Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Длительная прочность вольфрамовой проволок

В работе [38] исследованы свойства длительной прочности вольфрамовой проволоки диаметром 0,005 дюйм (тип 218 СЗ Дженерал Электрик ) в интервале до 225 ч при температурах от 649 до 1374 °С, результаты приведены на рис. 8. В противоположность большому разбросу значений прочности, типичному для волокон стекла, бора и графита, для вольфрамовой проволоки разброс результатов очень мал (рис. 8). Данные представлены логарифмической зависимостью напряжения от времени и аппроксимируются прямой линией. Называя значения прочности проволок при долговечности в 0,1 ч кратковременной прочностью, можно видеть, что потеря прочности с увеличением продолжительности нагружения при 649 °С составляет около 10% для каждого временного порядка. Для более высоких температур испытания потеря прочности даже больше и достигает при 1374 С примерно 20% на каждый временной порядок (в случае стеклян-  [c.276]


Рис. 8. Длительная прочность вольфрамовой проволоки 218 S диаметром 0,005 дюйм [38]. Рис. 8. Длительная прочность вольфрамовой проволоки 218 S диаметром 0,005 дюйм [38].
Наряду с определением свойств длительной прочности вольфрамовых проволок в [38] проведены металлографические исследования, испытания микротвердости и измерения пластичности разрушенных проволочных образцов. Обнаружена корреляция между рекристаллизацией вольфрамовой проволоки (между 982 II 1093 °С) и изменениями, наблюдаемыми в значениях долговечности выше этих температур. Основной результат исследований состоял в том, что свойства длительной прочности вольфрамовой проволоки оказались лучше известных данных, полученных для других форм вольфрама, других тугоплавких металлов и жаропрочных сплавов.  [c.277]

Рис. 24. Сравнение длительной прочности вольфрамовой проволоки в композитах на основе никелевых сплавов с прочностью проволоки, испытанной в вакууме. Рис. 24. Сравнение длительной прочности вольфрамовой проволоки в композитах на <a href="/info/127738">основе никелевых сплавов</a> с прочностью проволоки, испытанной в вакууме.
В работе [51] сравниваются также способы улучшения свойств длительной прочности никелевых сплавов, армированных вольфрамом, по их удельной прочности (т. е. длительной прочности, деленной на плотность материала). Плотность сплава 3, использованного в [51], равна 9,15 г/см , а плотность вольфрамовой проволоки равна 19,3 г/см . Результаты приведены на рис. 25. Как для проволоки НР диаметром 0,020 дюйм, так и для проволоки 218 С8 диаметром 0,015 дюйм получается одно и то же. Видно, что даже с учетом плотности длительная прочность композитов при температурах 1093 и 1204 °С лучше, чем прочность стандартных жаропрочных сплавов и самых хороших литых никелевых сплавов.  [c.304]

Влияние увеличения отношения Ид, на тип разрушения и долговечность композитов с короткими волокнами исследовано в работе [27]. При кратковременных испытаниях и экспериментах на длительную прочность при растяжении использовалась модель, состоящая из вольфрамовой проволоки и медной матрицы. Испытания проводились на образцах, показанных на рис. 11, б, при двух температурах (649 и 816 °С). Изменяя отношение длины к диаметру волокон, автор смог определить критическое значение ) отношения Ий, необходимое при армировании композита, подвергающегося испытаниям на длительную прочность, и сравнить его со значением, необходимым при кратковременных испытаниях на растяжение.  [c.312]


Вольфрамовые волокна (проволока) обладают более высокой длительной прочностью при 1100—1300° С по сравнению с длительной прочностью волокон, изготовленных из других металлов.  [c.30]

Результаты, приведенные в табл. 19, 20, свидетельствуют о существенном повышении длительной прочности никелевых жаропрочных сплавов в результате армирования их вольфрамовой проволокой.  [c.103]

Предполагается использование композиционных материалов на никелевой основе для длительной работы при температурах выше 1000° С. Однако разработка таких материалов затруднена из-за отсутствия упрочнителей, которые могли бы без потери прочности длительно работать в контакте с никелевой матрицей. Из металлических упрочнителей с точки зрения совместимости с никелевой матрицей лучшей пока остается вольфрамовая проволока, обеспечиваюш,ая довольно высокие значения длительной прочности в композиционных материалах на основе никелевых сплавов. Характеристики прочности и длительной прочности некоторых композиций приведены в табл. 18—22 и 61. Из таблиц видно, что введение вольфрамовой проволоки в количестве 40— 70 об. % позволяет получить материал с длительной (100-часовой) прочностью при 1100° С, равной 13—25 кгс/мм . Основными недостатками этих материалов является высокая плотность и необходимость защиты от окисления при высоких температурах. В этой же таблице приведены свойства композиции никель—углеродное волокно. Композиция привлекательна своей невысокой плотностью. Однако прочность ее невелика, и композиция не может работать длительно при температурах выше 1000° С из-за взаимодействия волокна с матрицей.  [c.217]

Были достигнуты хорошие результаты и получены проволоки с повышенной прочностью и ее удельной характеристикой по сравнению с имеющейся в наличии наиболее прочной проволокой. Предел длительной прочности волокон из вольфрамового сплава увеличился в 3 раза — с 414 МН/м (42 кгс/мм ) до 1379 МН/м  [c.255]

Абсолютные величины длительной прочности для этих проволок меньше, чем для проволоки из лучшего вольфрамового сплава.  [c.257]

Длительная 1000-часовая прочность при температуре 1090° С композиции жаропрочный сплав — вольфрамовое волокно более чем в 4 раза превосходит длительную прочность обычных жаропрочных сплавов и более чем в 2 раза длительную прочность эвтектических сплавов, получаемых методом направленной кристаллизации. Возможно дальнейшее повышение прочности композиций жаропрочные сплавы — тугоплавкая проволока с целью увеличения их преимуществ. Потенциально достижимые значения прочности этих систем при использовании проволок с покрытиями диффузионными барьерами могут в 4—6 раз превосходить значения прочности (с учетом плотности материала) эвтектических сплавов при 1090° С.  [c.274]

Удельная длительная прочность ниобиевой проволоки В88 при 1100° С за 100 ч в 1,5 раза выше, чем у вольфрамовых нитей для ламп накаливания. Наличие таких высокопрочных волокон позволяет создавать композиционные материалы с улучшенной прочностью. Ожидается дальнейшее повышение прочности проволоки. Размер волокна является другим переменным фактором, с помощью которого можно увеличить длительную прочность композиционного материала. Поскольку взаимодействие матрицы с волокном служит основной причиной снижения свойств и так как степень потери свойств для композиций, упрочненных тугоплавкой проволокой, связана с глубиной зоны взаимодействия в волокне, прочность композиции может быть повышена путем увеличения площади сердцевины волокна, где отсутствует взаимодействие. Как показано на рис. 11, глубина зоны взаимодействия по существу одинакова как для волокон меньшего диаметра, так и волокон большего диаметра. Однако процент площади, где отсутствует взаимодействие компонентов, значительно больше для волокна с большим диаметром. В то же время волокно с меньшим диаметром имеет более высокую длительную прочность по сравнению с волокном большего диаметра. Таким образом, оба эффекта должны уравновесить друг друга. Для кратковременной службы, при которой глубина зоны взаимодействия очень мала, использование волокон малого диаметра обусловливает повышенную прочность композиций для более продолжительного времени, предпочтительнее использовать волокна большего диаметра. Специфические условия протекания процессов взаимодействия нитей — из вольфрама 218 указывают на то, что лучшие свойства для работы при 1090° С и выдеряшах 100 и 1000 ч обеспечиваются использованием волокон с диаметром 0,38 мм. При выборе волокон необходимо учитывать, что прочность зависит от их размера и толщины реакционной зоны.  [c.257]


В системах с ограниченной растворимостью образуются связи второго типа. Обратимся к композиту никель — вольфрам. Согласно Хансену и Андерко [14], никелевый сплав с 38% вольфрама находится в равновесии с твердым раствором на основе вольфрама, содержащим малые количества никеля (менее 0,3%). Такое равновесие предполагает равенство химических потенциалов. Этот принцип был использован Петрашеком и др. [33] при разработке сплава на Ni-основе для композита никелевый сплав — вольфрам. Вначале был использован сплав Ni-S0 r-25W. Затем в него были добавлены титан и алюминий. Во второй серии сплавов содержание вольфрама было понижено он был частично заменен другими тугоплавкими металлами ниобием, молибденом и танталом. Совместимость этих сплавов с вольфрамовой проволокой оказалась выше, чем у стандартных жаропрочных сплавов, но все же ниже, чем у сплавов, легированных только вольфрамом. Дальнейшее существенное улучшение, совместимости достигается добавками алюминия и титана, однако механизм влияния этих элементов на совместимость отличен от рассматриваемого здесь регулирования химических потенциалов. По заключению авторов, во избежание существенного уменьшения сечения вольфрамовой проволоки за счет диффузии следует использовать проволоку диаметром 0,38 мм. После выдержки при 1366 К в течение 50 ч глубина проникновения составляла 26 мкм, что соответствует коэффициенту диффузии (2-f-5) -10 ы / . Уменьшением сечения. волокна за счет диффузии можно объяснить более крутой наклон кривых длительной прочности в координатах Ларсена — Миллера для композита по сравнению с проволокой.  [c.132]

В [27] исследована проблема определения свойств матрицы и установлено соответствие между длительной прочностью при сдвиге меди, испытанной независимо (рис. 11, а), и меди, испытанной в образцах на вытаскивание (рис. 11, б). Образцы на вытаскивание были сделаны так высверливали отверстие в вольфрамовой головке, соединяли с вольфрамовой проволокой диаметром в 0,010 дюйм и с медной ОГНС втулкой и проводили запрессовку при соответствующих условиях. Такие образцы на вытаскивание сконструированы для того, чтобы попытаться воспроизвести условия, возникающие вокруг одного волокна в композите с правильным порядком чередования разрывных волокон. Изменением диаметра высверленного отверстия могут быть воспроизведены условия различного объемного содержания волокна. Результаты приведены на рис. 12. Можно видеть, что при 649 °С соответствие хорошее, но его не наблюдается при 816 °С. Последнее есть ясное указание на возможные ошибки, которые могут появиться, если использовать результаты, полученные лишь на одной серии экспериментальных устройств, для предсказания поведения материала при ругих условиях.  [c.282]

В работе [18] исследована комбинация вольфрамовой проволоки диаметром 0,003 дюйм с матрицей Инконел 600. Большинство экспериментов по длительной прочности проведено при 649 °С, а объемное содержание волокон было 7,17 и 27%. Вследствие ограниченного числа испытаний из этой работы можно извлечь лишь следуюш ие полезные замечания максимальные прочности на растяжение всех образцов (матрица и композит) остаются примерно одинаковыми, деформация разрушения уменьшается, а время до разрушения значительно увеличивается с ростом доли армирования.  [c.301]

В работе [16] исследована длительная прочность двух материалов с никелевыми матрицами, армированных вольфрамовой проволокой, содержаш,ей менее 0,01 % включений (в основном, двуокиси кремния) и занимающей примерно 40% объема. Материалы матрицы — Нимокаст 258 и ЕРВ 16. В работе обнаружено, что добавка тонкой вольфрамовой прово.чоки (0,01 дюйм диаметром) оказывает малое или вообще не оказывает усиливающего действия на матрицу, исключение представляет случай, когда температура превьппала 900 °С. Интересно отметить, что модули Юнга волокна и матрицы при комнатной температуре в этом случае очень близки (55-10 фунт/дюйм для волокна и 30 X X 10 фунт/дюйм для матрицы). При высоких температурах испытания 1000 и 1100 С прочностные свойства вольфрамовой проволоки улучшаются, в особенности прочность при разрушении. На рис. 23 представлена зависимость 100-часовой прочности от температуры. В этой же работе [16] приведены и другие испытания, предпринятые для того, чтобы выяснить, как влияет степень армирования на длительную прочность, но полученные результаты, вероятно, недостаточны для каких-либо выводов. Другая часть работы [16] состоит в исследовании влияния диаметра волокна на прочность композитов. Здесь, кажется, существует противоречие между свойствами при кратковременном растяжении и длительных нагружениях при высоких температурах. Для кратковременного нагружения чем тоньше проволока, тем она прочнее, а при продолжительном нагружении и повышенных температурах тонкие вольфрамовые проволоки теряют свои качества быстрее, чем толстые, вероятно, из-за рекристаллизации в поверхностных слоях и реакции между волокном и матрицей.  [c.301]

Длительная прочность композиционного материала нимокаст 258 с различным содержанием вольфрамовой проволоки показана в табл. 20.  [c.103]

Композиционный материал ВКН-1 (матрица — литейный жаропрочный сплав ЖС6К, упрочненный вольфрамовой проволокой ВА диаметром 0,5 мм) получают вакуумным всасыванием. Длительная прочность ВКН-1 выше прочности сплава ЖС6К, и при одинаковых значениях наг 5узки и долговечности он по сравнению с неармированной матрицей имеет резерв по температуре 100 °С (рис. 10.16),  [c.279]

Совместимость волокнистого упрочнителя — проволоки с матрицей, является, как указывалось выше, очень ваншой проблемой при разработке композиционных металлических материалов, упрочненных проволокой [18, 24]. Установлена важность взаимодействия волокна с матрицей на границах раздела. Для изучения модельной системы были выбраны взаимно нерастворимые компоненты [6, 7, 11, 12, 14, 19]. На модельной композиционной системе со взаимно нерастворимыми компонентами медь — вольфрамовая проволока получены высокие значения длительной прочности при температуре выше 0,9 от абсолютной температуры плавления матрицы.  [c.239]


Длительная прочность такого композиционного материала с обычной вольфрамовой проволокой марки ВА составляет при 1100° С 15 кгс/мм за 100 ч испытания. При замене вольфрамовой проволоки ВА волокном ВТ15 (торированный вольфрам) или проволокой из сплава  [c.598]

Сложное поведение поликристаллических металлов и сплавов определяется в основном наличием большого разб роса кристаллических зерен по величине и границами между ними. Природа межкристаллических границ являлась предметом длительных обсуждений. Одни утверждали, что зерна разделены областью толщиной порядка нескольких сотен атомов, причем последние расположены беспорядочно, образуя так называемый аморфный цеменпирующий слой . Другие же считали, что М ежду двумя зернами с преобладающим в каждом из них кристаллическим порядком находится слой толщиной порядка всего лишь нескольких атомов, составляющие которого, подверженные влиянию сил обеих решеток, образуют промежуточный слой. Последнее предположение сейчас более распространено и в последнее время [Л. 25] получило строгие доказательства путем применения к межкристаллическим границам понятия свободной энергии [Л. 24]. Эти кристаллические границы обусловливают высокую или низкую прочность в определенных условиях напряжений. С одной стороны, они образуют барьер, препятствующий проникновению смещений в решетку кристаллов, чем подтверждается большая механическая прочность поли-кристаллических металлов по сравнению с монокристаллами. С другой стороны, границы увеличивают скольжение, текучесть и сдвиги при механической нагрузке, примером чего может служить поперечная деформация вольфрамовых проволок, описываемая в следующей главе (рис. 8-3). Установлено также, что атомы диффундируют в случае большинства поликристалличе-ских металлов быстрее вдоль границ зерен, где потенциальный барьер, преодолеваемый в процессе диффузии, более низок, чем при диффузии внутри зерен. Проникновение серебра в ковар во время пайки и вызываемые при этом трещины вдоль границ между зернами являются примером этого явления.  [c.165]

Композиционные материалы. Работы по созданию компо-ЗИ1Щ0ННЫХ материалов для службы при высоких температурах ведутся как у нас в стране, так и за рубежом [5, 22, 23]. Различают волокнистые и слоистые материалы, а также эвтектические и дисперсионно-упрочненные. Армирование матрицы из сплавов на никелевой основе в настоящее время осуществляется практически только волокнами из вольфрамовой проволоки, которые способны длительно работать в контакте с матрицей, не терзгя прочности.  [c.58]


Смотреть страницы где упоминается термин Длительная прочность вольфрамовой проволок : [c.276]    [c.245]    [c.254]    [c.300]    [c.103]    [c.309]    [c.310]    [c.259]    [c.268]    [c.474]    [c.30]    [c.215]   
Разрушение и усталость Том 5 (1978) -- [ c.276 , c.303 ]



ПОИСК



Длительная прочность проволок

Прочность длительная



© 2025 Mash-xxl.info Реклама на сайте