Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Излучение при атомных столкновениях

В настоящее время изучено достаточно много неупругих взаимодействий между тяжелыми частицами (см. обзор [109]). В вакуумной области спектра эти исследования особенно интересны тем, что в результате столкновения обычно излучаются резонансные линии газов, что соответствует возбуждению самых низких уровней, т. е. изучаются наиболее вероятные процессы возбуждения. Так же, как и при изучении электронных столкновений, одной из основных трудностей является измерение абсолютных интенсивностей, но, в отличие от работ, изучающих электронные столкновения, здесь нет проблемы реабсорбции излучения. При атомном столкновении передается значительный импульс и это приводит к существенному уширению я сдвигу спектральных линий. Благодаря этому уменьшается поглощение. Сказанное подтверждается рис. 8.15 [ПО], из которого видно, как меняется форма резонансной линии Аг I К=  [c.341]


Заменив в этой формуле ускорение на силу, деленную на массу, == FIM, получим, что интенсивность тормозного излучения при кулоновском столкновении частицы с заряженным центром обратно пропорциональна квадрату массы частицы и прямо пропорциональна квадрату заряда рассеивающего центра. Отсюда прежде всего следует, что если радиационные потери и важны, то только для электронов, но не для тяжелых частиц. Например, радиационные потери для протонов в (Мр/т) 3 10 раз меньше, чем для электронов. Далее, если в ионизационные потери основной вклад дают столкновения налетающей частицы с атомными электронами, то радиационные потери, наоборот, обусловлены столкновениями с ядрами. Действительно, излучение при столкновении с ядром в больше, чем при столкновении с электроном, а число электронов лишь Б Z раз больше, чем ядер.  [c.444]

Усилению роли процессов излучения при ядерных столкновениях по сравнению с атомными столкновениями содействует также запутывание частицы в ядре, благодаря чему время, которое проводит падающая частица в ядре, оказывается относительно большим по сравнению с характерным ядерным временем.  [c.149]

Излучение атомов и ионов при атомных столкновениях  [c.341]

При упругом столкновении с атомным ядром бета-частица лишь отклоняется от своей первоначальной траектории и может при этом выйти за пределы пучка, попадающего в счетчик. С другой стороны, может наблюдаться и увеличение счета из-за отражения бета-излучения от подложки, на которой расположен источник излучения.  [c.9]

Другое существенное требование к условиям проведения эксперимента — это небольшая плотность атомов в мишени, обеспечивающая отсутствие столкновений электронов с нейтральными атомами на пути к детектору и небольшая величина пространственного заряда, образующегося в области фокусировки излучения при ионизации атомов и атомарных ионов (см. разделы 3.2, 3.5). Использование в качестве мишени атомного пучка обеспечивает выполнение этих требований.  [c.205]

При квант, переходах без излучения А. получает или отдаёт энергию при вз-ствиях с другими ч-цами, с к-рыми он сталкивается (напр., в газах) или длительно связан (в молекулах, жидкостях и ТВ. телах). В атомарных газах в промежутках между столкновениями можно считать А. свободным во время столкновения (удара) он может перейти на другой уровень энергии (неупругое столкновение, при упругом столкновении изменяется лишь кинетич. энергия А., а внутренняя остаётся неизменной). Столкновение свободного А. с быстро движущимся эл-ном — возбуждение А. электронным ударом — один из методов определения уровней энергии А. (см. Столкновения атомные).  [c.39]


Эффект Комптона на легких атомах можно объяснить, если рассматривать столкновения рентгеновских фотонов с электронами. В этих столкновениях фотон передает электрону часть своей энергии в результате энергия фотона, а значит, и частота излучения уменьшаются, что и объясняет появление смещенной линии в спектре рассеянного рентгеновского излучения. Электрон должен быть сравнительно слабо связан с атомным ядром, его энергия связи должна быть существенно меньше, чем та энергия, которую передает ему при столкновении рентгеновский фотон. Такой электрон можно рассматривать свободным и покоящимся до столкновения.  [c.75]

Проследим, как происходит генерация различных компонент вторичного космического излучения. Как мы уже указывали (см. гл. VIИ, 5), при прохождении высокоэнергичных заряженных адронов через толстые слои вещества главную роль играют столкновения с атомными ядрами. Соответственно этому главной с точки зрения генерации вторичного излучения является ядерно-активная компонента. Столкновение первичного высокоэнергичного ( 1 ГэВ) протона с атомным ядром характеризуется следующими особенностями (см. гл. Vn, 7)  [c.642]

Комптоновское рассеяние (эффект -Комптона) характеризуется сохранением энергии и момента количества движения при столкновении фотона с электроном атомной оболочки. Энергия и момент количества движения фотона выражаются через длину волны фотонного излучения следующим образом  [c.337]

Простейший вариант оптич. эхо-спектроскопии (спектроскопии на основе светового эха) реализуется при наблюдении зависимости амплитуды сигнала светового ха от времени задержки зл.-магн, излучения, резонансно взаимодействующего с ансамблем частиц среды. Сигнал светового эха появляется после 2-го импульса через время, равное задержке 2-го импульса относительно 1-го. Оптич. эхо есть, по существу, повторное возникновение эффекта затухания свободной поляризации, к-рое сопровождает 1 й импульс. 2-й импульс нужен для того, чтобы восстановить одинаковую фазу возбуждённых 1-м импульсом атомных диполей, потерянную к моменту прихода 2-го импульса вследствие процессов релаксации. Для регистрации оптич. эха площадь 1-го импульса (интеграл от амплитуды напряжённости оптич. поля по всей длительности импульса, умноженный на дипольный момент перехода должна быть равна я/2, второго — я. Спектроскопия светового эха — один из наиб, мощных инструментов изучения столкновительных релаксац. процессов в газах. Время затухания сигнала светового эха равно эфф. времени жизни возбуждённого уровня, определяемого атомными (молекулярными) столкновениями ц спонтанным излучением. Методами спектроскопии светового эха измеряют также сверхтонкую структуру возбуждённых состояний.  [c.308]

При прохождении бета-излучения через вещество происходит упругое рассеяние электронов (или позитронов) на атомных ядрах и электронных оболочках, а также неупругие столкновения с атомными ядрами.  [c.8]

При столкновении бета-излучения с электронами атомных оболочек часть энергии, потерянной первичной частицей, передается электрону, что вызывает ионизацию атома. Это явление обычно используется для регистрации бета-излучений.  [c.9]

После того как атом поглотит фотон соответствующей энергии, способной вызвать переход из состояния / в состояние г, он может вновь испустить фотон той же энергии и создать обратный переход из состояния I в состояние /. Этот комбинированный процесс называется рассеянием, если вновь испускаемое излучение когерентно с поглощенным излучением ). Когерентность будет достигнута, если атом успеет излучить прежде, чем произойдет столкновение. Можно показать [19], что радиационное время жизни возбужденного состояния короче, если оно возникает благодаря поглощению фотона, не способного к резонансу (т. е. о) — (в,-/ > > Г), чем если бы оно возникало при поглощении фотона с резонансной энергией (т. е. со — < Г). Для многих земных условий время между столкновениями является промежуточным между резонансным и нерезонансным радиационными временами жизни состояния это приводит к когерентному нерезонансному рассеянию (называемому рэлеевским рассеянием), но к некогерентному испусканию, которым сопровождается поглощение резонансных фотонов. Если не вдаваться в исследование когерентности, то рассеяние атомными системами можно включить в процессы поглощения и испускания, рассмотренные раньше.  [c.147]


Медленные или тепловые нейтроны обладают энергией около 0,025 эВ, что значительно ниже энергии возбуждения и тем более ионизации. Такие нейтроны могут проникать в атомные ядра вследствие своей нейтральности, вызывая изменение структуры атома, сопровождаемое излучением высокой энергии, разрывом химической связи и другими изменениями. Быстрые нейтроны передают свою энергию при столкновении с ядром. Особенно эффективно столкновение с атомами водорода и органических соединений. При этом образуются водородные ионы, т. е. протоны с высокой энергией, которые вызывают описанные выше взаимодействия.  [c.457]

Эффективное сечение тормозного излучения существенно зависит от степени экранирования электрич, поля ядер атомными электронами, зависящей от соотношения между параметром столкновения в и радиусом атома (а — боровский радиус). Если Ь/а 1 — экранирование не существенно и, наоборот, при Ь/а 1 имеет место полное экранирование.  [c.234]

Квантовомеханическая теория рассеяния уже несколько десятилетий, назад сложилась как по существу самостоятельная область теоретической и математической физики. Развитые в этой теории общие методы широко используются при рассмотрении широкого класса явлений атомной и молекулярной физики, электромагнитного излучения, оптики, физики твердого тела, физики ядра и физики элементарных частиц. Значение теории рассеяния обусловлено в первую очередь центральной ролью, которую играют эксперименты по рассеянию в современной физике. Нельзя не согласиться с автором книги, который в предисловии пишет, что за последние пятьдесят лет значительная часть важнейших открытий сделана в экспериментах по столкновению частиц .  [c.5]

Хотя резонансное рассеяние, называемое иногда атомной или резонансной флюоресценцией, также имеет большое сечение, тушение при столкновениях с более распространенными составляющими атмосферы обычно приводит к тому, что сигнал оказывается слабым вследствие этого наиболее эффективно метод может работать при исследовании малых составляющих верхней атмосферы [174—178]. В случае молекулярной флюоресценции столкновительное тушение может также оказывать вредное действие, в частности тогда, когда имеются долгоживущие состояния [179]. Широкополосная природа молекулярной флюоресценции является причиной низкого значения отношения сигнала к шуму при этом основной вклад в шум дает фоновое излучение [180, 181]. С ростом продолжительности флюоресценции может падать пространственное разрешение.  [c.235]

Телеметрическая передача данных. Телеметрическая передача данных со снарядов, снабженных ядерными силовыми установками, усложняется наведенной ионизацией воздуха вокруг реакторного конца снаряда при движении его в атмосфере. Эта ионизация обусловлена столкновениями быстрых нейтронов с ядрами атомов воздуха (ударная ионизация), последующими столкновениями атомов, образованием вторичных электронов при комптоновскОм рассеянии у-фотонов, образованием пар электрон -f позитрон при поглощении фотона в электрическом поле ядра, атома или электрона, а также фотоэлектронами, образующимися в процессе атомного поглощения фотонов [34]. Орбитальные переходы электронов при ион-электронной рекомбинации дают излучения, частоты которых лежат в очень широких пределах однако в плотной атмосфере, т. е. при высотах меньше 30 миль, все возможные частоты достаточно высоки ((свыше 10 Мгц) и находятся в области видимого света. Более длинноволновое излучение будет возникать при возбуждении вращательных степеней свободы молекул для воздуха частоты такого излучения лежат выЩе 40 ООО Мгц. Излучение такого рода не будет являться помехой при телеметрической передаче данных, так как при такой передаче используются относительно низкие несущие частоты (от 100 до 3000 Мгц). Более серьезной проблемой является увеличение проводимости воздуха при увеличении плотности свободных электронов, так как достаточно хорошо проводящий воздух становится плохой средой для распространения электромагнитных волн любой частоты [35]. Уровень электронной и ионной плотности определяется динамическим равновесием скоростей перечисленных выше процессов и скорости процесса рекомбинации. При незначительной парциальной ионизации скорость рекомбинации зависит от ионной и электронной плотности И коэффициента рекомбинации, а следовательно, от плотности воздуха или высоты полета снаряда.  [c.541]

Сложность взаимных связей механизмов ионизации делает общий анализ очень трудным. Однако в основном скорость образования электронов и ионов в атмосфере определяется плотностью столкновений нейтронов и поглощения -излучения. Как можно видеть из уравнений (15.26) и (15.27), эти величины зависят от величины утечки нейтронов и Y-излучения из реактора и коэффициентов взаимодействия и поглощения воздуха. Важным фактором является также окончательное распределение энергии между процессами атомной и молекулярной ионизации и молекулярной диссоциации. Очень грубая оценка основных эффектов показывает, что равновесная плотность ионов в воздухе на уровне моря и на расстоянии 40 футов от незащищенного реактора мощностью 5000 Мет может составлять от 10 до 10 частиц см [5, 34]. Такой уровень ионизации будет вызывать значительное затухание сигналов при частотах ниже нескольких сотен мегагерц, однако не сбудет значительно влиять на передачу сигналов на частотах выше нескольких тысяч мегагерц [35]. Ионизация воздуха уменьшается с увеличением расстояния от реактора таким образом, электронное оборудование для связи (включая антенны) должно быть размещено достаточно далеко от реактора, чтобы обеспечить наи- более широкий диапазон частот, используемых для микроволновой связи.  [c.541]


При неупругих столкновениях бета-излучения с атомными ядрами происходит торможение электронов в электрическом поле ядра, и потерянная ими энергия преобразуется в тормозное рентгеноиское излучение. При умеренных энергиях электронов форма кривой распределения интенсивности тормозного излучения мало зависит от атомного номера элемента, через который проходит электрон, а также от энергии электрона.  [c.9]

При регистрации излучения, возникающего при атомны.ч столкновениях, чрезвычайно остро стоит вопрос об интенсивности света (свечение всегда слабое), и поэтому приходится применять светосил,ьные установки и весьма чувствителыные регистрирующие схемы. Отметим также, что во многих работах используются открытые двойные ионизационные камеры (см. 27), преимущество которых в том, что при их использовании не надо знать давления газа в ионизационной камере.  [c.342]

Очень интересным и важным вопросом при исследовании атомных столкновений с участием водородных частиц является выяснение степени поляризации выходящего излучения. Это служило предметом изучения во многих работах, например [121, 123, 133—137]. Исследование поляризации необходимо, как уже отмечалось, для правильного определения сечений, кроме того, исследование поляризации позволяет определить парциальное сечение возбуждения (сечения возбуждения отдельных подуровней) [123]. Измерения поляризации очень существенны для понимания теории атомных столкновений, так как позволяют проверить теорию. Для измерения поляризации в вакуумной области спектра обычно применяется анализатор из фтористого лития, установленный под углом Брюстера [130, 137]. В первых работах [136] поляризация из.мерялась по угловому распределению излучения. Получено только качественное соответствие с данными работы [137]. Возможно, что причина расхождений в несовершенстве методики эксперимента в работе [136].  [c.344]

Третий эффект — рассеяние электронов на атомном остове (ионе) при линейной поляризации лазерного излучения (см. выше, разд. 9.3). Легко оценить, что при любой частоте лазерного излучения, при минимально допустимой напряженности поля излучения для реализации туннельного эффекта, когда параметр адиабатичпости порядка единицы, максимальная энергия, приобретаемая туннельным электроном за один период лазерно го ПОЛЯ, имеет величину порядка атомной энергии, а при увеличении на пряженности поля быстро (квадратично по напряженности поля) растет. Таким образом, процессы упругого или неупругого рассеяния туннельного электрона всегда имеют место и приводят к искажению исходных энер гетических и угловых распределений туннельных электронов в области больших энергий. Очевидно, что эти искажения тем меньше, чем меньше напряженность поля лазерного излучения, при которой наблюдается про цесс туннельной ионизации. Напомним, что при циркулярной поляризации излучения этот эффект отсутствует, так как вероятность столкновения тун нельного электрона с атомным остовом пренебрежимо мала.  [c.246]

Исследования морфологии поверхности с помощью методов рассеяния ионов, электронной и ионной микроскопии страдают одним общим недостатком. В них для анализа используются достаточно высокоэнергетичные частицы — электроны и ионы. При взаимодействии с поверхностной фазой таких частиц, обладающих энергией от кэВ до МэВ, резко возрастает ее дефектность (снова взгляните на рис. 1 введения), изменяется ее химический состав, зарядовая и деформационная неоднородность. Другими словами, сам метод изменяет состояние объекта исследования. Информация, получаемая указанными методами, имеет самостоятельный интерес для физики атомных столкновений. В какой-то мере эти методы полезны при изучении дефектности атомарно-чистых поверхностей, но мало информативны в случае реальных поверхностей с характерным для них сложным составом поверхностной фазы. Более приемлемы для исследования последних оптические методы, использующие сравнительно низкоэнергетическое малоинтенсивное излучение.  [c.129]

Тогда, если правилен общий результат волновой, или квантовой, механики, что нейтроны ведут себя и как частицы, и как излучение с длиной волны Л = к/ту, то мы можем ожидать, что и они могут привести к аналогичным явлениям. Наблюдение такого явления было целью простого опыта, произведенного впервые Ципном. Чтобы поставить опыт в благоприятных условиях, нужно прежде всего располагать весьма интенсивным источником нейтронов. Интенсивные потоки нейтронов получаются около атомных котлов. Схема установки в опытах Цинна показана на рис. 5. Котел окружен толстым цементным экраном для защиты от излучений. В него, как и во многих котлах, построенных для физических исследований, вставлена так называемая термическая колонна , т. е. графитовая призма, одним концом погруженная в котел. Она замедляет быстрые нейтроны, производимые котлом. При каждом столкновении с ядрами углерода термической колонны нейтроны теряют некоторую долю своей энергии, пока не приходят с этими ядрами в тепловое равновесие около внешнего конца колонны. В наружном конце колонны делается полость, как показано на рис. 5, с той целью, чтобы тепловые нейтроны, идущие из глубины, были грубым образом направлены наружу благодаря этому у выхода получается пучок нейтронов (в действительности не очень коллимированный) с распределением энергии, соответствующим температуре термической колонны. Но так как для опытов рассматриваемого типа нужна гораздо большая коллимация, т. е. требуется получить достаточно тонкий пучок с точно определенным направлением распространения, вводятся дальнейшие диафрагмы, чтобы отобрать нейтроны заданного пучка. Для этого всегда используется кадмий, очень хорошо поглощающий тепловые нейтроны (слой кадмия толщиной в 0,5-1 мм поглощает их практически полностью). Поэтому, помещая перед термической колонной кадмиевые диафрагмы, получают достаточно хорошо коллимированные пучки. Ме-  [c.117]

Процессы неупругих С. а. весьма разнообразны. Перечень не упругих процессов, к-рые могут происходить в газе или слабоионизов. плазме, приведён в таблице. В различных лаб. условиях и явлениях природы гл. роль играют те или иные отдельные неупругие процессы соударения ч-ц. Напр., излучение с поверхности Солнца обусловлено б, ч. столкновениями между эл-нами и атомами водорода, при к-рых образуются отрицат. ионы водорода (табл., п. 26). Осн. процесс, обеспечивающий работу гелий-неонового лазера (см. Газовый лазер),— передача возбуждения от атомов гелия, находящихся в метастабильных состояниях, атомам неона (табл., п. 6) осн. процесс в электроразрядных молекулярных газовых лазерах — возбуждение колебат. уровней молекул электронным ударом (табл., п. 3) в результате этого процесса электрич, энергия газового разряда частично преобразуется в энергию лазерного излучения. В газоразрядных источниках света осн. процессами являются в т. н. резонансных лампах — возбуждение атомов электронными ударами (табл., п. 2), а в лампах высокого давления — фоторекомбинация эл-нов и ионов (табл., п. 24). Спиновый обмен (табл., п. 7) ограничивает параметры квантовых стандартов частоты, работающих на переходах между состояниями сверхтонкой структуры атома водорода или атомов щелочных металлов (табл., п. 9). Различные неупругие процессы С. а. с участием свободных радикалов, ионов, эл-нов и возбуждённых атомов определяют мн. св-ва атмосферы Земли. Мак-Даниель И., Процессы столкновений в ионизованных газах, пер. с англ.. М., 1967 Смирнов Б. М., Атомные столкновения и элементарные процессы  [c.725]


В 1913 г. Вин [23] писал Данные теории излучения и новейшая теория теплоемкости доказали, что электронная теория металлов должна быть построена па существенно новой основе . Вин установил ряд важных положений, которые и в иастояш,ее время существенны для понимания электронной проводимости, и показал, что говорить о наличии эффективно свободных электронов в атомной решетке моншо только в том случае, если эти элс1 троны обладают скоростью V, которая не зависит от температуры и остается неизменной вплоть до абсолютного нуля. На основании опытов Камерлинг-Оннеса при очень низких температурах Вин пришел к выводу, что если структура решетки полностью регулярна, то проводимость металла должна быть бесконечно большой. При более высокой температуре колебания атомов металл должны нарушать периодичность решетки и приводить к столкновениям атомов с электронами проводимости. Основываясь па уравнении Друде  [c.157]

Плазменные И. о. и. имеют энергетич. характеристики и вид спектра излучения, определяемые темп-рой Т и давлением р плазмы, образующейся в них при электрич. разряде или иным способом, и изменяющиеся в широких пределах в зависимости от хим. состава рабочего вещества и вводимой уд. мощности. При низких Т и р сиоктр излучения в основном представляет собой узкие атомные резонансные линии и молекулярные полосы. С увеличением вводимой уд. мощности и повышением Т в спектре излучения плазмы начинают преобладать линии возбужденных атомов и ионов и появляется сплошной фон, обусловленный тормозным и рекомбинац. излучениями, возникающими при столкновениях электронов и ионов. При повышении давления линии уширяются, интенсивность континуума возрастает и сначала в линейчатом, а затем и в сплошном спектре, начиная с длинноволновой его части, достигается насыщение до интенсивности излучения абсолютно черного тела при Т плазмы. Предельные параметры, ограничиваемые техЕгически осуществимой скоростью ввода энергии и стойкостью материалов конструкции, в импульсных плазменных П. о. и. намного выше, чем в непрерывных.  [c.222]

Применение когерентных источников излучения позволяет наблюдать методами М. с. весьма узкие спектральные линии, т. е. достигать высокого спектрального разрешения. Типичные ширины линий, обусловленные столкновениями частиц в газе,— от 10 МГц до 1 МГц при давлениях от 1 до 10 Па. При разрежении газа ширины линий определяются Доплера эффектом при движении частиц и соударениями со стенками поглощающей ячейки, они составляют в микроволновом диапазоне от 1 МГц до 0,1 МГц. Для дальнейшего сужения линий применяют ряд способов устранения доплеровского уширения. Ширины линий в таких субдоплеровских спектрометрах определяются временем взаимодействия частиц с полем излучения (см. Неопределенностей соотношения). В молекулярных и атомных перпен-  [c.133]

Нейтринное излучение высокой энергии (30— 1000 ГэВ) генерируется в космич. объектах в результате столкновений ускоренных частиц (космич. лучи) с атомными ядрами (рр-нейтрино) или с низкоэнергетич. фотонами (ру Н ейтрино)в цепочке распадов заряж. пионов. При степенном спектре ускоренных протонов число Н., генерированных в рр-взаимодействии, возрастает с уменьшением энергии, однако осн. вклад в сигнал от источника при детектировании дают Н. с энергией выше 30 ГэВ. Т. о., рр-нейтрино с энергией 30— 1000 ГэВ определяют диапазон нейтринной астрономии высоких энергий.  [c.257]

В разреженном газе контур линии Р. и. определяется доплеровским уширенцел спектральных линий и его ширина зависит от угла рассеяния. Если спектральная линия атома испытывает дополнит, уширение Г и сдвиг А за счёт соударений, а Р. и. возбуждается монохроматич. излучением, то спектр Р. и. состоит из излучения той же частоты (Oj и лоренцевского контура с максимумом на частоте ш А и с шириной Г уе- В том случае, когда столкновения приводят лишь к сдвигу фазы волновой ф-ции атомного состояния, отношение интенсивностей этих компонент Р. и. равно Уе/Г. При наличии неупругих столкновений отношение интенсивностей будет другим и в спектре Р. и, возможно появление дополнит, линий.  [c.313]

При прохождении первичного электрона вблизи ядра возможно также испускание тормозного рентгеновского излучения (радиационные потери), а при поглощении электрона ядром, как и при поглощении у-кванта, — образование пары электрон — пози рон с дальнейшей аннигиляцией и образованием пары Y-квантов. Если при энергии электронов эл< <10 МэВ отклонение первичных электронов почти полностью обусловлено упругими столкновениями с атомными ядрами, то при более высоких энергиях (около 10—50 МэВ) благодаря способности электрона преодолевать ку-лоновский барьер ядра возможны и ядерные реакции с испусканием нейтрона или протона или образованием радиоактивного изотопа.  [c.314]

Из соотношений (3.16-3.17) легко оценить, что при типичной для ла зерного излучения оптической частоте ш (х 0,1а а и субатомной (а тем более атомной и сверхатомной) напряженности поля амплитуда колебаний электрона сравнима с боровским радиусом или превышает его, а энергия колебаний (1 кол) превышает энергию связи электрона в атоме Ei, Исходя из выражения для параметра адиабатичностн 7 (1.5) видно, что такие боль шие значения акол и (1 кол) соответствуют туннельному пределу 7 < 1, а в многофотонном пределе 7 > 1 величины акол < и (1 кол) < так что возможные столкновения колеблющегося электрона с атомами и ионами существенной роли не играют.  [c.72]

В противоположном случае, когда акол и ( шл) не малы, при столкнове НИИ колеблющегося электрона с атомами и ионами могут возникать различ ные вторичные эффекты (упругое и неупругое рассеяние электронов, его рекомбинация). Эти столкновения, в частности, могут приводить к транс формации колебательной энергии электрона в кинетическую дрейфовую энергию. В разд. 3.2. уже указывалось, что все эксперименты проводятся в условиях, когда вторичные эффекты исключены из-за малой плотности атомной мишени. Однако имеется один случай, когда вероятность столк новения колеблющегося электрона не зависит от плотности мишени — это процесс столкновения колеблющегося электрона, образованного при ионизации атома, с собственным атомным остовом (ионом) при линей ной поляризации излучения. Действительно, при линейной поляризации излучения электрон совершает колебательное движение вдоль вектора поляризации и после точки поворота возвращается к точке, в которой он был вырван из атома.  [c.72]

Здесь 1Тнп — вероятность образования фотоэлектрона в результате надпороговой ионизации 1Тстолк — вероятность столкновения этого фотоэлектрона, ускоренного полем до высокой энергии, через половину периода с родительским атомным остовом е — 2е) — вероятность выбивания фотоэлектроном второго электрона с кинетической энергией Е , которую он получает при дальнейшем ускорении полем лазерного излучения.  [c.196]


Смотреть страницы где упоминается термин Излучение при атомных столкновениях : [c.147]    [c.342]    [c.324]    [c.139]    [c.314]    [c.73]    [c.368]    [c.441]   
Вакуумная спектроскопия и ее применение (1976) -- [ c.341 , c.346 ]



ПОИСК



Атомный вес

Излучение атомов и ионов при атомных столкновениях

Столкновения

Столкновения атомные



© 2025 Mash-xxl.info Реклама на сайте