Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Условия начальные для движения несжимаемой жидкости

Классическая гидромеханика рассматривает обычно или движения несжимаемой жидкости, когда плотность жидкости р есть физическая постоянная, или же такие движения сжимаемой жидкости, при которых плотность р есть наперед заданная функция давления р. Таким образом, в классической гидромеханике мы имеем дело с четырьмя неизвестными тремя составляющими по координатным осям вектора скорости V и давлением. Четыре уравнения классической гидромеханики, состоящие из трех уравнений динамики и одного уравнения неразрывности, очевидно, достаточны при известных начальных и граничных условиях для определенности решения той или иной задачи гидромеханики.  [c.12]


ПОЛЯ в момент t, и найдя вероятность этой совокупности начальных условий. Таким образом, в турбулентном потоке уравнения гидродинамики будут однозначно определять эволюцию во времени распределения вероятности гидродинамических полей. Это значит, что более или менее произвольно (с соблюдением лишь некоторых условий регулярности ) здесь можно выбирать только распределения вероятности в один фиксированный момент времени после этого все остальные распределения вероятности, относящиеся к значениям гидродинамических полей во всевозможных точках пространства — времени, будут уже однозначно определяться из уравнений движения. Поэтому основную задачу теории турбулентности (например, для случая несжимаемой жидкости) можно сформулировать следующим образом по заданному распределению вероятности значений трех компонент скорости в различных точках пространства в момент t — to, сосредоточенному на совокупности дважды дифференцируемых соленоидальных векторных полей, требуется определить распределения вероятности значений полей скорости и давления во все последующие моменты времени (включая и распределения для значений в несколько различных моментов времени). В случае сжимаемой жидкости надо только вместо распределений вероятности трех компонент скорости исходить из распределений вероятности значений пяти независимых гидродинамических величин. К сожалению, эта общая задача слишком трудна, И в настоящее время еще не видно подхода к ее полному решению. Поэтому дальнейшее обсуждение этой задачи мы отложим до заключительной главы второй части нашей книги в остальных же главах мы будем заниматься лишь более частными задачами, в которых вместо распределений вероятности фигурируют некоторые менее полные статистические характеристики случайных полей.  [c.175]

Начальные и граничные условия. Начальные условия для задачи о движении вязкой несжимаемой жидкости не отличаются от таковых для случая идеальной жидкости. В обоих случаях должно быть задано в начальный момент /= О распределение скорости во всей рассматриваемой области.  [c.515]

Предположим, что два в общем случае нестационарных потока ньютоновской вязкой несжимаемой жидкости подобны между собой. Тогда, по предыдущему, безразмерные начальные, граничные и другие условия единственности, так же как и сами безразмерные уравнения Стокса (38), должны быть одинаковыми для обоих сравниваемых между собою движений. Но, по предположению о существовании подобия, все безразмерные, обозначенные штрихами переменные в сходственных точках потоков одинаковы, следовательно, для совпадения дифференциальных уравнений остается потребовать, чтобы были одинаковыми числа подобия, т. е.  [c.369]


Для изучения движения вязкой несжимаемой жидкости с постоянным коэффициентом вязкости необходимо решать совместно систему дифференциальных уравнений (6.2) и (6.4) с частными производными второго порядка. Решения этой системы дифференциальных уравнений будут содержать произвольные функции, для определения которых необходимо задавать начальные и граничные условия. Задание начальных условий необходимо лишь в том случае, когда изучается неустановившееся движение жидкости. В этом случае должно считаться известным всё движение жидкости для какого-либо фиксированного момента времени, например для начального момента = 0.  [c.93]

Начальные и граничные условия. Начальные условия для задачи о движении вязкой несжимаемой жидкости не отличаются от таковых же условий для случая идеальной жидкости. И в том п в другом случае должно быть задано в начальный момент = 0 распределение скорости во всей рассматриваемой области, т. е. должны быть заданы три следующие функции  [c.397]

Для значительного сжатия жидкостей (и твердых тел) нужны давления в сотни тысяч атмосфер и выше. Поэтому в обычных условиях жидкость можно рассматривать как несжимаемую среду. Скорости течения жидкости при малых изменениях плотности гораздо меньше скорости звука, которая является масштабом скорости, характеризуюш,им сплошную среду. При небольших изменениях плотности и движениях, медленных по сравнению со скоростью звука, газ также можно считать несжимаемым и описывать его движение при помош и гидродинамики несжимаемой жидкости. Однако заметные изменения плотности и скорости течения, сравнимые со скоростью звука, в газах, в отличие от жидкостей, достигаются сравнительно легко при перепадах давления порядка величины самого давления, т. е. при Ар 1 атм, если начальное давление газа атмосферное. В таких условиях необходимо учитывать сжимаемость вещества. Уравнения газовой динамики тем и отличаются от уравнений гидродинамики несжимаемой жидкости, что в них учтена возможность больших изменений плотности веществ.  [c.13]

Для интегрирования систем уравнений (1.4), (1.6) к ним необходимо присоединить начальные и граничные условия. Число и вид начальных данных зависят от системы уравнений. Если рассматривается неустановившееся движение идеальной несжимаемой жидкости, то начальные условия состоят в задании поля скоростей во всей области О (занятой жидкостью) в начальный момент времени.  [c.11]

Начальные и граничные условия. В качестве начальных условий для решения полной системы уравнений движения несжимаемой однородной жидкости необходимо иметь распределение полей скорости и давления в момент времени t О.Уравнения движения являются эволюционными во времени первого порядка и задание начального распределения величин позволяет вычислить их развитие во времени.  [c.33]

Уравнения двумерного пограничного слоя являются уравнениями параболического типа. Общие свойства уравнений двумерного пограничного слоя сохраняются и для пространственного пограничного слоя. Это означает, что главный механизм, определяющий характер течения в направлении, перпендикулярном к стенке, является механизмом диффузии момента количества движения и диффузии потока тепла в сжимаемых средах. Произвольное возмущение мгновенно передается поперек пограничного слоя, так как в этом направлении скорость диффузии бесконечно велика. Произвольное возмущение в пограничном слое распространяется вдоль линий тока с конечной скоростью. В трехмерном пограничном слое возникает понятие о зоне зависимости и о зоне влияния [14]. Возмущение, возникающее в некоторой точке пограничного слоя, распространяется не на всю его область, а только на пространство влияния этой точки. Область зависимости и область влияния определяются в виде клина, образованного двумя поверхностями, перпендикулярными к поверхности, проходящей через предельную линию тока на теле и линию тока внешнего течения. Угол между двумя поверхностями задает максимальный угол разворота вектора скорости в плоскости, касательной к поверхности тела. Когда угол между двумя поверхностями стремится к нулю, предельные линии тока имеют то же направление, что и линии тока внешнего течения, и области зависимости и влияния вырождаются в одну поверхность, перпендикулярную к поверхности тела. Если начальные условия заданы на некоторой поверхности, перпендикулярной к поверхности тела, т. е. известны составляющие скорости (в несжимаемой жидкости) и температура или энтальпия (в сжимаемом газе), тогда решения уравнений пространственного пограничного слоя можно найти только в некоторой области, определяемой областью, которая зависит от начальных данных на поверхности. Правильную картину течения в пограничном слое, особенно вблизи отрыва , можно построить только с учетом перетекания жидкости, т. е. зон зависимости и зон влияния.  [c.135]


Уравнения пространственного ламинарного пограничного слоя в несжимаемой жидкости представляют собой нелинейную систему уравнений в частных производных, состоящую из двух уравнений количества движения второго порядка с тремя независимыми переменными и одного уравнения первого порядка (уравнения неразрывности). Для этой системы уравнений в каждом конкретном случае задаются начальные и граничные условия.  [c.139]

Численным методом изучается течение вязкой несжимаемой жидкости между соосными цилиндрами, которые совершают равноускоренное вращение вокруг своей оси как твердое тело. Аналитическим методом строится одномерное нестационарное решение уравнений Навье - Стокса для случая, когда движение начинается из состояния покоя. На начальном участке времени одномерное нестационарное движение жидкости является неустойчивым. Вносимые в поток малые возмущения вызывают образование вторичных вихревых течений с компонентой скорости вдоль оси. Численным методом исследуется динамика возникающих неустойчивостей и их диссипация. Формулируется условие, определяющее размеры нестационарной области вторичных течений. Неустойчивый режим течения является переходным и с некоторого момента времени течение становится устойчивым.  [c.52]

Трудность выбора корректного начального условия. Соотношение (1.8) - общий вид начального условия для задачи о движении вязкой несжимаемой жидкости [6] (гл. 2, 6). В связи с изменяемостью свободной поверхности его естественно дополнить условием (1.7), определяющим начальную форму области, в которой рассчитывается поле скоростей. С точки зрения механики, ( . )-(1.6) есть система уравнений движения набора материальных частиц, взаимодействующих за счет внутренних сил при наличии внешнего потенциального поля силы тяжести. Начальными условиями для такой системы являются начальные положения и скорости частиц. Из (1.7) можно определить положения всех жидких частиц (они расположены при г < ), а (1.8) задает поле начальных скоростей.  [c.185]

Рассмотрим начальные и граничные условия для неустановив-шегося движения несжимаемой жидкости (р = onst, р, = onst). В качестве начальных условий задается распределение скоростей Uj , Uy, 2 в области течения в начальный момент времени ta.  [c.92]

Для подобия плавного обтекания двух тел вязкой несжимаемой жидкостью должны быть геометрически подобны сами 1ела и одинаковы безразмерные уравнения движения жидкости и безразмерные начальные и граничные условия.  [c.578]

Если, например, твердое тело приводится в движение в покоящейся реагирующей жидкости, то течение жидкости вначале будет безвихревым, затем в жидкости в окрестности твердого тела возникнет вихревая пелена, которая будет диффундировать во внешний поток, в результате чего вб и-зи тела образуется пограничный слой газа. Для описания течения в пограничном слое при обтекании тела вязкой несжимаемой жидкостью начальные условия записываютсг в виде (5.5.1), но вместо индекса н следует использовать 1[н-декс е, который означает, что в качестве начальных условий принимаются параметры для безвихревого течения невязкой жидкости.  [c.209]

На самом деле, как показывают многочисленные исследования, турбулентное движение, как бы ни было оно сложно по своей внутренней структуре, подчиняется общим законам динамики непрерывной среды, в частности установленным в предыдущей главе уравнениям динамики вязкой сжимаемой или несжимаемой жидкости в нестационарной их форме. В то же время не имеет смысла точная постановка вопроса о разыскании решений этих уравнений при строго поставленных начальных и граничных условиях. Де 1Ствительно, в обстановке неограниченного роста сколь угодно малых возмущений самые ничтожные отклонения от поставленных граничных и начальных условий (неточности в изготовлении поверхности обтекаемого тела, предыдущая история потока и др.) могут привести к столь значительным изменениям решений уравнений, чго за ними исчезнут все достоинства строгой постановки задачи. Пользоваться упрощенной геометризацией формы обтекаемых тел или каналов и не учитывать наличия начальных возмущений в потоке можно лишь в тех случаях, когда поток устойчив и существует уверенность, что сделанные малые ошибки в постановке задачи приведут к столь же малым ошибкам в ее пешении это и делалось ранее при рассмотрении ламинарных движений. Для исследования турбулентных движений приходится применять  [c.582]

Теоремы единственности для течений вязкой жидкости. Рассмотрим вязкую несжимаемую жидкость, заполняющую ограниченный объем 33 = S (/), граница которого 0 состоит из конечного числа замкнутых твердых поверхностей, движущихся заданным образом (твердые тела, движущиеся в ограниченном сосуде). В силу условия прилипания (см. п. 64) поле скоростей жидкости на границе совпадает с полем скоростей границы 3 в ее собственном движении. Естественно поставить вопрос будет ли движение жидкости в этих предположениях полностью определяться распределением скорости в некоторый начальный момент i = О Положительный ответ на этот вопрос дает следующая теоре ма если, два течения в ограниченной области  [c.230]

Несимметричная фокусировка. Во всех рассмотренных случаях фокусировка была симметричной, но, возможно, для неограниченной кумуляции это условие не обязательно. В принципе пример такого движения можно построить, начиная с произвольного фокусировочного состояния с достигнутой неограниченной кумуляцией и ведя расчет назад по времени. Однако найденные так начальные условия, как правило, не соответствуют реальным движениям. Например, таким образом можно получить схлопывание пузырька в несжимаемой жидкости с мгновенным распределением скоростей не типа 1/г , а типа 1/г, что при расчете вспять приведет к утрате сплошности жидкости и появлению в ней пористости .  [c.339]



Смотреть страницы где упоминается термин Условия начальные для движения несжимаемой жидкости : [c.203]    [c.462]   
Теоретическая гидромеханика Часть2 Изд4 (1963) -- [ c.397 ]



ПОИСК



Движение в жидкости несжимаемо

Движения условия

Жидкости Движение — Условия начальные

Жидкость несжимаемая

Начальные движения

Условия начальные

Условия начальные (см. Начальные



© 2025 Mash-xxl.info Реклама на сайте