Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пограничный слой, перемещающиеся турбулентный

Одним из методов управления отрывными течениями является отсос газа из застойной зоны. Такой отсос может осуществляться, например, через щель, расположенную вдоль линии шарниров элерона или закрылка. Отсос является эффективным средством уменьшения площади, занятой отрывным течением, и способствует направленному изменению аэродинамических характеристик обтекаемого тела. Исследования показали, что ламинарный пограничный слой более чувствителен к отсосу, чем переходный или чисто турбулентный, т. е. при одинаковых расходах отсасываемого газа точка отрыва ламинарного пограничного слоя перемещается на большее расстояние.  [c.418]


Как следует из опытных данных, с увеличением критерия Re точка потери устойчивости ламинарного пограничного слоя перемещается к входному сечению трубы и при числах Re >50-10 практически с самого начала трубы имеет место развитие турбулентного теплового пограничного слоя. Следовательно, при больших числах Re теплообмен на начальном участке и длина самого участка будут определяться закономерностями развития турбулентного пограничного слоя.  [c.420]

Вследствие этого точка перехода ламинарного пограничного слоя в турбулентный перемещается ближе к кормовой части цилиндра (шара).  [c.472]

При обтекании плоской пластинки, расположенной по потоку (угол атаки а = 0°), ламинарное течение в пограничном слое поддерживается на длине считая от передней кромки, определяемой числом Рейнольдса З-Ю —5-10 . После этого течение переходит в турбулентное. Точка перехода ламинарного пограничного слоя в турбулентный с увеличением числа Рейнольдса перемещается от задней кромки пластинки к передней. Сопротивление пластинки растет, и наибольшим оно становится, когда точка (зона) отрыва приближается к передней кромке. Важно отметить, что чем дольше сохраняется ламинарное течение вдоль пластинки, тем меньше ее сопротивление. Поэтому задача создания хорошо обтекаемых тел заключается в выборе такого профиля, у которого переход в турбулентное обтекание или отрыв вихрей происходит вблизи задней кромки тела.  [c.41]

Вначале рассмотрим некоторые общие понятия. Течение жидкости обычно бывает либо ламинарным (прямолинейным), либо турбулентным. В первом случае скорость флюида всегда имеет одно и то же направление если поток флюида ограничен стенками трубы, вертикальная составляющая скорости отсутствует. При турбулентном течении, хотя флюид и перемещается вдоль трубы, в любой точке существует радиальная составляющая скорости, значение которой сильно колеблется. В обоих случаях возникает пограничный слой флюида, прилегающий к стенке трубы в этом слое турбулентность равна нулю и через него происходит теплопередача за счет теплопроводности. Коэффициент теплопередачи конвекцией h должен тогда зависеть от тех параметров потока флюида, которые воздействуют на этот ламинарный пограничный слой.  [c.215]

Ламинарное течение —упорядоченное течение жидкости или газа, при котором они перемещаются как бы слоями, параллельными направлению течения. Особенно важное практическое значение имеет ламинарное течение в пограничном слое, образующемся на поверхности тел при обтекании их газом или жидкостью. С увеличением скорости течения жидкости,, начиная с некоторой точки на поверхности тела, ламинарное течение может перейти в неупорядоченное турбулентное течение в пограничном слое (см. гл. 2).  [c.371]


Если отношение давлений меньше предельного (еа< т), то с уменьшением Re скачки смещаются по потоку. При а, блИЗ-ких к предельному, скачок несколько смещается против потока. Аналогичное поведение адиабатических скачков наблюдается и в том случае, когда перед ними возникают скачки конденсации. Обнаруженное влияние числа Re легко может быть объяснено изменением физической тол-" щины пограничного слоя (толщины вытеснения). С уменьшением числа Рейнольдса толщина вытеснения растет и эффективные сечения расширяющейся части сопла уменьшаются. В соответствии с этим уменьшается и эффективное значение параметра /эф = Лэф// кр скачки перемещаются к выходному сечению сопла. В режимах, близких к предельному, решающее значение имеет изменение характеристик вблизи горлового сечения. Так как при уменьшении Re область прямого перехода ламинарного слоя в турбулентный смещается по потоку, то отношение площадей /аф изменяется в меньшей степени, чем при больших числах Re, когда переход происходит вблизи горла. Следовательно, при больших Re скачки вблизи горла также смещены по потоку.  [c.232]

При Н меньших 1,5-10 во всех рассмотренных трубах на поверхности шара происходит отрыв ламинарного пограничного слоя, переходящего в турбулентный где-то вне шара в оторвавшемся слое. При возрастании рейнольдсова числа точка перехода, отметим ее буквой Г, перемещается навстречу потоку и приближается к поверхности шара. Как только точка Т достигнет точки 5 ламинарного отрыва слоя, внешний поток, благодаря возникновению вблизи точки отрыва турбулентного перемешивания, увлечет за собою пограничный слой, обтекание улучшится, и точка отрыва сместится вниз по потоку. Теперь уже точка отрыва. 5 будет соответствовать отрыву турбулентного слоя, так как точка перехода Т будет находиться выше по потоку, чем точка отрыва. Судя по характеру кривых рис. 183, можно думать, что в точке перехода Т происходит местный, не получающий дальнейшего развития отрыв ламинарного слоя, сопровождающийся обратным прилипанием пограничного слоя к поверхности шара с последующим развитым отрывом уже турбулентного пограничного слоя. Указанный местный отрыв ламинарного слоя служит источником возмущений (вихреобразований), заполняющих поток за точкой Т.  [c.592]

Вопрос об определении положения точки Отрыва турбулентного пограничного слоя нуждается еще в дополнительных теоретических и экспериментальных исследованиях. Можно все же думать, что предложенное приближенное решение правильно оценивает характер явления. Сформулированный только что вывод относительно взаимного расположения точек отрыва ламинарного и турбулентного пограничных слоев хорошо подтверждается опытами. Достаточно вспомнить явление кризиса обтекания , объяснение которого было дано в 92. Точка отрыва ламинарного слоя при больших докритических значениях рейнольдсова числа не меняет своего расположения, что приводит практически к установившейся картине. плохого обтекания шара и сохранению коэффициента сопротивления на уровне сравнительно большого его значения. Как только точка перехода в своем движении вверх по течению достигнет точки отрыва, отрыв теряет свой ламинарный характер и сразу же начинает перемещаться вниз по потоку, улучшая тем самым обтекание тела и уменьшая его сопротивление. В конце кризиса точка отрыва установившегося турбулентного пограничного слоя располагается значительно ниже по потоку, чем точка отрыва ламинарного слоя, и в дальнейшем уже, если и перемещается, то крайне незначительно (за счет косвенных причин, связанных с изменением давлений при утолщении слоя и др.).  [c.637]

По фотографиям на фиг. 24—29 можно видеть, что во всех случаях линии тока, проходящие вдоль границы области отрыва, отклоняются наружу вблизи излома поверхности, поскольку здесь начинается скачок уплотнения. Этот эффект более заметен в случае полусферического носка, чем плоского, в особенности при ламинарном пограничном слое на игле. Как видно из фиг. 24 и 26, при ламинарном пограничном слое на игле половина угла конического скачка уплотнения, начинающегося вблизи отрыва, составляет приблизительно 25°. Так как этот угол меньше 30,7 (соответствующего М = 1,96), отрыв быстро перемещался вверх по потоку, как только возникала такая картина течения. Однако в случае турбулентного течения соответствующее значение угла скачка уплотнения хорошо согласуется с расчетным, вычисленным по наклону поверхности области отрыва, указывая тем самым на почти стационарное положение точки отрыва.  [c.242]


Если течение ламинарное, переход начинается в некоторой точке-между А VI В после пересечения области замыкающего скачка течение в следе становится полностью турбулентным. Профили скорости между точками А жВ такие же, как на границах сверхзвуковой струи, истекающей в окружающее затопленное пространство. Внутри зоны отрыва происходит медленное циркуляционно движение, вызванное вязкостью воздуха [14]. Установившееся равновесие между донным давлением и положением линии BBt обеспечивается благодаря эжектирующему влиянию внешнего потока на течение в зоне отрыва. Часть воздуха вытекает из зоны отрыва, вызывая увеличение угла поворота потока в точке А и уменьшение давления в зоне отрыва. Линия BBi перемещается к донному срезу, при этом отношение давлений в замыкающем скачке возрастает, затрудняя течение эжектированного воздуха и воздуха, движущегося с малой скоростью в пограничном слое, против возрастающего давления в скачке. Противодействие этого эффекта эжектированию внешним потоком воздуха из отрывной зоны, снижающему давление в ней, способствует установлению равновесных условий в донном течении. Качественный характер течения вблизи донного среза за двумерным телом аналогичен.  [c.28]

Течение жидкости в пограничном слое может быть ламинарное, когда ее частицы перемещаются слоями, и турбулентное, при котором эти частицы совершают пульсационные движения, приводящие к интенсивному перемешиванию слоев жидкости. Турбулентное течение возникает в результате потери устойчивости ламинарного течения. Условие перехода ламинарного течения в турбулентное определяется некоторым критическим числом Рейнольдса  [c.58]

Экспериментально установлено, что критическое число Рейнольдса, при котором коэффициент сопротивления шара резко уменьшается (см. рис. 1.5) ), сильно зависит от степени турбулентности в аэродинамической трубе. Это критическое число, лежащее в пределах от VD/v) = 1,5 10 до 4 10 , тем меньше, чем больше степень турбулентности. С физической точки зрения это вполне понятно, так как высокая степень турбулентности внешнего течения вызывает переход течения в пограничном слое из ламинарной формы в турбулентную при более низких числах Рейнольдса, вследствие чего точка отрыва перемещается вниз по течению, что в свою очередь приводит к сужению мертвой зоны за телом и к уменьшению сопротивления.  [c.515]

Если распределение давления вдоль контура лопаток решетки такое, чт/О не происходит сколько-нибудь заметных отрывов течения, то потери в лопаточной решетке обусловливаются в основном пограничным слоем. В этом случае потери зависят от числа Рейнольдса примерно так же, как коэффициент сопротивления продольно обтекаемой плоской пластины., т. е. при ламинарном течении они пропорциональны Ре а при турбулентном течении пропорциональны Ре , причем Ре есть число Рейнольдса, составленное по хорде лопатки. Однако коэффициент потерь сильно зависит также от положения точки перехода ламинарного течения в турбулентное при увеличении числа Рейнольдса эта точка перемещается вперед, к носку профиля. В случае безотрывного обтекания лопаток зависимость коэффициента потерь от числа Рейнольдса может быть определена путем расчета  [c.689]

В зависимости от режима течения различают ламинарный и турбулентный пограничные слои. При ламинарном течении слои пара перемещаются параллельно, не перемешиваясь. Турбулентное течение сопровождается сильным перемешиванием движу-  [c.29]

Кризис сопротивления присущ всем телам, у которых точка отрыва пограничного слоя может перемещаться в зависимости от числа Рейнольдса. Это справедливо при неизменной степени турбулентности потока. Круглый цилиндр, шар, эллипсоид являются примером таких тел. У хорошо обтекаемых тел кризиса сопротивления в указанном смысле не может быть, потому что их сопротивление определяется преимущественно силами трения. Но и здесь переход течения в пограничном слое, например из турбулентного в ламинарный, сильно снижает профиля.  [c.53]

На положение точки перехода ламинарного пограничного слоя в турбулентный влияет и состояние обтекаемой поверхности (ее шероховатость Д). В гиянне различных неровностей поверхности состоит в том, что они возмущают ламинарное течение, перемещают точку перехода вперед (к лобовой части тела) и увеличивают участок с турбулентным пограничным слоем.  [c.473]

Из этого соотношения видно, что в области повышения давления dpidx > 0) при отсасывании, вследствие того что Уо < О, кривизна профиля скоростей на стенке уменьшается. На основании сказанного в главе VH это означает, что точка отрыва перемещается вниз по течению, а это, как мы увидим в главе XVII, приводит к повышению устойчивости пограничного слоя. Оба эти эффекта отсасывания — предупреждение отрыва и перемещение точки перехода ламинарного течения в пограничном слое в турбулентное в сторону больших чисел Рейнольдса — подтверждаются экспериментами.  [c.358]

Рассмотрим процесс поперечного обтекания одиночной цилиндрической трубы потоком жидкости (рис. 17.7). Плавное обтекание цилиндра возможно только при малых скоростях потока — при Re < 5. При всех значениях Re > 5 наблюдается отрыв потока от стенки трубы и образование в кормовой части двух симметричных вихрей, которые с увеличением скорости потока вытягиваются по течению, удаляясь от трубы. Ламинарный пограничный слой, образующийся на лобовой части по обе стороны от точки О, ирн 5 < Re < 2-10 отрывается от поверхности трубы в точке а, характеризующейся углом ф 82° (рис. 17.7, а). Увеличение толщины пограничного слоя от минимального в точке О до максимального в точке отрыва а приводит к увеличению термического сопротивления и уменьшению коэффициента теплоотдачи а. Коэффициент а имеет максн.мальное значение в точке О, минимальное — в точке отрыва а. В кор.мовой части значения а вновь увеличиваются за счет разрушения пограничного слоя и образования вихрей, турбулизирующих поток. При значительных числах Рейнольдса (Re > 2-10 ) ламинарный пограничный слой переходит в турбулентный (точка Ь на рис. 17.7, б) и место отрыва от трубь перемещается по потоку (точка а). Это приводит к улучшению обтекания цилиндра (ср 120") и уменьшению вихревой зоны.  [c.191]


Качественное изменение локального коэффициента теплоотдачи Олок по длине пластины показано на рис. 3-8. Уменьшение Олок на начальном участке пластины 1 связано с развитием ламинарного пограничного слоя, здесь лок пропорционален l/Vx, что следует из (3-9). Переходная зона 2 характеризуется увеличением теплоотдачи в связи с появлением турбулентного перемещи-вания. Для области развитого турбулентного пограничного слоя 3 характерно более плавное изменение Олок по длине алок пропорционален 1//X, что следует из (3-11).  [c.70]

Известно, что при конвективной теплопередаче к сферической частице в случае стационарного теплового состояния и малых значений чисел Рейиольдса Nu = 2. В реальных условиях взвешенного слоя частицы нагреваются в нестационарных тепловых условиях. Кроме того, скорости частиц меняются во времени, т. е. гидродинамический режим также не является стационарным. Взвешенные частицы, перемещаясь в газовом потоке, двигаются не только поступательно, но и вращаются, вследствие чего пограничный слой переходит из ламинарного состояния в турбулентное уже при сравнительно небольших значениях критерия Рейнольдса.  [c.382]

Проведено экспериментальное исследование [С.22] динамического срыва в области передней кромки на колеблющихся по углу атаки профилях, в частности профиле NA A0012 и нескольких его модификациях. В нем детально изучен процесс развития срыва. Общие качественные его черты были одинаковы для всех рассматривавшихся профилей независимо от того, развивался ли срыв постепенно, в виде возвратного течения от задней кромки, или наступал сразу, вследствие разрушения ламинарного пузыря или отделения турбулентного пограничного слоя вблизи передней кромки. Во всех случаях у передней кромки образовывался вихрь, который срывался и перемещался назад, вызывая большие переменные подъемную силу и момент. Прежде чем срыв начинал проявляться в величине подъемной силы или момента, на профилях уже возникало заметное возвратное течение. В случае профиля NA A0012 при типичных для вертолета числах Рейнольдса и малых числах Маха явление динамического срыва включало в себя образование вихрей на передней кромке, вызванное быстрым перемещением вперед точки отрыва потока, возникшей у задней кромки. Дополнительная информация по этим вопросам имеется также в работах [М.1, М.2].  [c.818]

Особенно примечательное явление, связанное с переходом течения в пограничном слое из ламинарной формы в турбулентную, наблюдается при обтекании тела с тупой кормовой частью, например круглого цилиндра или шара. Из рис. 1.4 и 1.5 мы видим, что при числах Рейнольдса Fd/v,. равных для круглого цилиндра приблизительно 5 10 , а для шара приблизительна 3 10 , коэффициент сопротивления цилиндра и шара внезапно сильно уменьшается. Впервые это явление было обнаружено для шара Г. Эйфелем [ ]. Столь резкое уменьшение сопротивления объясняется возникновением в пограничном слое турбулентного течения. Турбулизация пограничного слоя,, т. е. возникновение в нем турбул (нтного перемешивания, значительна усиливает увлекающее действие внешнего потока по сравнению со случаем ламинарного пограничного слоя, и это приводит к перемещению точки отрыва назад, т. е. вниз по течению. Если для пограничного слоя, остающегося ламинарным на всем протяжении, точка отрыва лежит приблизительно на экваторе шара, то после турбулизации пограничного слоя она перемещается на довольно значительное расстояние назад, т. е. на заднюю половину шара. Вследствие этого область застойного течения позади тела значительно суживается и распределение давления приближается к распределению давления при течении без трения (см. рис. 1.10). Сужение же застойной области приводит к значительному уменьшению сопротивления давления, что дает о себе знать в виде скачкообразного понижения кривой = / (Ре) (см. рис. 1.4 и 1.5). Правильность такого объяснения подтвердил Л. Прандтль путем следующего опыта [Щ, Несколько впереди экватора шара, обтекавшегося потоком воздуха, он укрепил на поверхности шара тонкое проволочное кольцо. Наличие этого кольца вызвало искусственную турбулизацию пограничного слоя уже при умеренном числе Рейнольдса  [c.50]

Новые исследования Г. В, Эммонса [ ], а также Г. Б. Шубауэра и П. С. Клебанова показали, что переход ламинарной формы течения в турбулентную в пограничном слое на пластине также состоит из беспорядочной смены во времени ламинарных и турбулентных состояний. Как показывает рис. 16.7, в определенной точке внутри пограничного слоя внезапно возникает небольшое турбулентное образование неправильной структуры (турбулентное пятно), которое затем перемещается вниз по течению внутри клинообразной области. Такие турбулентные пятна появляются через неправильные промежутки времени в разных, неравномерно распределенных точках обтекаемой пластины. Внутри клинообразных областей, по которым перемещаются турбулентн1 1е пятна, преобладает турбулентная форма течения, а в соседних областях происходит непрерывная смена ламинарной и турбулентной форм течения. См. в связи с этим также работу [" J.  [c.420]

Рис. 16.21. Измерения перехода ламинарной формы течения в турбулентную в пограничном слое на продольно обтекаемой плоской пластине. По Гренвилу [ ]. На ординатах отложены разности чисел Рейнольдса в точке перехода и в нейтральной точке, а на оси абсцисс — степени турбулентности. При увеличении степени турбулентности точка перехода перемещается ближе к нейтральной точке. Рис. 16.21. Измерения перехода ламинарной формы течения в турбулентную в <a href="/info/510">пограничном слое</a> на продольно обтекаемой <a href="/info/204179">плоской пластине</a>. По Гренвилу [ ]. На ординатах отложены разности чисел Рейнольдса в <a href="/info/120988">точке перехода</a> и в <a href="/info/106103">нейтральной точке</a>, а на оси абсцисс — <a href="/info/2637">степени турбулентности</a>. При увеличении <a href="/info/2637">степени турбулентности</a> <a href="/info/120988">точка перехода</a> перемещается ближе к нейтральной точке.
Пограничные слои на выпуклых стенках (центробежная сила). Существует несколько случаев, в которых на переход ламинарного течения в турбулентное значительное влияние оказывают активные внешние силы. Примером может служить течение в кольцевом пространстве между двумя вращаю-пщмися коаксиальными цилиндрами. Если внутренний цилиндр неподвижен, а внешний вращается, то в промежутке между ними скорость увеличивается приближенно по линейному закону от нулевого значения на внутренней стенке до значения на внешней стенке, совпадающего с окружной скоростью вращения внешнего цилиндра. При таком течении частица жидкости, находящаяся ближе к внешней стенке, сопротивляется перемещению по направ-лению к внутренней стенке, так как для нее центробежная сила больше, чем для частиц из внутренних слоев поэтому если такая частица и начинает перемещаться по направлению к внутренней стенке, то она тотчас же отбрасывается наружу. Однако одновременно затруднено и перемещение частиц жидкости изнутри наружу, так как центробежная сила во внутреннем слое меньше центробежной силы во внешнем слое, и поэтому частица, находящаяся во внутреннем слое, испытывает подъемную силу , направленную внутрь. Таким образом, в рассматриваемом случае поперечные движения, являющиеся признаком турбулентности, затруднены вследствие действия центробежных сил следовательно, эти силы действуют на течение стабилизующим образом.  [c.470]


Перейдем к ламинарному пограничному слою. Будем называть высоту элемента шероховатости, вызывающего в ламинарном пограничном слое переход ламинарной формы течения в турбулентную, критической высотой шероховатости (см. 7 главы XVII). Наличие шероховатости с критической высотой меняет величину сопротивления вследствие того, что точка перехода перемещается вперед, т. е. вверх по течению. При этом в зависимости от формы тела сопротивление может либо увеличиться, либо уменьшиться. Увеличение сопротивления происходит в том случае, когда для рассматриваемого тела преобладает сопротивление трения (примером может служить крыловой профиль) уменьшение же сопротивления наблюдается иногда у тел с преобладающим сопротивлением дав ления (например, у круглого цилиндра). Согласно японским измерениям, выполненным для изолированных шероховатостей критическая высота шероховатости для ламинарного пограничного слоя определяется формулой  [c.597]

Процесс теплоотдачи при поперечном о гекании труб имеет особенности, которые обусловлены гидродинамикой движения жидкости вблизи поверхности трубы (рис. 13.7), В соответствии с этим меняется коэффициент теплоотдачи по окружности трубы, В лобовой части он наибольший, далее по периметру трубы а падает и достигает минимального значения в точке отрыва потока (точка а). В вихревой части коэффициент теплоотдачи увеличивается. При значениях 1 е> 200000 пограничный слой до отрыва переходит в турбулентный (см, рис, 13,7,6), при этом точка отрыва перемещается в сторону больших (р. Изменение коэффициента теплоотдачи в этих условиях имеет более сложный характер,  [c.165]

При течении жидкости или газа по трубе, которой можно уподобить пространство между двумя ребрами, картина потока зависит от вязкости протекающего вещества, размеров трубы и скорости потока. При небольших размерах, малых скоростях и высоких кинематических вязкостях наблюдается так называемый ламинарный поток, при котором отдельные струи потока протекают по каналу приблизительно параллельными путями. При больших размерах, значительных скоростях и меньших вязкостях имеем турбулентйое движение, при котором отдельные струи потока интенсивно перемещаются и в поперечном направлении. Уже при сопоставлении обоих типов движений видно, что теплопередача в пограничном слое от стенки к текущей среде осуществляется при турбулентном потоке легче, чем при ламинарном. Это объясняется тем, что при турбулентном потоке постоянно происходит перемешивание частиц в поперечном направлении, при котором нагретые частицы перемещаются от стенок к середине потока, в то время как при ламинарном потоке передача в направлении, перпендикулярном к потоку, осуществляется исключительно за счет теплопроводности.  [c.527]

Влияние рейнольдсова чис/ а на положение точки перехода на поверхности гладкого крыла выражается в смещении точки перехода при возрастании рейнольдсова числа в направлении к передней кромке. Для разных крыловых проф илей это смещение происходит различно, причем оно зависит также от условий С1пыта, т. е. турбулентности набегающего потока и др. Можно, однако, уделать некоторые общие замечания по этому поводу. Если на поверхности крыла за точкой минимума давления существует точка отрыва ламинарного слоя, то эта точка является самой нижней (по потоку) возможной точкой перехода, так как сорвавшийся слой почти мгновенно переходит в турбулентное состояние. С возрастанием рейнольдсова числа точка перехода перемещается вверх по потоку и оказывается расположенной выше по потоку, чем точка отрыва. При этом ламинарный отрыв перестает осуществляться и заменяется турбулентным, который либо осуществляется, но значительно ниже по потоку, чем ламинарный, либо совсем отсутствует. Точка перехода перемещается по направлению к точке минимума, давления и затем переходит в конфузорную область слоя. Схематически это показано на рис. 218 для верхней поверхности крылового профиля с затянутым кон-фузорным участком слоя (точка минимума давления примерно на 45% хорды) там же для сравнения приведена кривая перемещения точки потери устойчивости. Как вид1ю из графика, ламинарный участок пограничного слоя на этом профиле простирается почти на всю переднюю  [c.674]

К числу мепее изученных факторов следует отнести влияние масштаба турбулентности набегающего потока на положение точки перехода. Примером этого влияния могут служить приведенные на рис. 220 результаты опытов ) над пограничным слоем на эллиптическом цилиндре, расположенном под нулевым углом атаки в воздушном потоке, турбулизированном решетками, ноставле1И1Ымн впереди цилиндра на некотором от него расстоянии (размеры ячеек решетки приводятся па рисунке). Вихри, созданные стержнями решетки, перемещаясь вниз по потоку, разрушаются, образуя размытые области возмущенного движения, средние размеры которых представляют масштаб турбулентности. Масштаб турбулентности Ь поддается измерению, а отнощение его к линейному размеру обтекаемого тела, в данном случае меньшему диаметру эллипса О, наряду с интенсивностью турбулентности е служит характеристикой турбулентности набегающего потока. График на рис. 220 выражает связь между безразмерной величиной абсциссы точки перехода ламинарного слоя в турбулентный на поверхности эллиптического цилиндра и параметром Тэйлора ), представляющим произведение интенсивности турбулентности на корень пятой степени из отношения характерного размера тела О к масштабу турбулентности L. Из этого графика видно, что при малых значениях параметра Тэйлора внешние возмущения слабо влияют на размер ламинарного участка слоя здесь все определяется внутренней устойчивостью движения в слое. При сравнительно  [c.676]

ЛАМЕ ПОСТОЯННЫЕ, величины, характеризующие упругие св-ва изотропного материала (см. Модули упругости, Гука закон). Названы по имени франц. математика Г. Ламе (G. Lame). ЛАМИНАРНОЕ ТЕЧЕНИЕ (от лат. lamina — пластинка, полоска), упорядоченное течение жидкости или газа, при к-ром жидкость (газ) перемещается как бы слоями, параллельными направлению течения. Л. т. наблюдается или у очень вязких жидкостей, или при течениях, происходящих с достаточно малыми скоростями, а также при медленном обтекании жидкостью тел малых размеров. В частности, Л. т. имеют место в узких (капиллярных) трубках, в слое смазки в подшипниках, в тонком пограничном слое, образующемся вблизи поверхности тел при обтекании их жидкостью или газом, и др. С увеличением скорости движения данной жидкости Л. т. в нек-рый момент переходит в турбулентное течение. При этом существенно изменяются все его св-ва, в частности структура потока, профиль скоростей, закон сопротивления. Режим течения жидкости характеризуется Рейнольдса числом Re. Когда значение Re меньше критич. числа имеет место Л. т. жидко-  [c.343]


Смотреть страницы где упоминается термин Пограничный слой, перемещающиеся турбулентный : [c.295]    [c.88]    [c.436]    [c.403]    [c.175]    [c.236]    [c.221]    [c.35]    [c.173]    [c.73]    [c.213]    [c.458]    [c.351]    [c.342]   
Кавитация (1974) -- [ c.269 ]



ПОИСК



Pan (Перемещать)

Пограничный слой турбулентный

Пограничный слой, перемещающиеся

Пограничный турбулентный

Слой турбулентный

Турбулентность (см. Пограничный

Турбулентные пограничные слои



© 2025 Mash-xxl.info Реклама на сайте