может привести к неверным результатам, как отметил Будянский в дискуссии но статье Прагера. Эти трудности не возникают, если воспользоваться вариантом гипотезы трансляционного упрочнения, который был предложен Циглером. Согласно этой гипотезе тензор s определяется следующими дифференциальными уравнениями  [c.553]

С увеличением концентрации напряжений более отчетливо проявляется влияние напрягаемых объемов и температуры на переход от вязкого состояния к хрупкому. Поэтому для определения условий перехода от вязкого к квазихрупкому или хрупкому разрушению широко используют температурные зависимости характеристик прочности и пластичности. В качестве примера на рис. 1.10 приведены результаты испытаний для малоуглеродистой стали 22К при растяжении образцов с площадью сечения f=lOOO мм . При испытаниях образцов с острыми надрезами регистрировались разрушающее напряжение Ск, сужение площади поперечного сечения ij) и максимальная деформация бтах в зоне концентрации напряжений после разрушения, измеренной методом сеток с шагом 0,1 мм. Кроме указанных характеристик на диаграмме рис. 1.10 нанесены величина Fb — доля вязкой ягтp и.члома (как хаоареристика степени  [c.17]

Палладий—золота. В системе Pd—Аи наблюдается неограниченная растворимость компонентов друг в друге (фиг. 34). Все сплавы систем],i Pd—Au пластичны и легко обрабатываются. Сплавы, богатые Pd, при нагревании покрываются цветами побежалости. Сплавы, содержащие более 20 Уо Аи, не растворяются в азотной кислоте. Высокая температура плавлеиин и коррозионная стойкость позволяют применять эти сплавы для химической посуды. Силав 60% Аи и 40% Pd в паре со сплавом 90% Р( и 10% Rli применяется для чувствительных термопар и пригодных для измерения температуры до 1200°С с очень высокой термоэлектроднижущеи силой. Различные сплавы палладия с золотом применяются для электрических контактов. Л Уалая разница между точками солидуса и ликвидуса позволяет применять эти сплавы для плавких предохранителей.  [c.420]

При затруднении измерении износа непосредственно на детали применяют метоО негативных оттисков (рис. 80, в). С поверхности, в том месте, где нанесено углубление (обычно отпечаток, или специальная риска), снимают слепок при помощи самотвердеющей массы (например, стиракрила) или оттиск на пластичном металле или пластмассе. Высоту отпечатка измеряют обычными средствами и сравнивают с размером, снятым при вторичном оттиске изношенной поверхности.  [c.261]

Д.ля исследования упругих характеристик поверхностей с покрытиями был применен способ, ранее использованный для определения модуля упругости электрощеточных материалов [2] и основанный на непосредственном измерении заглубления индентора в поверхность. В отличие от методов, испо.льзующих внедрение индентора при больших нагрузках в дополнительно наносимые пластичные слои, применение нагрузок не более 2Н с регистрацией глубины внедрения индентора на профилографе Г1П-201 при значительных увеличениях позволило измерить модуль нормальной упругости на тонкослойных хрупких покрытиях без их продавливанпя и разрушения.  [c.153]

При использовании прибора ПМТ-3 для нанесения отпечатка точность измерения износа составляет доли микрометра ( 0,3 мкм). Вдавливание пирамиды на твердомерах сопровождается вспучиванием металла на краях отпечатка, что снижает точность метода. Кроме того, мелкие отпечатки довольно трудно обнаружить после интенсивного изнашивания. При нанесении отпечатка на очень твердое покрытие вследствие упругого восстановления после снятия нагрузки размеры отпечатка могут заметно уменьшиться. При исследовании пластичных покрытий, работающих при высоких контактных нагрузках, может наблюдаться заплывание отпечатка, потеря его отчетливой формы.  [c.96]

Волокна, нити, проволоки, фольги и ленты широко используются в технике и являются одним из самых доступных видов армирующих элементов, применяемых при создании жаропрочных композиционных материалов. Однако прочность и деформативность гибких металлических конструктивных элементов при высоких температурах исследуется недостаточно из-за методических трудностей точного измерения и записи данных эксперимента. Совершенствование методики в этом направлеппп необходимо для получения более корректных данных прочности и особенно пластичности.  [c.118]

Параметрическими диаграммами, изображенными на рис. 3.2—3.8, проиллюстрирована целесообразность использования уравнения типа (3.1) для оценки характеристики прочности и пластичности жаропрочных материалов. Оценим состоятельность уравнения типа (3.7) и возможность использования его для анализа общих закономерностей ползучести ряда жаропрочных сталей стационарного энергомашиностроения. Для этого проанализируем данные математической обработки кривых ползучести сталей разных марок. Как отмечалось выше, много образцов стали 15Х11МФБЛ испытано с измерением деформации при разных температурах. Обработкой первичных кривых ползучести, проведенной в соответствии с требованиями отраслевого стандарта, получено следующее уравнение состояния типа (3.7)  [c.84]

В главе обсуждаются методы и результаты испытаний слоистых композитов в условиях плоского напряженного состояния в свете существующих теорий пластичности и прочности этих материалов. Коротко рассмотрены наиболее общие критерии предельных состояний анизотропных квазиод-нородных материалов и различные варианты их применения для построения предельных поверхностей слоистых композитов оценена точность описания при помощи этих критериев имеющихся экспериментальных данных В качестве самостоятельного раздела изложены основы теории слоистых сред. Так как рассмотренные методы предсказывают главным образом начало процесса разрушения, в докладе преобладает макроскопический подход. Однако в ряде случаев затрагиваются и вопросы, связанные с развитием процесса разрушения. Рассмотрены основные типы образцов для создания двухосного напряженного состояния, подчеркнуты их преимущества и недостатки. Показано, что сравнительно хорошее совпадение расчетных и чксперимептально измеренных предельных напряжений наблюдается для методов, учитывающих изменение характеристик жесткости слоев композита в процессе нагружения вплоть до разрушения. Основное внимание в главе уделено соответствию предсказанных и экспериментально полученных данных. Высказаны некоторые соображения о целесообразных направлениях дальнейших исследований.  [c.141]


Использование концепции коэффициента интенсивности позволило получить решения целого ряда задач о телах с трещинами. Многие из этих решений приведены в справочниках [8, 9]. Теория Ирвина была также распространена и на анизотропные среды [10—12]. Включение эффектов пластичности в анализ разрушения [13, 14] привело к созданию довольно сложных и полезных теорий для однородных ква-зихрупких материалов. В 1972 г. общество ASTM официально приняло определения и методы измерения вязкости разрушения [15].  [c.223]

Выбор интервалов измерения переменных (Гисп и е, с- ) должен проводиться с таким расчетом, чтобы опытные кривые имели одинаковую точность по всей своей длине. Опыт пластометрических исследований показал, что наиболее оптимальный интервал изменения температуры испытаний составляет 50—70 °С, увеличение скорости деформации в 5—10 раз. В отдельных случаях, например при поиске области максимальной пластичности данного сплава или в области фазовых переходов, шаг изменения переменных может быть уменьшен до 25— 30 X по температуре и до двух-трех раз по скорости деформации.  [c.61]

Возможен и другой, хотя и менее строгий, способ проверки двучленного закона трения, состоящий в измерении трения мягкого пластичного тела. Прижав его к твердой плоской поверхности, мы обеспечим большую площадь контакта, которая останется в основном неизменной и после уменьшения нагрузки. Таким образом, если измерять силу трения при разных постепенно уменьшающихся нагрузках, то мы должны получить прямолинейную зависимость, вытекающую из двучленного закона трения (рис. 77, непрерывная прямая ВА). Подобные опыты, проделанные М. П. Воларовичем и Д. М. Толстым для случая трения между мылом и металлическими поверхностями, согласуются с двучленным законом трения (рис. 78). подобного случая при полу-через  [c.161]


Смотреть страницы где упоминается термин Пластичности измерение : [c.482]    [c.202]    [c.24]    [c.292]    [c.73]    [c.37]    [c.105]    [c.96]    [c.273]    [c.141]    [c.162]   
Справочник по электротехническим материалам Том 2 (1974) -- [ c.584 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте