Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Состояние агрегатное термодинамические

Не наблюдается изменения агрегатного состояния или существенного скачка других термодинамических характеристик медноникелевых сплавов с содержанием меди 60—70 %, хотя известно, что незаполненная d-оболочка способствует хемосорбции на любом металле [551.  [c.97]

Особенностью термодинамических циклов паротурбинных установок является изменение агрегатного состояния рабочего тела в течение цикла, что позволяет осуществить теплообмен между рабочим телом и внешними источниками теплоты в процессах парообразования и конденсации при постоянных значениях температур. Таким образом, имеется практическая возможность реализации цикла Карно, который, как отмечалось, состоит из двух изоэнтропных и двух изотермических процессов. Реализация изотермических процессов подвода и отвода теплоты в газовых циклах (циклы ДВС и ГТУ) связана с непреодолимыми трудностями.  [c.163]


Чистое вещество может находиться в различных агрегатных состояниях (твердом, жидком или газообразном). Кроме того, в твердом (кристаллическом) состоянии вещество может иметь различную кристаллическую структуру, причем различные структурные состояния, называемые аллотропическими модификациями, обладают при одинаковых давлении и температуре различными термодинамическими свойствами. При определенных условиях различные агрегатные состояния чистого вещества и различные его аллотропические модификации могут сосуществовать друг с другом в равновесии, образуя единую термодинамическую систему. Как уже отмечалось, эта система является гетерогенной, причем отдельные ее гомогенные части представляют собой фазы. Система, содержащая две и более фазы, называется многофазной. В настоящей главе будут рассмотрены термодинамические свойства многофазных систем, состоящих из одного чистого вещества. Вначале будут рассмотрены случаи равновесия между двумя фазами.  [c.23]

Термодинамический смысл летучести легко выяснить в случае чистого вещества, находящегося в различных агрегатных состояниях. Для идеального газа по определению летучесть тождественна давлению  [c.163]

Уравнения (2.23) и (2.24) связывают теплоемкости Ср и Ср с термодинамическими параметрами р, V, Т и ы эти уравнения, полученные на основе первого закона термодинамики, справедливы, разумеется, для любого реального вещества, находящегося в любом агрегатном состоянии — твердом, жидком или газообразном (но однофазном). Практическая ценность уравнений типа (2.23) и (2.24) состоит в том, что они позволяют рассчитать все теплофизические свойства определенного технически важного вещества по результатам экспериментального определения лишь некоторых его свойств. Сложность в данном случае состоит в том, что в правой части, например уравнения (2.24), находятся не только уже упоминавшиеся термические параметры р, ю, Т, но и параметр иного рода — внутренняя энергия и. Зависимость и = и и, Т) или Рх и, V, Т) = 0 также является уравнением состояния данного вещества и в отличие от обычного (термического) уравнения состояния носит название калорического уравнения состояния. Величины и, Л, а также теплоемкости Ср и с называют калорическими свойствами вещества.  [c.32]

Обычно различают три агрегатных состояния вещества — твердое, жидкое и газообразное. Известно, что в определенных условиях вещество может одновременно находиться в двух и даже трех агрегатных состояниях одновременно вода и водяной пар лед, вода и водяной пар и т. д. Такую термодинамическую систему, состоящую из различных по своим свойствам частей, отделенных одна от другой поверхностями раздела, называют гетерогенной. Каждая гомогенная (т. е. однородная, сплошная) часть гетерогенной системы, ограниченная поверхностью раздела и характеризующаяся одинаковыми физическими свойствами во всех своих точках, называется фазой фаза может рассматриваться как гомогенная термодинамическая система. Таким образом, гетерогенная система состоит из отдельных гомогенных подсистем. Фазовый переход есть переход вещества из одной фазы в другую через поверхность раздела фаз.  [c.106]


При температуре свободные энергии жидкого и твердого металлов одинаковы и система, таким образом, находится в термодинамически равновесном состоянии. Для перехода металла из одного агрегатного состояния в другое должна возникнуть разность свободных энергий Af i — при расплавлении или Д/ j —при кристаллизации (в этих случаях запас свободной энергии минимален и система находится в устойчивом состоянии).  [c.45]

Любое сравнение предполагает рассмотрение явлений в одинаковых условиях. Ясно, что при сопоставлении свойств веществ в качестве таких условий не могут быть приняты одинаковые параметры, так как, например, при одинаковых температуре и давлении различные вещества могут находиться в разных агрегатных состояниях. Физически подобными для всех веществ являются критические состояния. Поэтому параметры вещества в критическом состоянии рк, Ьк, Тк принимают за основу сравнения термодинамических свойств газов и жидкостей. Параметры вещества, отнесенные к параметрам в критическом состоянии, называют приведенными  [c.32]

Кинетика фазовых переходов, так же как и кинетика любых иных явлений, выходит за рамки собственно квази-стационарной термодинамики. В вопросах изменения агрегатных состояний термодинамика ограничивается рассмотрением равновесных систем, которые включают в себя уже сформировавшуюся новую фазу. Сам же ход формирования как микро-, так и макроскопических частиц вновь образующейся фазы, их роста и накопления остается за пределами анализа. В границах термодинамических представлений, как указывает Я- И. Френкель [Л. 50], под температурой агрегатного перехода (при заданном давлении) понимается не та температура, при которой фактически начинаются фазовые превращения, а та, при которой микроструктурные изменения, приводящие к возникновению новой фазы, прекращаются и система приходит в стабильное состояние. Очевидно, что и в стабильной системе изменение количественного соотношения между газообразной и конденсированной фазами возможно лишь при некотором нарушении взаимного равновесия элементов системы. Квазистационарная термодинамика допускает такие отклонения, однако каждое из них должно быть исчезающе мало. Это означает, что изменения макроскопического масштаба могут происходить лишь на протяжении бесконечно больших отрезков времени, во всяком случае по сравнению со временем восстановления нарушенного равновесия. В действительности же, как это отмечалось ранее, в быстротекущих процессах (например, при движении в условиях больших продольных градиентов давления) скорость изменения состояний среды, вызываемая внешними воздействиями, оказывается вполне сопоставимой со скоростью развития внутренних процессов, ведущих к восстановлению равновесия системы. Следует отметить, что особенно значительные нарушения равновесного состояния происходят в период зарождения новой фазы и начала ее развития. Мы здесь рассмотрим некоторые элементы процесса формирования конденсированной фазы, во-первых, ввиду его большого практического значения, во-вторых, для того, чтобы несколько осветить физическую картину явлений, приводящих в конечном счете к термодинамически устойчивому двухфазному состоянию.  [c.121]

Возможность определения скорости образования критических зародышей по заданному состоянию пара представляет собой лишь частичное решение задачи. Остается открытым вопрос о предельной степени переохлаждения и условиях разрушения перенасыщенного состояния. Такого рода вопросы в теории конденсации не ставятся, как не ставится и вопрос о том, при каких обстоятельствах местное скопление молекул, образующих сгусток со свойствами, не отличающимися от свойств газообразной фазы, превращается в капельку конденсата с иной упаковкой молекул и иным удельным термодинамическим потенциалом. Привлекая понятие о зародыше новой фазы в качестве первоначального понятия, теория конденсации рассматривает такой зародыш как уже сформировавшееся вкрапление, отличающееся от макроскопической массы в том же агрегатном состоянии только малыми размерами. Механизм формирования зародышей в поле молекулярных сил, количество и энергия молекул, образующих первич-  [c.133]


При движении же с высокими скоростями (перепады давлений значительны) на развитии процесса сказываются изменения вдоль потока характерных термодинамических величин температуры системы и удельного объема, во всяком случае, паровой фазы. Теплота испарения в этих условиях зависит от закона изменения состояния протекающей среды и отличается от теплоты агрегатного перехода в изобарном процессе. Кроме того, обмен массой между фазами системы зависит не только от направления теплового потока обогрев движущейся двухфазной среды может сопровождаться как повышением степени сухости, так и ее увлажнением. Некоторые стороны поведения смеси жидкости и пара, движущейся с высокими скоростями и подверженной внешним тепловым воздействиям, составляют содержание этой главы. Мы ограничимся рассмотрением лишь тех особенностей течения парожидкостной среды, которые обусловлены ее термодинамическими свойствами.  [c.191]

Зная основные закономерности, свойственные термодинамическим системам, и владея аппаратом дифференциальных уравнений термодинамики, мы можем приступить к рассмотрению термодинамических свойств веществ, обращая при этом главное внимание на анализ характера зависимостей, связывающих одни свойства вещества с другими. Предметом нашего рассмотрения будут термические и калорические свойства, такие, как удельный объем, энтальпия, внутренняя энергия, энтропия, теплоемкости, термические коэффициенты в каждом из трех основных агрегатных состояний вещества и на кривых фазовых переходов.  [c.154]

Это строгое термодинамическое соотношение, разумеется, справедливо для любого вещества в любом агрегатном состоянии.  [c.160]

В равновесной термодинамике гетерогенных систем обычно поведение каждой из фаз рассматривается порознь. Метод раздельного анализа однородных составляющих системы позволяет выяснить многие важные свойства однокомпонентных систем, в частности условие взаимного равновесия соприкасающихся фаз, связь между термодинамическими параметрами равновесных фаз и видом агрегатного превращения, изменения внутренней энергии, энтропии и энтальпии при агрегатных переходах, некоторые свойства веществ вблизи критического состояния и т. д. Этот же прием используется в технической термодинамике парожидкостных систем, в частности для табличных расчетов процессов во влажном паре.  [c.9]

При изменении агрегатного состояния, в результате которого вещество переходит из одной фазы в другую, количество вещества в выражении для термодинамических потенциалов не остается постоянным. В этом случае дифференциалы термодинамических потенциалов примут вид  [c.14]

Смесь воздуха и пара является реальным газом. Как известно, свойства реальных газов тем больше отклоняются от свойств идеальных газов, чем выше плотность i-аза и чем ниже его температура. Отклонение особенно велико в области изменения агрегатного состояния пара. При небольших давлениях и температурах, имеющих место в шахтах и большинстве других сооружений, сухой воздух по своим свойствам весьма приближается к идеальному газу. Водяной пар, находящийся в воздухе в состоянии, близком к насыщению, не может быть отнесен к идеальным газам. Правда, водяной пар воздуха находится под весьма низким парциальным давлением. Таким образом, низкое давление пара приближает его свойства к свойствам идеального газа, а близость к состоянию насыщения — к свойствам реального газа. Сравним термодинамические соотношения для влажного воздуха, рассматривая его как идеальный газ и как смесь идеального и реального газов. При расчетах влажного воздуха обычно наиболее важна зависимость между его влагосодержанием х или d. относительной влажностью ф, давлением смеси В и давлением насыщенных паров при данной температуре P =f(t). При условии, что водяной пар — идеальный газ, такие соотношения, как известно, легко получить путем по-  [c.6]

При термодинамическом исследовании рабочих циклов паросиловых установок основное затруднение связано с используемым рабочим телом. Если в двигателях, рассмотренных ранее, рабочими телами являются смеси газов, которые с определенными погрешностями можно считать идеальными, то в паросиловых установках рабочим телом служит вода, которая за период цикла меняет свое агрегатное состояние. Кроме того, паросиловая установка не является единой машиной, а состоит из ряда отдельных агрегатов.  [c.117]

Фаза — термодинамически равновесное состояние вещества, характеризующееся агрегатным состоянием, атомным (молекулярным) составом и строением, а также отделенное пространственными границами от других возможных равновесных состояний (фаз) того же вещества.  [c.197]

Фаза — термодинамически равновесное состояние вещества, характеризующееся агрегатным состоянием, атомным (молекулярным) составом и строением, а также отделенное пространственными границами от других возможных равновесных состояний (фаз) того же вещества. Термодинамически неравновесное состояние вещества называется метастабильной фазой.  [c.22]

Диаграммы состояния представляют собой график в координатах состав сплава — температура, на котором отражены продукты, образующиеся в результате взаимодействия компонентов сплава друг с другом в условиях термодинамического равновесия при различных температурах. Этими продуктами являются вещества, имеющие в зависимости от температуры и состава определенное агрегатное состояние, специфический характер строения и вполне определенные свойства. Их принято называть фазами. Причем фазой считается определенная часть системы, образованной компонентами сплава, которая во всех своих точках имеет одинаковые состав, строение и свойства.  [c.61]


НОИ системе вследствие хаотического- теплового движения молекул должны существовать флуктуации плотности, т. е. изменяющиеся во времени и пространстве местные сгущения или разряжения среды. Величина этих флуктуаций может быть различной. Если флуктуации лежат в пределах, совместимых с сохранением данного агрегатного состояния системы, то система находится в устойчивом равновесии. Термодинамически это означает, что потенциал системы имеет минимум. При возрастании величины флуктуаций термодинамический потенциал системы повышается и в неустойчивом, точнее метастабильном, состоянии достигает максимума.  [c.6]

Выбор теплообменника зависит от назначения аппарата, области применения, количества передаваемой теплоты, производительности, физических и термодинамических параметров и свойств теплоносителей (плотности, вязкости, теплоемкости, агрегатного состояния химических свойств сред, агрессивности), степени загрязнения теплоносителя и характера отложений на теплообменной поверхности, температурных деформаций и др.  [c.358]

Согласно соотношению Больцмана, величина тг, которая соответствует 5 = 0, есть тг = 1. Поэтому в статистической интерпретации теорема Нернста устанавливает, что термодинамическому состоянию системы при абсолютном нуле соответствует только одно динамическое состояние, а именно динамическое состояние с наименьшей энергией, совместимое с данной кристаллической структурой или с данным агрегатным состоянием системы.  [c.123]

По характеру процессов режимы в объектах механизации и автоматизации можно объединить в следуюш,ие группы механические (усилие, крутящий момент, положение в пространстве, путь, время) тепловые (температура, способ нагрева, время, теплоноситель) электрические (напряжение, сила тока, мощность, частота тока) гидродинамические (давление, производительность, скорость, вид потока) термодинамические (давление, температура, производительность, мощность, скорость) химические (состав, свойства используемых материалов, время, агрегатное состояние) диффузионные (скорость, размеры и др.).  [c.274]

Масла и нефтепродукты, содержащиеся в сточных водах, могут находиться в четырех агрегатных состояниях грубодисперсном,, капельном (размер капель до 100 мкм) тонкодисперсном, мета-стабильном (1—20 мкм) эмульгированном, умеющем стабильную оболочку, которая обладает кинетической и термодинамической устойчивостью (1 мкм), и растворенном.  [c.60]

Прн расчете термодинамических процессов изменения состояния пара так же, как и при расчете газовых процессов, определяют его начальные и конечные параметр . , изменение его внутренней энергии, работу и количество теплоты процесса. Однако в ходе термодинамического процесса может произойти изменение агрегатного состояния рабочего тела. Так, например, перегретый пар при изменившихся условиях переходит в жидкость или в состояние влажного насыщения. Поэтому уравнение (1-2) изменения состояния рабочего тела (Клапейрона) не может быть применено для пара.  [c.77]

Понятия фазы И вида агрегатного состояния вещества, совпадающие для чистых (химически однородных) веществ, в общем случае различны. Фазами системы называются физически различные и механически разделимые части системы фазы могут быть разделены поверхностями соприкосновения (например, вода —лед, пар — жидкость и т.п.). В термодинамической системе может быть только одна газовая фаза (индивидуальный газ или смесь газов), любое количество жидких фаз (несмешивающиеся жидкости) и любое количество механически разделимых твердых фаз.  [c.24]

Основным термодинамическим (феноменологическим) признаком различия видов агрегатного состояния вещества является наличие энергетической границы между фазами теплота испарения как граница между жид- t  [c.25]

Спонтанная конденсация в потоке пара. Вопросам спонтанной конденсации уделяется большое внимание во многих работах (см., например, [2.49]). 13 дальнейшем, где это необходимо, будет использоваться теория луклеации Френкеля [2.56], согласно которой образование жидкой фазы из пара происходит в результате гетерофазных флуктуаций, выводящих систему за пределы исходного агрегатного состояния. В термодинамически устойчивой системе (Фг > Ф1) случайно возникшие зародыши новой азы исчезают — флуктуации рассеиваются . Известно, что в метаста-бильных системах (Фз < i), когда устойчивой является новая фаза, ге-терофазные флуктуации размером, меньшим критического являются неустойчивыми и распадаются. Напротив, флуктуации размером, большим г , устойчивы и потенциально способны к росту.  [c.53]

Физические состояния полвмер<ш. В зависимости от температуры и механических воздействий полимеры могут находиться в жидком или твердом агрегатном состоянии, аморфном или кристаллическом фазовом состоянии. Существует структурное и термодинамическое понятие фазы. С точки зрения структуры фазы различаются порядком во взаимном расположении молекул, от которого зависит энергия межмоле-кулярного взаимодействия и подвижность элементов структуры. В жидком фазовом состоянии (см. подразд. 1.2) находятся жидкости и аморфные (стеклообразные) твердые тела. Для них характерно упорядоченное расположение частиц на расстояниях, соизмеримых с размерами молекул (о такой структуре говорят имеет ближний порядок ). Для кристаллического состояния полимеров характерно наличие дальнего порядка в расположении их макромолекул. Структуру стеклообразных полимеров рассматривают как переохлажденное структурно-жидкое состояние. Оно термодинамически не стабильно, но практически вполне устойчиво. Некоторые полимеры отличаются способностью перехода из этого состояния в частично кристаллическое со смешанной структурой.  [c.63]

Таким образом, жидкости с молекулами больиюй длины - макромолекулами, содержащие в растворе поверхностно-активные ве-п(ества, образуют над монослоем полярных молекул граничный слой, в котором молекулы расположены не беспорядочно, как в объеме жидкости, а правильно ориентированы. Можно считать, что граничные слои находятся в особом агрегатном состоянии, имея квазикристал-лическую структуру особой фазы жидкости - граничной. Основанием для подобного утверждения служит наличие особых состава, структуры, свойств и выраженной границы раздела адсорбированной пленки, т е. наличие всех признаков фазы термодинамической системы.  [c.55]

Известно, что любое вещество в зависимости от внещних условий (давления и температуры) может находиться в твердом, жидком и газообразном агрегатных состояниях, или фазах , а также одновременно быть в двух или трех состояниях. (Озстояние, в котором находятся в равновесии твердая, жидкая и паровая фазы вещества, называется тройной точкой.) Переход вещества из одного агрегатного состояния в другое называется фазовым переходом, или фазовым превращением. Поэтому термодинамические диаграммы (р — и, Т — 5 и др.) для реального газа в отличие от таковых для идеального газа являются фазовыми диаграммами.  [c.59]

Системы, к которым применим тер.модин амичсский метод исследо вания, в общем случае являются сложными системами, состоящими из тел различного химического состава, находящихся в различных агрегатных состояниях. При этом между телами, образующими термодинамическую систему, могут протекать различные химические реакции и переходы веществ из одних фаз в другие. В свя.зи с этим анализу условий равновесия сложных систем должно предшествовать введение ряда новых понятий и определений.  [c.74]


ТЕКУЧЕСТЬ <— Boii TBO тел пластически деформировал ься под действием механических напряжений — величина, обратная вязкости) ТЕЛО [ -макроскопическая система, размеры которой во много раз превышают расстояния между составляющими ее молекулами абсолютно (твердое сохраняет постоянство расстояний между любыми точками этого тела черное полностью поглощает все падающие на него электромагнитные волны) аморфное не имеет правильного, периодического расположения составляющих его микрочастиц анизотропное обладает неодинаковыми свойствами по разным направлениям изотропное обладает одинаковыми свойствами по всем направлениям кpи тaллIr - кoe -твердое тело, строение которого имеет дальний порядок рабочее---термодинамическая система, используемая в тепловой машине для получения работы серое обладает коэффициентом поглощения меньше единицы, не зависящим от длины волны излучения и от абсолютной температуры твердое -- агрегатное состояние  [c.280]

Каждому состоянию реагирующей системы соответствует вполне определенное значение концентраций входящих в ее состав веществ. Таким образом, концентрация является добавочным параметром состояния и для полного представления о состоянии системы необходимо знать значения не двух каких-либо ее параметров, как при рассмотрении термодинамических систем, в которых происходят только физические процессы, а трех. Соответственно этому в процессах изменения состояния реагирующей системы могут оставаться постоянными уже два параметра, а не только один, как это имеет место при протекании одних лишь физических процессов (в последних такое положение возможно лишь при изменении агрегатного состояния рабочего тела). В частности, в реагирующих системах могут оставаться постоянными удельный объем и температура или давление и температура. Именно такие системы и изучаются в химической термодинамике, причем в первом случае система называется изохорно-изотермической, а во втором случае — изобарно-изотермической.  [c.259]

В закритической области вещество находится в однородном состоянии, и в нем отсутствует резкое разделение на отдельные фазы, что имеет место при пересечении пограничной кривой вдали от критической точки. Различие между жидкостью и паром в этой области носит лишь количественный характер, поскольку между ними можно осуществить непрерывный переход без выделения или поглощения скрытой теплоты изменения агрегатного состояния. Однако в указанных переходах непрерывный ряд микроскопических однородных состояний содержит области максимальной микроскопической неоднородности флуктуац ионного характера. Существование такой микроскопической неоднородности связано с падением термодинамической устойчивости первоначальной фазы и с возникновением внутри >нее островков более устойчивой фазы. Указанная внутренняя перестройка вещества, несмотря на свою нелрерывность, имеет узкие участки наибольшего сосредоточения, которые обусловливают появление резких скачков теплоемкости, сжимаемости, коэффициента объемного расширения, вязкости и других свойств вещества. Эти явления демонстрировались рис. 1-5, где был показан характер изменения критерия Прандтля для воды, и перегретого водяного пара от температуры и давления, и рис. 1-6 — для кислорода в зависимости от температуры при закритическом давлении. Из графиков следует, что при около- и закритиче-ских давлениях наряду с областями резкого изменения физических параметров имеются области, где они изменяются с температурой незначительно. При высоких давлениях в области слабой зависимости тепловых параметров от температуры теплоотдача подчиняется обычным критериальным зависимостям. В этом случае при проведении опытов можно не опасаться применения значительных температурных перепадов между стенкой и потоком жидкости, обработка опытных данныл также не  [c.205]

На рис. 9.11, а приведена рг диаграмма парокомпрессорной установки, которая не отличается от предьщущей, но в процессе данного термодинамического цикла происходит изменение агрегатного состояния рабочего тела. Для рассмотрения этого на рис. 9.11, а нанесены линии I и И, разделяющие области различного агрегатного состояния рабочего тела. Так, слева от линии I оно находится в жидком состоянии, справа от линии П — в состоянии сухого пара, а между линиями I и П располагается область влажного пара. Влажный пар — это двухфазная смесь, состоящая из капелек жидкости, рассеянных в парогазовой среде, т. е. в области между линиями I и II происходит процесс парообразования. Следует помнить, что если этот процесс протекает при постоянном давлении, то и температура его также не меняется (см. подразд. 1.3.5).  [c.121]

В литературе имеется довольно много данных относительно влияния агрегатного состояния галлия на его стационарный потенциал. В ряде работ указывается на существенное отличие потенциалов жидкого и твердого галлия, причем в одних случаях утверждается, что потенциал твердого металла положительнее, чем потенциал жидкого [15], в других — наоборот [16]. Штеллинг [17] нашел, что потенциал твердого электрода в кислых растворах примерно на 330 мв отрицательнее потенциала жидкого электрода, а в щелочных — на 150—170 мв. Между тем из термодинамических данных вытекает, что равновесный потенциал галлиевого электрода не должен существенно зависеть от агрегатного состояния галлия. Как известно, изменение свободной энергии при переходе металла из твердого в жидкое состояние определяется по уравнению  [c.49]

Так же, как энтальпия смешения, теплоемкость может быть определена Либо путем прямого калориметрического измерения, либо на основании данных других экспериментов с последующим использованием термодинамических соотношений для расчета теплоемкости. Подавляющее количество опубликованных в литературе данных о теплоемкостях растворов получено калориметрически. Следует отметить, что измерения теплоемкостей растворов (в широком смысле термина — включая твердые и газовые) могут проводиться на любом калориметре, позволяющем измерять теплоемкости индивидуальных веществ в соответствующем агрегатном состоянии.  [c.194]

В термодинамической классификации однокомпонентных простых тел, состояние которых характеризуется значениями переменных t, V (или Р, и), различают лишь два вида агрегатных состояний — однофазовое и двухфазовое ( 3). В связи с этим в дальнейшем приняты следующие определения.  [c.77]

Описанный в настоящей книге усовершенствованный метод ускоренного одноступенчатого расчета равновесия позволяет за один прием получить конечное значение термодинамических характеристик равновесия для таких реакций, участники которых могут взаимодействовать друг с другом, находясь в различных аллотропических и агрегатных со- тояниях или-будучи растворенными в жидком железе. Этот метод расчета устраняет, таким образом, необходимость з Осуществле1ри целого ряда поправочных расчетов на переход от одной модификации к другой, на изменение агрегатного состояния или растворение одних веществ в других. В итоге вместо 10—15 этапов расчета на отыскание искомого значения характеристики равновесия требуется лишь один.  [c.10]


Смотреть страницы где упоминается термин Состояние агрегатное термодинамические : [c.117]    [c.169]    [c.18]    [c.150]    [c.37]    [c.192]    [c.97]    [c.155]    [c.635]   
Физико-химическая кристаллография (1972) -- [ c.102 ]



ПОИСК



Агрегатное состояние

Состояние термодинамическое



© 2025 Mash-xxl.info Реклама на сайте