Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Разрушение квазистатическое малоцикловое

При циклическом нагружении может иметь место одно из следующих трех видов разрушений квазистатическое, малоцикловое усталостное и многоцикловое усталостное.  [c.33]

Существование "физического" предела усталости. Принципиальные особенности усталости металлов обычно выявляют по характеру кривой усталостных испытаний в координатах амплитуда напряжений а—логарифм числа циклов до разрушения 1дЛ/ (кривая Веллера). По современным представлениям, в общем случае для металлов в зависимости от уровня амплитуды напряжений можно выделить два главных участка на кривой усталости (не считая переходной области и области отсутствия разрушений) область малоцикловой усталости (квазистатическое разрушение) и область чистой или многоцикловой усталости. Резкий пере-  [c.137]


При статическом и квазистатическом малоцикловом разрушениях определенный вклад в общее удлинение образца (особенно если материал имеет большой коэффициент ф) вносит участок окончательного долома, связанный с локализацией пластической деформации в шейке. Измерение поперечным деформометром не позволяет зафиксировать процесс на предельной стадии, что приводит к получению значений пластичности е , меньших е,),, так как последняя характеристика определяется для окончательного разрушения. В то же время при небольших значениях ф, когда осуществляется менее вязкое разрушение, процесс локализации деформаций и долома выражен слабее, так что Еф и Е/ оказываются практически равными. Таким образом, использование зависимости вида (1.1.2) позволяет уменьшить превышение расчетных данных в области высоких значений пластичности и сблизить расчет с экспериментом при малых ф.  [c.9]

Учитывая отмеченную специфику деформирования нри термоусталостном нагружении, в работе [103] предлагается метод оценки термической прочности с позиций деформационно-кинетического критерия малоциклового разрушения [129, 162], экспериментально обоснованного в области повышенных и высоких температур при изотермических испытаниях материалов. Названный критерий, как отмечалось выше, описывает условия достижения предельного состояния по разрушению квазистатического и усталостного типов как для мягкого и жесткого, так и промежуточного между мягким и жестким характера нагружения, что охватывает особенности нестационарного циклического деформирования, свойственные термоусталостным испытаниям.  [c.49]

Существование предела усталости. Принципиальные особенности усталости металлов можно выявить по характеру кривой усталости в координатах "амплитуда напряжения Сд—логарифм числа циклов до разрушения Ig N (кривые Веллера). По современным представлениям [31, 101] в обш,ем случае для металлов в зависимости от уровня амплитуды напряжений можно выделить два главных участка на кривой усталости (не считая переходной области и области отсутствия разрушений) область малоцикловой усталости (квазистатическое разрушение) и область чистой или многоцикловой усталости. Резкий перелом кривой усталости при переходе от малоцикловой области в область чистой усталости и малый наклон кривой на втором участке для большинства сталей оценивался как суш.ествование физического передела усталости , т. е. такого циклического напряжения, ниже которого практически невозможно разрушить материал.  [c.133]


Таким образом, для прогнозирования термоциклической прочности элементов конструкций необходимо обстоятельное исследование реальной термомеханической нагруженности и получение корректной информации о предельном состоянии материала по критериям усталостного и квазистатического малоциклового разрушения с учетом параметров действительного цикла упругопластического деформирования в максимально напряженных зонах конструкции.  [c.29]

Квазистатические малоцикловые разрушения сопровождаются накоплением односторонних деформаций, значения которых близки к разрушающим деформациям при статическом (монотонном) или длительном статическом разрыве. Усталостные малоцикловые разрушения происходят при отсутствии односторонне накопленных деформаций при образовании в ходе циклических нагружений одной или нескольких трещин усталостного характера. В условиях малоциклового разрушения переходного характера процессы роста трещин усталости и развития односторонних деформаций идут одновременно, в зоне разрушения возможно появление трещин на фоне значительных односторонних деформаций.  [c.43]

Таким образом, при больших уровнях деформаций, например при квазистатическом малоцикловом разрушении, коэффициент поперечной деформации оказывается функцией уровня деформации, что затрудняет использование зависимости (2.2) для опре-  [c.46]

Малоцикловое нагружение сопровождается развитием общей или местной (в вершине надреза или трещины) пластической деформации, величина и закономерности накопления которой определяют условия перехода к предельному состоянию и контролируют характер разрушения (квазистатический, усталостный). Переход к усталостному многоцикловому нагружению при большой частоте сопровождается резким падением интенсивности предельной пластической деформации.  [c.316]

Переход от квазистатического разрушения к малоцикловому усталостному и переход от малоциклового к многоцикловому усталостному разрушению происходит постепенно, и число циклов нагружения, при котором имеет место то или иное разрушение, для различных материалов и условий испытаний изменяется в широких пределах.  [c.7]

На рис. 56 приведены типичные кривые малоцикловой усталости сплава ОТ4, полученные при пульсирующем растяжении с частотой 2 цикл/мин. На участке I образцы не разрушаются, т.е. разрушение происходит или при статическом нагружении, или после числа циклов, соответствующих участку II. На участке II разрушение происходит вследствие исчерпания пластичности в результате протекающей здесь циклической ползучести. Предельная пластичность при разрушении f на этом участке равна или превышает таковую при статическом растяжении 6,. . Повышение предельной пластичности при разрушении вследствие циклической ползучести связано, вероятно, с меньшей неоднородностью деформации при циклическом нагружении по сравнению со статическим. Для участка III характерно усталостное разрушение, которое может происходить на фоне развитых односторонних деформаций (а и Л/р, — напряжения и соответствующие им долговечности, при которых происходит переход от квазистатического к усталостному разрушению). По виду кривые циклической ползучести при квазистатическом разрушении аналогичны кривым ползучести при статическом нагружении. Как и при статической ползучести, кривые циклической ползучести имеют  [c.96]

Кинетика напряжений и деформаций с числом нагружений определяет особенности малоциклового разрушения. Циклические свойства металла, а также условия нагружения обусловливают усталостный, квазистатический или переходный от одного к другому характер разрушения [132, 188, 200].  [c.6]

Известным недостатком гипотезы малоцикловой прочности в g угс/// силовой трактовке является возможность использования ее только в условиях усталостного разрушения без распространения на переходное и особенно квазистатическое разрушения.  [c.15]

Предельные числа циклов на стадии образования трещин определяются на основе деформационно-кинетических критериев малоциклового и длительного циклического разрушения (уравнение (1.2.8)) линейным суммированием квазистатических и усталостных повреждений с учетом изменения циклических и односторонне накопленных деформаций по числу циклов и времени, а также изменения во времени располагаемой пластичности материала.  [c.44]


Предполагается, что разрушение при термоусталостном нагружении обусловливается, так же как и при изотермическом длительном малоцикловом деформировании, накоплением и взаимосвязью усталостного и квазистатического (длительного статического) повреждений.  [c.49]

В условиях рассматриваемого типа нагружения проявляются особенности малоцикловой усталости, заключающиеся прежде всего, как отмечено выше, в возможности накопления в процессе циклических нагружений наряду с усталостными повреждениями и квазистатических. В указанном наиболее общем случае оценка накопления повреждений может быть выполнена в деформационной форме, что является традиционным для малоцикловой ветви кривой усталости [2—8] и обосновывается в ряде исследований также и для многоцикловой области [144, 210, 211], а расчет повреждений представляется возможным осуществить на основе деформационно-кинетических критериев разрушения.  [c.57]

Несущая способность рассматриваемых конструкций при таких условиях работы ограничена малым числом циклов (10 ) и определяется малоцикловой прочностью гофрированной оболочки. Разрушение компенсаторов, сопровождающееся прорастанием трещины в окружном направлении и нарушением герметичности оболочки, происходит преимущественно за счет накопления усталостных повреждений. Доля повреждений от действия внутреннего давления и односторонне накапливаемой деформации, как правило, не существенна. Последнее объясняется тем, что работа сильфонов как компенсирующих элементов происходит, в основном, при постоянных размахах циклических перемещений, не приводящих к развитию односторонних деформаций и накоплению квазистатического повреждения.  [c.198]

Сопротивление образованию и развитию трещин малоциклового нагружения в общем случае зависит от циклических свойств металла, режима нагружения и размеров трещин. В работах [1—4] рассмотрены кинетические особенности процессов упругопластического деформирования и деформационные критерии малоциклового разрушения с учетом циклических свойств в связи с анализом условий образования трещин в зонах концентрации напряжений при комнатной температуре. Условия распространения трещин малоциклового разрушения при комнатной температуре с учетом кинетики пластических деформаций в их вершине изучались в работе [5]. В упомянутых работах показано, что долговечность на стадии образования трещин в зонах концентрации напряжений рассчитывается по величинам амплитуд и односторонне накапливав мых местных деформаций с использованием условия линейного суМ мирования квазистатических и усталостных малоцикловых повреждений. Скорости распространения трещин малоциклового нагружения и долговечность на стадии окончательного разрушения вычис ляются по величинам размахов коэффициентов интенсивности деформаций и предельной пластической деформации в вершине трещины.  [c.99]

Исследование циклического разрушения в упруго-пластической области, имеющего актуальное значение для энергетического, транспортного, строительного оборудования и ряда других отраслей, основывались прежде всего па изучении кинетики напряженного состояния по мере накопления числа циклов на основе свойств диаграмм циклического деформирования. Были установлены в силовом и деформационном выражении условия возникновения либо усталостного, либо квазистатического разрушения, предложены соответствующие схемы расчета для эластичного и жесткого нагружения. Показаны особенности влияния циклических пластических свойств на эффект концентрации напряжений для этого случая сопротивления усталостному разрушению. Применительно к циклическому деформированию от повторного нагрева и охлаждения малоцикловое термоусталостное разрушение бы.ло описано соответствующими кривыми усталости в деформационном выражении, полученными для данного температурного перепада, показана применимость критерия октаэдрических напряжений для плоского напряженного состояния в этом случае.  [c.42]

При термо усталостном малоцикловом нагружении предельное состояние определяется квазистатическими и усталостными повреждениями, приводящими к термо усталостно му разрушению смешанного типа.  [c.43]

Характер и интенсивность деформирования зависят от геометрии конструктивного элемента, времени вьщержки под постоянной нагрузкой, рабочих температур и номинальной нагрузки. В мембранной зоне происходит накопление деформаций при циклической ползучести, в зоне концентрации — знакопеременное циклическое деформирование. При этом достигается соответственно предельное состояние по условиям квазистатической (длительной статической) прочности или по условиям малоцикловой (длительной малоцикловой) прочности. Характерно, что в мембранной зоне длительное статическое разрушение в условиях повторного нагружения может происходить при различных значениях односторонне накопленных деформаций в зависимости от деформационной способности материала и процессов высокотемпературного старения и охрупчивания.  [c.123]

Схема образования разрушения при малоцикловом нагружении на основе рассмотрения деформаций (нижняя часть рисунка) и напряжений (верхняя часть рисун-ка), предложенная Р. М Шнейдеровичем, представлена на рис. 5.3. Кривые а характеризуют процесс изменения деформаций или напряжений при мягком нагружении, кривые с — при жестком. При малом числе разрушающих циклов при мягком нагружении циклически разупрочняющегося анизотропного материала возникает квазистатическое разрушение (точки А и А ).  [c.81]


Ползучесть проявляется не только при статическом, но и циклическом нагружении. Исследование ползучести в условиях малоциклового растяжения (мягкое нагружение) было проведено, в частности, авторами [171 на сплаве ВТ8. Исследования показали, что при максимальных напряжениях цикла 0,9 кривые ползучести при циклическом нагружении соответствуют кривым при статическом нагружении. Величина пластической деформации при разрушении (б, ijj) равна деформации при статическом разрушении. Квазистатический характер разрушения наблюдается при частоте нагружения 0,5 и 2 цикл/мин. Уменьшение (Тщах приводит К переходу от квазистатики к усталостному разрушению, однако не мгновенно, а постепенно. Так, при = = 0,88(1а накопленная до разрушения деформация достаточно велика, б = 4,4%, ур — 6,8%, при последующем уменьшении Onjax.  [c.129]

Типичным для малоцикловых процессов является появление в ряде случаев в зоне возможного разрушения наряду с циклическими и односторонне накопленных деформаций. Последнее может при-Еести к разрушениям квазистатического характера, т. е. к разрушениям, свойственным однократному статическому нагружению.  [c.3]

Малоцикловое нагружение. Испытания при малоцикловом нагружении проводят при сравнительно низких частотах нагружения (до 50 циклов/мин), высоких уровнях напряжений (равных и выше предела текучести) и долговечностях до 2 10 циклов. Разрушение при малоцикловом нагружении может происходить вследствие исчерпания пластичности (квазистатическое разрушение) или возникновения и развития устапостной трещины (усталостное разрушение). Особенностью такого разрушения при малоцикловом нагружении является наличие значительных пластических деформаций, например у барабанов паровых котлов, фюзеляжей и стоек шосси самолетов.  [c.293]

Встречаюи ееся в настоящее время в некоторых работах объединение под термином малоцикловая усталость как квазистатического, так и малоциклового усталостного разрушений, на наш взгляд, не является корректным. Вместе с тем следует иметь в виду и некоторую условность разделения по уровню напряжений, числу циклов до разрушения указанных стадий разрушения, особенно малоциклового и многоциклового усталостного разрушений.  [c.35]

Квазистатическое малоцикловое риэ-рушение — разрушение преимущественно вследствие одностороннего на-коплегшя деформаций, равных деф< -мациям при статическом раз Н)1ве. При этом (0.9- -1) е и s (0.9  [c.82]

В малоцикловой зоне (участок кривой AB D) при нагружении образца растяжением — сжатием можно выделить три характерные участка. На участках I и II разрушение носит квазистатический характер с образованием шейки в месте излома. На участке III на поверхности разрушения уже отчетливо можно выделить зону усталостного излома. Зона IV, соответствующая динамическому пределу текучести, является как бы границей между малоцикловой и многоцикловой (зона V) областями. Участок VI полной кривой усталости соответствует пределу выносливости.  [c.361]

Кривые малоцикловой усталости сплавов при 20°С имеют развитые участки квазистатического разрушения, сохраняющие свой характер и при понижении температуры до — 196°С. Однако со снижением температуры уменьшается протяженность зоны долговечностей, при которой происходит квазистатическое разрушение. Изменение величины напряжений а , при которых наблюдается переход от квазистатического разру-  [c.110]

В области (—196) -г20°С кривые малоцикловой усталости характеризуются наличием хорошо развить1х участков квазистатического разрушения, при котором пластические деформации захватывают все микрообъемы образца и накопление их и eeт монотонный характер. Кривые циклической ползучести при температурах 20 и — 196°С имеют одинакб-  [c.111]

Рассмотренные данные по прочности при мягком нагружении относятся к испытаниям в условиях симметричного цикла. Асимметрия напряжений Но оказывает суш,ественное влияние на долговечность в связи с особенностями сопротивления материалов деформированию при наличии среднего напряжения. Так, для циклически стабильных и разупрочняюгцихся материалов в интервале напряжений, приводяш,их к квазистатическому разрушению, долговечность определяется величиной максимального напряжения цикла (рис. 1.1.5). У циклически упрочняюш,ихся материалов с усталостным типом разрушения малоцикловая прочность характеризуется амплитудными значениями напря жений (рис. 1.1.6).  [c.11]

При этом предполагается, что в зонах концентрации напряжений, где, как правило, происходят малоцикловые разрушения, накапливаются в основном усталостные повреждения в результате действия знакопеременных упругопластических деформаций. Вместе с тем в эксплуатационных условиях в результате работы конструкции на нестационарных режимах, в том числе при наличии перегрузок, возможно накопление односторонних деформаций, определяювцих степень квазистатического повреждения и влияю-ш их на достижение предельных состояний по разрушению. Для обоснования методологии учета накопления конструкцией (наряду с усталостными) квазистатических повреждений по результатам тензометрических измерений требуется решение прежде всего вопросов расшифровки показаний датчиков с целью воспроизведения истории нагруженности в максимально напряженных местах конструкции и оценки малоциклового повреждения для эксплуатационного контроля по состоянию. Малоцикловое повреждение может в общем случае оцениваться по результатам измерений, выполненных обычными тензорезисторами, но с расширенным диапазоном регистрируемых деформаций (до величин порядка нескольких процентов), характерных для малоцикловой области нагружений. Исследование [20] выполнялось в Московском инженерно-строительном институте и Институте машиноведения на базе разработанных в лаборатории автоматизации экспериментальных исследований МИСИ специальных малобазных тен-зорезисторов больших циклических деформаций. Аппаратура и методика эксперимента подробно описаны в [229]. На серийной испытательной установке УМЭ-10Т с тензометрическим измерением усилий и деформаций, а также крупномасштабным диаграммным прибором осуществлялось циклическое нагружение цилиндрических гладких образцов по заданному и, в частности, нестационарному режиму. Одновременно соответствующей автоматической аппаратурой производилась регистрация истории нагружения с помощью цепочек малобазных тензорезисторов, наклеенных на испытываемый образец. Сопоставление показаний тензорезисторов с действительной историей нагружения и деформирования образца, регистрировавшихся соответствующими системами испытательной установки УМЭ-10Т, давало возможность определить метрологические характеристики датчиков и особенности их повреждения в условиях малоциклового нагружения за пределами упругости. Наиболее существенными особенностями работы тензорезисторов в условиях малоциклового нагружения оказываются изменение коэффициента тензочувствительности при высоких уровнях исходной деформации и в процессе набора циклов нагружения, уход нуля тензорезисторов и их разрушение через определенное для каждого уровня размаха деформаций число циклов.  [c.266]

В испытаниях на термическую усталость с варьируемой жесткостью нагружения [4,5, 10] это связано прежде всего с режимом неизотермического малоциклового нагружения (жесткость нагружения, уровень максимальной температуры цикла, скорость нагрева и охлаждения, длительность выдержки) и определяется различным сопротивлением статическому и циклическому деформированию частей образца, нагретых в разной степени из-за продольного градиента температур, и протеканием реологических процессов на этапе выдержки при высокой температуре [4, 10]. На рис. 4, б показано, что зффект одностороннего накопления деформаций существенно проявляется в характерной для малоцикловой усталости области чисел циклов (до 10 ) и в определенных условиях (большая жесткость нагруяшния — до 240 Т/см и длительная выдержка — до 60 мин), возможно накопление перед разрушением деформаций, близких к величинам статического однократного разрыва (кривые 7,5, 5) при соответствующем времени деформирования в условиях неизотермического нагружения. При этом реализуется смешанный или квазистатический (длительный статический) характер малоциклового разрушения.  [c.40]


Явление циклической ползучести и квазистатического разрушения чаще всего связано с условиями асимметричного мягкого нагру кения циклически стабильных и разупрочняющихся материалов. В ус.пови-ях жесткого нагружения односторонняя деформация не накапливается и процессы циклической по.тзучести не реализуются. Ква.зиста-тическое разрушение всегда связано с направленным пластическим деформированием, по не всегда накопление односторонних деформаций сопровон дается квазистатическим разрушением [11. Разрушение при циклической ползучести в малоцикловой области в общем случае может иметь и усталостный характер. При этом накопленная деформация достигает значительной величины, а разрушение происходит в результате образования и развития до критической величины усталостной трещины.  [c.134]

Известно, что расстояние между полосами определяет перемещение трещины за один цикл. Следовательно, подрастание усталостной треш.ииы в данном случае происходит нелинейно и ускоряется перед дорывом. Результаты фрактографического анализа показывают, что усталостная трещина при малоцикловой усталости зарождается в теле зерен и характер ее распространения является внутризеренным. Следовательно, при малоцикловом нагружении конструкционной стали 15Г2АФДпс изменение характера макроразрушения связано с изменением характера микроразрушения на структурном уровне статическому разрушению соответствует внутризеренное распространение трещины, квазистатическому — смешанное, малоцикловому усталостному — внутризеренное. При этом следует отметить, что нет принципиального различия в характере разрушения стали 15Г2АФДпс при испытаниях в условиях малоцикловой и классической многоцикловой усталости в одном и другом случае при развитии усталостной трещины происходит внутризеренное разрушение [4].  [c.138]

Фрактографические исследования характера разрушения других сплавов в малоцикловой области, испытанных при пульсирующем нагружении с частотой 2 цикл/мин, также показали, что переломы на кривых малоцикловой усталости обусловлены изменением типа,, или микромеханизма разрушения на структурном уровне. Так, для хромоникелевого сплава ЭИ437БУ статическое разрушение, как и квазистатическое, сопровождается межзеренным распространением трещины (см. рис. 3, г, д), а усталостное — внутризеренным (см. рис. 3,е). В зоне разрушения, которая образуется при доломе образца на последнем цикле после развития трещины до критической величины, наблюдается смешанное разрушение (см. рис. 3, ж). Аналогичное изменение характера макро- и микроразрушения при переходе от одних участков предельных кривых малоцикловой усталости к другим четко прослеживается и для других сплавов.  [c.138]

Таким образом, между процессами направленного пластического деформирования и разрушения металлов в области малоцикловой усталости существует тесная взаимосвязь изменение характера макроразрушения материала от квазистатического к усталостному, регистрируемое по разрывам на предельных кривых пластичности, обусловлено изменением структурных особенностей их деформирования и разрушения, которое фиксируется по переломам на предельных кривых скоростей ползучести и кривых малоцикловой усталости с эответственно.  [c.138]

Исследование особенностей квазистатического и усталостного разрушения конструкционных сплавов при малоцикловом нагружении / Стрижало В. А., Степаненко В. А.— В кн. Механическая усталость металлов Материалы VI Междунар. коллоквиума. Киев Наук, думка, 1983, с. 133—1.39.  [c.425]

Исследования малоцикловой усталости различных сталей и сплавов при пульсирующем растяжении в области долговечностей 0,5 ч- 2 X 10 циклов показали, что при циклическом упругопластическом деформировании существует тесная взаимосвязь между процессами деформирования и разрушения материала. Изменение характера макроразрушения от квазистатического к усталостному, вызывающее появление разрывов на предельных кривых пластичности, обусловлено изменением особенностей микродеформироваиия и микроразрушения металлов, которое фиксируется по переломам на предельных кривых скоростей ползучести и кривых малоцикловой усталости соответственно.  [c.425]

С учетом отмеченных особенностей варьирование долей усталостного и квазистатического повреждений осуществляли путем изменения продолжительности вьщержки при максимальной температуре цикла или жесткости нагружения. При этом малоцикловые разрушения ре-ализовьтались в достаточно широком диапазоне чисел циклов нагружения (до 6 10 ).  [c.38]


Смотреть страницы где упоминается термин Разрушение квазистатическое малоцикловое : [c.41]    [c.44]    [c.11]    [c.15]    [c.270]    [c.133]    [c.136]    [c.17]    [c.29]    [c.404]   
Трещиностойкость металлов при циклическом нагружении (1987) -- [ c.33 ]



ПОИСК



Разрушение квазистатическое

Разрушение малоцикловое

Стрижало В. А., Степаненко В. А. Исследование особенностей квазистатического и усталостного разрушения конструкционных сплавов при малоцикловом нагружении



© 2025 Mash-xxl.info Реклама на сайте