Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Модель вязкоупругой жидкости

Указанные модели вязкоупругого тела становятся весьма наглядными, если их представить в зиде комбинации простейших элементов —упругого и вязкого. Упругий элемент имеет вид пружины (см. рис. 7.4, а) с линейной характеристикой, т. е. о = Ее. Вязкий элемент представляет собой цилиндр (рис. 7.4, б) с вязкой жидкостью, в котором перемещается поршень с отверстием или с зазором вдоль стенки цилиндра, благодаря чему жидкость может перетекать из одной части цилиндра в другую. При постоянной силе поршень перемещается с постоянной скоростью, или, иначе говоря, а = В модели Максвелла деформации в упругом и вязком элементах суммируются, а напряжения одинаковы. Это соответствует последовательному соединению элементов (рис. 7.5, а). В модели Фойгта суммируются напряжения в элементах, а их деформации одинаковы. Такая картина получится, если элементы соединить параллельно (рис. 7.5, б).  [c.757]


Горные породы - это тела с бесконечным многообразием реологических свойств, поэтому для описания их поведения могут быть использованы те или иные механические модели. При составлении модели нужно учитывать механические свойства минеральных агрегатов, составляющих породу, её структурные особенности, а также тип и характер цементирующего вещества. Горные породы и вязкоупругие жидкости могут быть представлены в виде некоторых комбинаций двух идеальных тел - вязкого (Ньютона N ) и упругого (Гука И ). Качественное описание реологического поведения подобных тел дают механические модели, в которых упругие свойства представлены пружиной, а вязкие -поршнем, движущемся в цилиндре, наполненном маслом (рис.8.4).  [c.92]

Книга является введением в современную механику сплошных сред. В ней изложена общая теория определяющих уравнений и термодинамики сплошных сред. Рассмотрена общая теория деформаций (нелинейный случай), построены модели гиперупругой среды и рассмотрены частные случаи модели пластической среды, вязкоупругость и теория течения вязких жидкостей. В приложениях приведен весь необходимый математический и термодинамический аппарат.  [c.351]

Для уравнений плоского двумерного нестационарного движения вязкой среды построен скалярный потенциал - аналог линии частицы жидкости - являющийся переменной лагранжева типа. Дано применение уравнений гидродинамики, записанных в этих переменных, к различным классам конвективных динамических и тепловых процессов. Рассматривались реологические модели жидкостей ньютоновская несжимаемая и сжимаемая, нелинейно-вязкая, вязкоупругая, а также турбулентный поток. Для изотермического процесса удалось построить простое преобразование уравнений А.С. Предводителева (жидкость дискретной структуры) к классическим уравнениям Стокса.  [c.128]

Ниже рассматривается контактное взаимодействие двух упругих цилиндров, содержащих на поверхности слои, моделируемые вязкоупругими телами, и разделённых слоем смазки. Такая модель дает возможность изучить совместное влияние объёмных свойств жидкости, а также свойств тонких поверхностных плёнок на характеристики контактного взаимодействия и коэффициент трения при различных условиях взаимодействия (скорость относительного проскальзывания, нагрузка и т.д.).  [c.284]


Всякое тело, твердое или жидкое, можно рассматривать как обладающее упругостью и вязкостью. Механической аналогией вязкоупругого материала является известная модель Максвелла — система, состоящая из последовательно соединенных пружины и гидравлического демпфера (поршня в цилиндре) с вязкой жидкостью. Пружина характеризует упругость, демпфер — текучесть (вязкость) материала.  [c.103]

Уравнение Бюргерса является простейшей моделью диссипирующих волн и при некоторых упрощающих предположениях помимо всего прочего охватывает следующие случаи турбулентность (где это уравнение впервые появилось), звуковые волны в вязкой среде, волны в вязкоупругих трубках, наполненных жидкостью, магнитогидродинамические волны в среде с конечной электропроводимостью. Уравнение КдФ представляет собой простейшую модель диспергирующих волн и при определенных упрощающих условиях охватывает волны следующих типов длинные волны на поверхности  [c.29]

Аномально вязкие жидкости обладают свойствами твёрдого тела и жидкости, то есть проявляют упругое восстановление формы после снятия напряжения. Эти жидкости называют вязкоупругими, к ним относится модель Максвелла, или модель релаксирующего тела, для которого  [c.57]

Маха число 13. 92, 165, 375, 389 Мизеса условие 147 Миняаерта форму.ла 117 Модель вязкоупругой жидкости 105  [c.459]

Простейшая механическая модель вязкоупругой жидкости может быть получена последовательным соединением пружины и поршня (рис.8.3,в). Она представляет собой, так называемую максвелловскую жидкость (J. Maxwell, 1868).  [c.92]

Если рассмотреть с,плотную среду, обладающую свойствами вязкой жидкости и yupyi O Tn, то получим модели вязкоупругости, которые были предложены Максвеллом, Фойгтом и Кельваиом — 1 связи с изучением свойств густых раство-  [c.138]

Это уравнение получается из следующих соображений. Как и ранее, при рассмотрении упругого материала, представим себе конструкционный элемент машины или соорун<ения, состоящий из множества малых единичных кубиков, плотно прилегающих друг к другу. Внутри каждого кубика можно представить себе два соединенных последовательно элемента один элемент обладает упругим сопротивлением, другой — вязким (рис. 22.1). В качестве упругого элемента обычно изображают пружину, в качестве вязкого — цилиндр, заполненный вязкой жидкостью, внутри которого с некоторым зазором может двигаться поршень. Вязкое сопротивление при движении поршня относительно цилиндра возникает вследствие перетекания жидкости через зазор из одной полости в другую. Единичный кубик с описанным здесь внутренним устройством принято называть моделью вязкоупругого материала Максвелла.  [c.395]

Четырехэлементная модель вязкоупругого тела, приведенная в гл. 3 для иллюстрации явления ползучести полимеров, может быть также использована для анализа влияния температуры и частоты на механические потери в полимерах. Поведение такой модели при динамических нагрузках показано на рис. 4.3 [65]. Предположим, что вязкость жидкости в демпфере 3 больше, чем в демпфере 2 и оба значения вязкости уменьшаются с повышением температуры. При очень низкой температуре вязкость жидкостей столь велика, что поршни не будут реагировать на прикладывае-  [c.94]

Полное решение проблемы выбора надлежащей модели материала даже в такой упрощенной форме далеко от завершения, однако имеются примеры удачных частных решений. Так, при сверхвысоких (порядка модуля упругости) давлениях, развивающихся при гиперскоростных соударениях, успешно используется модель идеальной жидкости (М. А. Лаврентьев, 1949). Для материалов типа полимеров, для которых существенны эффекты несовершенной упругости, иногда используется модель вязкоупругого тела (см., например, А. Ю. Ишлинский, 1940). Что касается материалов типа металлов, находящихся под действием умеренно высоких напряжений порядка предела текучести (которым, в основном, и посвящен данный обзор), то для их изучения могут использоваться два подхода. В основе первого из них лежит допущение, что за пределами упругости материал переходит в вязко-пластическое состояние и его определяющее уравнение зависит от времени. Начало этому направлению подолбили работы А. А. Ильюшина (1940, 1941), в которых в качестве определяющих уравнений использованы уравнения вязко-пластического течения, не учитывающие упругих деформаций. В этих работах дано решение нескольких теоретических задач (удар по цилиндрическому образцу твердым телом, деформирование полого цилиндра под действием внутреннего давления) и описан сконструированный автором первый пневматический копер, позволявший достигать скоростей деформаций порядка 10 Исек (с помощью его были определены коэффициенты вязкости некоторых металлов). Сразу вслед за тем учениками А. А. Ильюшина были решены задачи о вращении цилиндра в вязко-пластической среде (П. М. Огибалов, 1941) и об ударе цилиндра по вязко-пластической пластинке (Ф. А. Бахшиян, 1948 — опубликование этой работы задержалось на ряд лет). С математической точки зрения уравнения динамики одноосного вязко-пластического тела принадлежат к классу уравнений параболического типа.  [c.303]


Рис. 8.4. Механические модели вязкоупругих сред а - тело Гука (упругое) б - тело Ньютона (вязкая жидкость) в-тело Максвелла (вязкоупругое) г- тело Фойгхта (вязкоупругое) Рис. 8.4. <a href="/info/74923">Механические модели</a> <a href="/info/146370">вязкоупругих сред</a> а - тело Гука (упругое) б - <a href="/info/46730">тело Ньютона</a> (<a href="/info/21685">вязкая жидкость</a>) в-<a href="/info/46725">тело Максвелла</a> (вязкоупругое) г- тело Фойгхта (вязкоупругое)
Исследования течения вязкоупругой жидкости, описываемой трехпараметрической моделью Олдройда, показали, что нормальные напряжения направлены перпендикулярно к течению и равны между собой. В этом случае вторичные течения не отсутствуют.  [c.92]

К настоящему времени для описания разнообразных свойств неньютоновских, в том числе вязкоупругих, жидкостей предложено множество уравнений состояния. Помимо правильного учета свойств реальных жидкостей важным требованием к реологической модели является инвариантность ее записи, отражающая объективность свойств описываемой среды. С этой точки зрения, интерес представляет модель де Витта с производной Яумана [1], имеющей одинаковый вид в ко- и контравариантной записи.  [c.6]

Еще одна особенность этой модели в сравнении, например, с широко применяемой моделью Олдройда [2-Ц - это отличие от нуля обоих нормальных напряжений (важной особенности реальных вязкоупругих жидкостей) в стационарном течении между двумя пластинами. Это обстоятельство, а также более сложный вид данного уравнения состояния, возможно, являются причиной возникновения сдвиговой неустойчивости течения, обнаруженной в результате численных экспериментов и проанализированной в настоящей работе.  [c.6]

Подведем итог. Исследование гидродинамической системы с двумя сильными разрывами показало, что вырожденный случай прилипания ( = 0) жидкости на внутренних стенках j-области не содержит интересных качественных явлений. Это означает, что проскальзывание жидкости на разрыве физически содержательно са.мо по себе, вне связи с конкретными реологическими свойствами. Для разных реологических моделей жидкости (ньютоновская, нелинейно-вязкая, вязкоупругая) эффект скольжения проявляет себя многофакторным образом. Представленные здесь примеры демонстрируют эволюционные свойства течений с турбулентной вязкостью на фоне эффекта скольжения. В формировании структуры потока ифают принципиальну ю роль два обстоятельства эффект скольжения жидкости вдоль линии сильного разрыва и характер распределения (монотонный либо немонотонный) полных гидродинамических напоров в направлении основного течения.  [c.100]

Для численного исследования УГД контакта со смазками, описываемыми различными реологическими соотношениями, в работе [77] использовалось обобщенное на случай максвелловской жидкости уравнение Рейнольдса. Из результатов решения задачи с вязкоупругой моделью смазки [52] следовало, что с ростом снижались и пиковое давление. Пик давления с ростом сдвигался в сторону центра контакта, что согласуется с результатами работы [99]. Показано, что в неизотермических условиях и /го для ньютоновской и эйринговской моделей весьма близки во всем диапазоне изменения з . Сделан вывод, что влияние неньютоновских свойств смазки менее значительно, чем термических.  [c.514]

При подготовке монографии мы стремились сделать ее полезной как для специалистов, так и для заинтересованных представителей смежных профессий и студентов. Для полноты представления материала в первых двух главах кратко изложены сведения из механики сплошных сред в объеме, необходимом для обсуждения экспериментов, и обзор современных экспериментальных методов. В третьей и четвертой главах обсуждаются результаты экспериментальных исследований вязкоупруго-пластической деформации материалов различных классов в ударных волнах и расчетные модели неупругого деформирования. Сопротивление разрушению конденсированных сред в субмикросекундном диапазоне длительностей нагрузки изучается путем анализа откольных явлений при отражении импульса ударного сжатия от поверхности тела. Механизм и динамика откольного разрушения в конструкционных металлах и сплавах, пластичных и хрупких монокристаллах, керамиках и горных породах, стеклах, полимерах, эластомерах и жидкостях обсуждаются в пятой главе. В шестой главе представлено несколько наиболее важных примеров полиморфных превращений веществ в ударных волнах. Некоторые вопросы взаимодействия импульсов лазерного и корпускулярного излучения с веществом, что является одним из новых приложений физики ударных волн, обсуждаются в гл.7. Восьмая глава представляет собой обзор уравнений состояния и кинетики разложения взрывчатых веществ в ударных и детонационных вол-  [c.7]

Линейную вязкоупругость для одномерного состояния удобно трактовать при помощи механических моделей, которые наглядно демонстрируют поведение различных вязкоупругих материалов. Эти модели строятся из таких механических элементов, как линейноупругая пружина с модулем упругости С (массой этой пружины пренебрегают) и вязкий элемент (демпфер с коэффициентом вязкости т] (вязкий элемент представляет собой поршень, движущийся в цилиндре с вязкой жидкостью). Как показано на рис. 9.1, сила а, растягивающая пружину, связана с ее удлинением е формулой  [c.279]

Линейная теория вязкоупругости основывается, с одной стороны, на основополагающих концёпциях Больцмана и Вольтерра, с другой стороны, на теории вязко-упругих реологических моделей, восходящей к Дж. Максвеллу и В. Фойхту. Объединяя свойства упругих тел и вязких жидкостей в более общей связи, эта теория имеет дело с линейными дифференциальными или интегро-дифференциальными уравнениями, поэтому в ней открывается широкий простор для приложения эффективных математических методов. Интерес к этой теории существовал все время, но отсутствие реальных технических приложений не стимулировало ее интенсивную"разработку. Ранние исследования в этой области (А. Ю. Ишлинский, А. Н. Герасимов, А. Р. Ржаницын, Ю. Н. Работнов и др.), по существу, не имели виду решение определенных технических задач, а были направлены скорее на извлечение некоторых математических следствий из принятых моделей.  [c.122]


Первый основной закон термодинамики не накладывает каких-либо ограничений на определяюш,ие уравнения. Это же относится и к третьему закону. Второй основной закон термодинамики исключает процессы с отрицательным притоком энтропии. Это условие сужает класс допустимых уравнений состояния, однако не до желаемой степени. Более обещаюш,им здесь является принцип Онзагера [22], поскольку он относится к необратимым процессам и доставляет определенную информацию о направлении таких процессов, более точную, нежели второй основной закон. В самом деле, как было показано Био [1], принципа Онзагера достаточно для исследования некоторых проблем линейной вязкоупругости и установления так называемой вязкоупругой аналогии. К сожалению, однако, применение принципа Онзагера ограничивается только линейными задачами и поэтому не может дать результатов в более интересных случаях нелинейных моделей сплошных сред (неньютоновы жидкости, нелинейные вязкоупругие тела, вязкопластичные и пластичные тела и др.).  [c.9]

Частный случай вязкоупругости. Имеется много типов вязко-упругих материалов. Соответствующие реологические модели строятся различными путями из пружин и катаракт (поршней с вязкой жидкостью) (см. Бленд [2]). Вообще говоря, реакция этих материалов настолько слоис-на, что ее нельзя объяснить с помощью однородных элементов, состояние которых описывается компонентами  [c.96]


Смотреть страницы где упоминается термин Модель вязкоупругой жидкости : [c.320]    [c.104]    [c.115]    [c.255]    [c.15]   
Динамика многофазных сред. Ч.1 (1987) -- [ c.105 ]



ПОИСК



Вязкоупругие жидкости

Вязкоупругость

Модели жидкости

Модель вязкоупругая



© 2025 Mash-xxl.info Реклама на сайте