Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Определение титана

Определение титана 3 — 93, 1(1)4, 105 -Определение углерода 3—93  [c.341]

Определение титана [20, 21, 13]. Титан находится в стали (чугуне) в виде твёрдого раствора в феррите, а также образует нитриды и очень неустойчивый карбид. Ввиду незначительного содержания Т1 определение про-  [c.104]

Метод электролиза с ртутным катодом применяется для особо точных (контрольных) анализов. 2<>/0-ный сернокислый раствор подвергают электролизу (см. Определение титана ) весь А1, а также Т1, V, Zr, Р и т. п. остаются в растворе.  [c.105]


Стали легированные и высоколегированные. Методы определения титана.  [c.770]

Рекристаллизационный отжиг титана и его сплавов проводят при 700—800°С, что значительно превосходит температуру рекристаллизации (500°С). Эта температура достаточна для быстрого устранения наклепа. Фазовые превращения, рассмотренные ранее, позволяют проводить различные операции закалки и отпуска (старения). Хотя при этом значительного изменения свойств не происходит как при термической обработке стали, тем не менее определенные изменения наблюдаются, и в последнее время при работе сплавов предусматривается воз-  [c.517]

Пассивность наблюдается в определенных условиях у титана, алюминия, хрома, молибдена, магния, никеля, кобальта, железа и других металлов. Очень многие металлы в той или иной степени в зависимости от условий склонны пассивироваться.  [c.303]

Взрывы наблюдались при определенных соотношениях воды н окислов азота в азотной кислоте. Механизм реакции взаимодействия титана с азотной кислотой, сопровождающейся взрывом, пока не достаточно ясен.  [c.282]

Механизм охрупчивания в жидких металлах аналогичен механизму КРН только при определенных сочетаниях жидких и напряженных твердых металлов, приводящих к межкристаллитному растрескиванию (табл. 7.2). Например, чтобы избежать катастрофического межкристаллитного растрескивания, ртутные котлы должны быть изготовлены и изготавливаются из - углеродистой стали, а не из титана, его сплавов или латуни. Адсорбированные атомы ртути снижают энергию межатомных связей на границах зерен напряженного титана или латуни, вызывая растрескивание, а в случае железа это не имеет места.  [c.142]

Из данных табл. 8-6 видно, что нанесением покрытий с определенным значением коэффициентов поглощения и лучеиспускания можно уменьшить теплоприток в помещение через стену почти в 10 раз. Такого рода покрытия получают добавлением в краску пигментов двуокиси титана, окиси цинка и др.  [c.234]

Кроме карбидов и нитридов титана, перспективными соединениями для покрытий являются бориды и нитриды кремния и бора, оксиды алюминия, циркония, хрома, а также алюминиды металлов. К настоящему времени разработаны покрытия сложного состава по типу (Ti- r) N и (Ti-Mo)-N. Однако обеспечение прочностных характеристик таких композиций требует более строгого соблюдения назначенных режимов ионно-плазменной обработки для получения двухфазной структуры нитридов металлов с составом, близким к стехиометрическому составу [92]. Недостаток указанных покрытий - их повышенная хрупкость. Устранение данного недостатка в определенной степени воз-  [c.247]


Для электротехнических целей используются специальные марки алюминия А5Е и А7Е, в которых содержание железа и кремния находится в определенном соотношении, а содержание титана, ванадия, хрома и марганца снижено до тысячных долей процента.  [c.121]

Как правило, с применением автоклавов изготовляют отливки из сплавов на основе алюминия, магния, меди и титана. Но известны работы [58] по изучению влияния газового давления в пределах О— 8 МН/м на структуру и механические свойства стали 40. Давление на зеркало жидкой стали в закрытой изложнице производилось азотом из баллона через газоотводящую трубку, снабженную прямым и обратным клапанами и манометром для определения рабочего давления газа.  [c.64]

Главным отличием технического титана от чистого является более высокое содержание примесей, особенна кислорода и азота, сильно влияющих на механические свойства металла, а также железа и кремния. Кроме того, в техническом гитане может присутствовать примесь водорода, что также оказывает влияние на свойства металла. Определенное влияние имеет и содержание в техническом титане примеси углерода, если оно превосходит 0,1 Уо, т. е. минимальную концентрацию для образования свободного карбида.  [c.362]

В серии опытов по определению оптимального режима горячего прессования титана было установлено, что он хорошо прессуется при температурах, не превышающих 1300° С. Известно также, что силицид титана обладает хорошей жаростойкостью. Для увеличения механической прочности покрытия [3] порошок титана смешивался с порошком молибдена в различных соотношениях.  [c.24]

Из-за высокого химического сродства к различным элементам титан высокой чистоты получить очень трудно, поэтому он всегда содержит определенное количество примесей, в основном кислорода и железа. В то же время механические характеристики титана в сильной степени зависят от его чистоты и изменяются в широких пределах временное сопротивление Од—от 216 до 736 МПа, предел текучести Од 2 МПа, относительное удлинение 5 —от 50 до 10 %. При  [c.9]

Высокая коррозионная стойкость сплавов принципиально не исключает возможность появления так называемого коррозионного растрескивания даже в средах, где установлена их высокая коррозионная стойкость. Поэтому коррозионное растрескивание представляет большую опасность. Она заключается в том, что разрушение вязкого в нормальных условиях металла, подверженного одновременно воздействию напряжения и определенной активной среды, происходит хрупко, т.е. без заметных деформаций и при напряжениях, более низких, чем временное сопротивление и даже предел текучести. Этот вид разрушения наиболее характерен для высокопрочных металлических материалов, склонных к пассивации, но находящихся, однако, в условиях, когда пассивное состояние под влиянием агрессивной среды может нарушаться в зоне максимальных напряжений. У титана вследствие высокой устойчивости пассивного состояния и быстрой регенерации во многих средах пассивных оксидных пленок при их механическом повреждении, а также из-за достаточной пластичности чувствительность к коррозионному растрескиванию оказалась во много раз меньше, чем у высокопрочных и нержавеющих сталей, алюминиевых и магниевых сплавов. Но по мере разработки более прочных титановых сплавов и расширения области их применения были установлены случаи явного коррозионного растрескивания и определены многие агрессивные среды, способствующие этому явлению.  [c.32]

При действии растягивающих напряжений, уровень которых меньше предела текучести титанового сплава при определенной температуре, возникновение дефектов в оксидной пленке возможно лишь в том случае, если толщина оксидного слоя становится больше некоторого критического значения. Чем выше напряжение, тем при меньших толщинах пленки должны возникать в ней дефекты. Вместе с тем чем выше температура, тем быстрее достигается критическая толщина оксидной пленки. После возникновения микроразрушений в оксидном слое возможно протекание электрохимических реакций, близких к реакциям при коррозионном растрескивании в водных растворах, и химических реакциях, возникающих при контакте титана с солями  [c.76]


Распределения циклической долговечности х = 1дЛ/,-, показанное на рис. 91, свидетельствует о близком к нормальному распределению 1дЛ/,-и о существовании при малых долговечностях "порога чувствительности по циклам" Л/д титана по мере уменьшения вероятности разрушения Я экспериментальные точки отклоняются от прямой и располагаются на некоторой кривой, приближающейся к вертикали. Согласно методике, принятой для определения величины порога чувствительности, можно принять для данного случая N = 2-10 . При числе циклов менее вероятность поломки ничтожно Мала и ее следует считать невозможной. Закон распределения величины = 1д(Л// —Л/ ) описывается нормальной функцией гораздо лучше, чем х = gN .  [c.139]

Неоднократный статистический анализ показал, что при базе испытания более 5-10 десятикратное увеличение числа циклов не приводит к изменению вычисляемого предела выносливости более чем на 10 %. В частности, у технически чистого титана [92] снижение напряжений с (1,05—1,08) iLl до с , т.е. на 5—8 %, влечет за собой по меньшей мер десятикратное увеличение циклической долговечности. Вероятность определения предела выносливости, вычисленная по данным рис. 92, показала (надрезанные образцы сплава ПТ-ЗВ, плоский изгиб), что уменьшение базы в 10 раз (с Ю до Ю ) может с 33 %-ной вероятностью привести к увеличению определяемого предела выносливости со 140 до 154 МПа, т.е. на 10 %. Это же изменение, но с большей вероятностью может произойти при изменении базы в 20 раз (с 5-10 до 10 цикл). Таким образом, к настоящему времени можно считать доказанным существование физического предела выносливости у титановых сплавов при 20°С в пределах 10 %-ной точности при изменении базы испытаний в 10 раз. Достаточно достоверные результаты определения предела выносливости титановых сплавов получаются при базе испытания 10 цикл и более.  [c.140]

Благодаря статистическому анализу результатов усталостных испытаний сплавов удается выявить некоторые закономерности усталостных свойств титана, которые не удается раскрыть при обычном определении среднего предела выносливости. Следует отметить, что большой разброс данных при циклических испытаниях сплавов заставляет строить полные вероятностные кривые не только для определения гарантированного предела выносливости металла с заданной надежностью (вероятностью) неразрушения, но даже при выборе сплава, так как по средним значениям предела выносливости (при Р-, = Б0 %) может быть выбран один сплав, а по вероятности неразрушения 99,9 % —другой сплав из-за меньшего разброса данных по его долговечности. При статистическом анализе более точно можно подобрать и математическую форму кривой усталости в координатах а—1дЛ/, что дает более точные сведения о пределе выносливости при большом количестве циклов нагружения. Например, при сравнении крупных поковок из сплавов ПТ-ЗВ и ВТ6 среднее значение предела выносливости у первого оказалось на 20 МПа выше, что находится в пределах разброса данных при построении полных вероятностных диаграмм из этих сплавов выяснилось, что сплав ВТ6 по пределу выносливости с вероятностью неразрушения 99,9 % при Л/= 10 цикл превосходит сплав ПТ-ЗВ более чем на 70 МПа. Статистический анализ позволил определить предел выносливости сплава ВТЗ-1 при если при Л/=10 цикл средние пределы были равны 430, 320, 197 МПа (соответственно для гладких образцов и надрезанных при а. =1,4 и . = 2,36), то при N- °° пределы выносливости оказались равными только 312, 217 и 72 МПа [96].  [c.142]

Режим и технология точения также могут определенным образом влиять на усталостную прочность. Высокая скорость резания и большая подача заметно снижают предел выносливости вследствие повышения шероховатости поверхности и появления неблагоприятных поверхностных напряжений. Однако имеются режимы резания, которые создают поверхностный наклеп и сжимающие напряжения, повышающие предел выносливости титана. Замечено отрицательное влияние на усталостную прочность титановых сплавов охлаждения жидкостями (вода, эмульсия и пр.) при высоких скоростях резания точением. В этом случае происходит поверхностное наводороживание и даже появление гидридных пленок и слоев, способствующих возникновению растягивающих напряжений и хрупкости поверхности. Во всех случаях конечные операции механической обработки деталей из сплавов титана, подвергающихся систематическим циклическим нагрузкам, необходимо строго регламентировать, а еще лучше предусмотреть специальную поверхностную обработку, снимающую все неблагоприятные поверхностные явления и упрочняющую металл.  [c.181]

Титан, ниобий, вольфрам и ванадий — карбидообразователи. Поэтому в стали могут образовываться не только карбиды хрома, но и карбиды этих элементов (Ti , Nb , V ). При определенных содержаниях [Ti С — 0,02) 5 и Nb 10С1 весь свободный, выше предела его растворимости (0,02%), углерод может выделиться не в виде карбидов хрома, а в виде карбидов титана или ниобия. Выпадение карбидов повышает прочностные и понижает пластические свойства сталей.  [c.285]

Для некоторых металлов (например алюминия, титана, монокристаллов молибдена и вольфрама) в процессе возврата и поли-гопизации происходит заметное понижение прочности и повышение пластичности. Однако их жаропрочные свойства при этом повышаются. У меди, никеля и их сплавов на определенной стадии поли-гонизации твердость, пределы текучести, упругости и выносливости, а также пластичность повышаются. Одновременно сиижаючся неупругие эффекты. Упрочнение происходит в результате закрепления подвижных дислокаций атомами примесей в дислокационных стенках, возникающих при полигонизации, ( ,е([)ормировациого металла.  [c.54]


Особым коррозионным свойством циркония является его стойкость в щелочах всех концентраций при температурах вплоть до температуры кипения. Он стоек также в расплаве гидроксида натрия. В этом отношении он отличается от тантала и, в меньшей степени, от титана, которые разрушаются под воздействием горячих щелочей. Цирконий стоек в соляной и азотной кислотах любой концентрации и в растворах серной кислоты с содержанием H2SO4 < 70 % вплоть до температур кипения этих сред. В НС1 и подобных средах оптимальной стойкостью обладает металл с низким содержанием углерода (<0,06 %). В кипящей 20 % НС1 после определенного времени выдержки наблюдается резкое возрастание скорости коррозии конечная скорость составляет обычно менее 0,11 мм/год [461. Цирконий не стоек в окислительных растворах хлоридов металлов (например, в растворах Fe lg наблюдается питтинг), а также в HF и кремнефтористоводородной кислоте.  [c.379]

При измерениях по методу < крюков в одну из ветвей интерферометра (кроме кюветы или компенсационной трубки) вводится стеклянная (кварцевая) пластинка вполне определенной толщины. Это приводит к дополнительной разности хода, т.е. к возникновению наклонных интерференционных полос высокого порядка, которые для некоторой длины волны компенсируют наклон полос, обусловленный дисперсией паров. В результате вблизи линии поглощения по обе стороны от нее образуются характерные изгибы интерференционных полос — это и есть крюки Рождественского. Чем толще стеклянная пластинка, т.е. чем больше введенная разность хода, тем острее крюки . В зависимости от условий эксперимента выгодно использовать пластинку той или иной толщины. На рис. 5.АЗ,б,в показаны крюки , образующиеся у линий поглощения титана при использовании двух пластинок pasHoii толщины.  [c.227]

К настоящему времени Не сделан выбор в пользу определенной комбинации многослойных материалов (и технологий их получения) -ДЛЯ дивсрторных пластин термоядерного реактора (ТЯР), температ а которых может превышать 1500К. Многослойной в большинстве со-времеыных проектов ТЯР является и первая стснка, изготовленная иЗ стали и защищенная пластинками графита, молибдена, карбида титана и т. п. Правда, рассматривается возможность [1] эксплуатации и не защищенной ПС, поскольку элементы соединения могут стать дополнительными источниками облегченного разрушения конструкции за счет циклического теплового воздействия плазмы. Это замечание относится и к многослойным пластинам.  [c.195]

Критически проанализированы экспериментальные данные об основных теплофизических свойствах титана и промышленных титановых сплавов, изложены методы определения наиболее достоверных Значений. Рассмотрены температурные зависимости теплофизн-ческих характеристик, влияние легирования на свойства указанных материалов. Приведены таблицы температурной зависимости термодинамических свойств титана, предлагаемые в качестве стандартных справочных данных.  [c.23]

Механические свойства основного металла, определенные после нанесения ионно-плазменного покрытия из нитрида титана отличаются незначительно, независимо от времени нагрева при напылении (сГ(, 2 = 1150 МПа Ов = 1400 МПа б = 5,5% ф = 36%). Структура стали У8 — отпущенный сорбит. Металлографические исследования показали, что даже на нетравленных шлифах граница между покрытием и основой проявляется сравнительно четко, покрытие копирует рельеф металла. На участках, нормальных к направлению движения напыляемых частиц, толщина покрытия больше, чем на остальных. Поверхность покрытия неровная, наблюдаются впадины и бугры. Дно крупных впадин, имеющих форму усеченного конуса, обычно опцавлено, края гладкие. Аналогичные образования были обнаружены при исследовании поверхности покрытия на растровом микроскопе [246]. Полагают, что в данном случае имеет место химическое взаимодействие материалов покрытия и основы. Результаты определения трещиностойкости приведены в табл. 8.1.  [c.152]

Статистические исследования показали, что величина этого коэффициента может существенно изменяться в зависимости от места и направления вырезки образца. Это связано с тем, что у титана, как и у других гексагональных металлов, тепловое расширение зависит от ориентации кристаллов. Определение анизотропии термического расширения по данным температурной зависимости параметров решетки показало большее удлинение по оси с, чем по оси а. Различие составляет 10 — 20 %. Например, увеличение степени обжатия при волочении от 0 до 40 % приводит к возрастанию а с 8,4-10" до 9,9 10" °СГ . Дальнейшее увеличение степени обжатия не приводит к изменению текстурованности и не влияет на а. Отжиг при 400 —900°С также не влияет на величину а и только отжиг при 1100— 1200°С, при  [c.7]

Примеси и легирующие элементы сравнительно мало изменяют коэффициент линейного расширения. У большинства сплавов а = 8,0 10" - 9,2 1(Г °СГ , т.е. в интервале эначений, характерных для чистого титана с различной текстурован-ностью. Несравнимо большее влияние на а оказывает распад нестабильных твердых растворов. При определенных условиях величина а может стать даже отрицательной (сокращение длины). В связи с этим дилатометрические исследования являются одним из наиболее чувствительных методов оценки стабильности твердых растворов (в основном 3-фазы). Влияние распада 3-фазы на величину и знак а обязательно следует учитывать при отпуске высоколегированных сплавов, в которых за счат сокращения объема при распаде в области средних температур возможно явление самопроизвольного растрескивания.  [c.8]

Плотность чистого титана, вычисленная по параметрам решетк) при 20°С и определенная пикнометрическими методами, составляет р = 4505-г4507 кг/м . В присутствии кислорода она несколько повышается, у технически чистого титана р = = 4510 кг/м . С повышением температуры плотность титана снижается и при 870°С составляет 4350 кг/м . Плотность большинства промышленных а- и a jЗ- плaвoв мало отличается от плотности титана и находится в пределах 4400 — 4600 кг/м .  [c.8]

Оценку склонности к коррозионному растрескиванию в расплавах солей ведут. по скорости роста трещины при определенном коэффициенте интенсивности разрушения. Зависимости скорости развития трещины от коэффициента интенсивности напряжений имеют тот же характер, что и эависимости, получаемые при растрескивании титана в водных растворах галогенидов (см. рис. 22). С повышением температуры расплава Солей скорость раэвития коррозионной трещины увеличивается. Наличие небольшого количества воды (10—50 мг/кг) в расплаве незначительно сказывается на коррозионном растрескивании. Существенную роль играет состав  [c.47]

Таким образом, изменение состава коррозионной среды в результате процессов электрохимического растворения титана и накопления продуктов коррозии может в определенных условиях активизировать анодный процесс. Если в результате пластической деформации в коррозионной среде создается активная поверхность металла с достаточно большой плотностью анодного тока, а геометрические размеры щели таковы, что отсутствует обмен внутрищелевого раствора с основной средой, могут сложиться условия, когда процесс коррозионного растрескивания будет спонтанно развиваться. Поэтому возможность конвекционного обмена внутрищелевого раствора с окружающей средой в значительной степени зависит от степени раскрытия трещины, которая определяется величиной ядра упруго-пластической де формации в вершине трещины и пропорциональна отношению Ку а ) . Так как раскрытие трещины является макро-характеристикой, косвенно отражающей локальные пластические деформации в ее вершине, у материала с большой предельной пластичностью наблюдается и большее раскрытие краев дефекта до образования трещины в вершине.  [c.63]


Приведенная выше схема, описывающая механизм коррозионного растрескивания а- и псевдо-а-сплавов титана, достаточно хорошо подтверждается экспериментальными данными по коррозионному растрескиванию (а + Р) -и /3-сплавов. В процессах коррозионного растрескивания единственным отличием этих сплавов от а-сплавов является возможность протекания интенсивного анодного растворения в -фазе при определенном ее составе. Наличие в составе /3-фазы хрома или марганца в сочетании с примесями внедрения способствует появлению сегрегатов с существенно более низким электрохимическим потенциалом, обеспе-  [c.72]

Таким образом, возрастание ф в данном случае не сказалось на веПи-чине долговечности. Последнее можно объяснить тем, что при повышенных температурах интенсивно протекают процессы циклической ползучести, приводящие к перераспределению доли упругой и пластической составляющей при постоянной величине суммарной деформации. Если процессы циклической ползучести при определенных условиях оказывают решающее влияние, то такой же эффект можно получить и при проведении испытаний при 20°С на материалах, резко отличающихся сопротивлением ползучести. Как известно, наименьшее сопротивление низкотемпературной ползучести имеет технически чистый титан, условный предел ползучести которого при допуске на остаточную деформацию 0,1 % за 100 ч составляет0,5Oq 2- У сплава ПТ-ЗВ ар = 0,65ад 2- В то же время относительное сужение ф чистого титана составляет 60 %, в то время как у прутков сплава ПТ-ЗВ = 24 %.  [c.107]

Для определения работоспособности титановых сплавов при многоцикловом нагружении необходимо знать их усталостную прочность. При этом следует иметь в виду, что в литературе по усталостным свойствм титановых сплавов имеется много противоречивых сведений. Это, по-видимому, является результатом не только недостаточной изученности этих свойств, но и их своеобразием. Так, уже сейчас ясно, что точные данные по усталостному поведению титановых сплавов во многих случаях можно выяснить лишь на основании статистической обработки первичных данных, так как при усталостных испытаниях наблюдается повышенный разброс данных. Очень важен статистический подход при определении надежной работы крупных деталей машин при многоцикловом нагружении. Уникальное явление усталости титана —его чувствительность к состоянию поверхности. В частности, в последнее время выяснили, что при числе циклов до 10 трещины зарождаются в самом поверхностном слое, состояние которого полностью определяет уровень предела выносливости. При числе нагружений более 10 разрушение носит подповерхностный (подкорковый) характер, хотя типичное усталостное разрушение наблюдается при числе циклов нагружения по крайней мере до 10 ° [91]. Пренебрежение к финишным поверхностным обработкам титановых деталей, работающих на усталость, явилось причиной снижения их долговечности на начальном этапе внедрения титана в технике.  [c.137]

Итак, соотношение (5.60) позволяет построить единую кинетическую кривую (ЕКД) для сквозных и несквозных усталостных трещин в качестве последовательности переходов через точки бифуркации. Ее построение проведено для сплавов ВТ6, Д16Т и ЗОХГСА как наиболее типичных сплавов на основе титана, алюминия и железа, используемых в гражданской авиации. Первоначально были использованы экспериментальные данные для величины Kj , представленные в [127]. Определение точек бифуркации применительно ко второй стадии роста трещин выполнено расчетным путем по следующим граничным условиям  [c.252]

Инденторы испытывали при определении твердости горячепрессованных образцов карбида вольфрама. Плоскости образцов перед нанесением отпечатков подготавливали таким же образом,как и для металлографических исследований. Процесс испытания осуществляли ступенями через 100—200 К при неизменном времени приложения нагрузки в 10 Н к образцу в течение 60 с. При температурах от 290 до 1100 К в качестве материала индентора применялся алмаз, а при температурах от 1300 до 2170 К — карбид бора и диборид титана.  [c.57]


Смотреть страницы где упоминается термин Определение титана : [c.276]    [c.105]    [c.207]    [c.74]    [c.12]    [c.660]    [c.63]    [c.52]    [c.369]    [c.44]    [c.49]    [c.74]   
Смотреть главы в:

Методы анализа ниобиевых сплавов  -> Определение титана


Вакуумная спектроскопия и ее применение (1976) -- [ c.277 ]



ПОИСК



Влияние Определение титана

Кржижановский Метод определения фононной теплопроводности чистых металлов и нахождение ее для титана

Титан

Титан-Карбидная Определение в стали

Титан-Карбидная Определение в чугуне

Титанит

Титания



© 2025 Mash-xxl.info Реклама на сайте