Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Система управления (СУ) адаптивна машины

Самонастраивающаяся система управления может учитывать не только текущую информацию, но и прошлый опыт. В этом случае добавляется блок оперативной памяти, в котором накапливаются сведения об управляемом технологическом процессе, и коррекция программы производится на основании обобщения опыта работы машины-автомата. Самонастраивающиеся системы с оперативной памятью называют иногда адаптивными системами.  [c.515]


Фактический синтез алгоритма управления осуществляется до его реализации на вычислительной машине. А затем вычисляются параметры регулятора как функции параметров объекта управления. Алгоритмы управления, используемые в адаптивных системах управления, должны обладать следующими свойствами  [c.392]

П )именение адаптивной системы управления на фрезерных головках обеспечивает возможность повышения производительности фрезерования торцов за счет сокращения машинного времени в 2 раза. Если при обычной обработке величина продольной подачи, устанавливаемая равной 330 мм/мин, остается все время постоянной, то при использовании САУ подача автоматически меняется в соответствии с глубиной и шириной фрезерования и на участках врезания и выхода фрезы = 350 н--т-920 мм/мин. Фрезерные головки, оснащенные системой адаптивного управления, работают в определенном силовом режиме, при котором исключается возможность случайной перегрузки. Вследствие этого увеличивается стойкость фрез и уменьшаются расходы на режущий инструмент. Программное управление крутящим моментом при зацентровке позволяет поддерживать по мере заглубления определенные значения М р и Р , при которых исключается возможность поломки инструмента и обеспечиваются более высокие режимы резани -- В результате этого повышается стойкость инструмента и сокращается время сверления.  [c.576]

Для количественной оценки эффективности использования разработанной адаптивной системы управления на внутришлифовальных станках в условиях вариации режущей способности шлифовального круга на рис. 1, г приведены зависимости машинного времени на обработку изделий от значений постоянной времени системы СПИД кр.1—для случая адаптивного управления циклом кр.2 — для традиционного двухступенчатого цикла обработки.  [c.195]

Адаптивные системы активной амортизации. Адаптивными называются такие системы активной амортизации, параметры которых (амплитудные и фазовые характеристики обратных связей) могут изменяться в процессе работы таким образом, чтобы обеспечить минимум передачи вибраций от машины в фундамент и прилегающие конструкции. На рис. 7.23 в качестве примера приведены две схемы адаптивных систем активной амортизации. Помимо элементов, составляющих схему активной амортизации на рис. 7.21, а, в них включены дополнительные блоки — оптимизатор 9 и источник управляющих сигналов 10. Оптимизатор — принципиально новое функциональное устройство, отличающее адаптивные схемы управления  [c.243]


Большие перспективы открывают системы числового программного управления от ЭВМ. В этих системах ЭВМ может собирать исходную информацию о ходе производственного процесса, например, о производительности, загрузке, простоях и техническом состоянии оборудования, о режимах обработки и т. д. обрабатывать исходную информацию, анализировать ее и выдавать управляющую информацию. Вычислительной машине можно также передавать управление транспортными системами. Таким образом, переход на управление станками с ЧПУ непосредственно от ЭВМ создает реальную возможность объединения систем управления технологическими процессами, управления производством (АСУП) и оптимизации технологических процессов (адаптивных систем) в единый комплекс.  [c.130]

Для сокращения погрешностей, возникающих в кинематических цепях системы СПИД, можно использовать также систему адаптивного управления размером динамической настройки фд. Стабилизировать размер динамической настройки фд кинематической цепи можно, как это выше было рассмотрено, за счет сохранения крутящего момента, действующего во время обработки. Это может быть достигнуто путем изменения рабочей подачи. В тех случаях, когда изменение величины рабочей подачи вызывает опасное увеличение нагрузки на зуб фрезы или большую шероховатость обрабатываемой поверхности, одновременно с возрастанием рабочей подачи повышается и скорость резания. Управляя размером динамической настройки фд кинематической цепи системы СПИД, одновременно с повышением точности достигается и увеличение производительности обработки. Это дало наиболее эффективные результаты при нарезке косозубых зубчатых колес, при которой момент резания в период врезания непрерывно возрастает, а в период выхода фрезы убывает до величины момента холостого хода. Следовательно, обработка с увеличенной подачей в момент начала обработки (и надлежащей скоростью резания) и постоянно убывающей до величины, установленной для периода установившегося резания, а затем с постепенно. возрастающей подачей до первоначальной величины, позволяет сократить машинное время в среднем до 30%. Стабилизация размера динамической настройки фд позволяет при этом повысить точность обработки на один класс и увеличить размерную стойкость фрез до 30%. Управлять размером динамической настройки фд кинематической цепи можно также и путем изменения жесткости или упругого закручивания ее звеньев.  [c.30]

В этих станках в качестве контролируемого параметра берутся крутящий момент на шпинделе, силы резания, воспринимаемые режущими инструментами, температура режущего инструмента и т. д. В системе адаптивного управления обеспечивается непрерывное измерение этих параметров, оценка их значения и автоматическое регулирование режимов резания в зависимости от изменения припуска, износа резца, прохода необрабатываемых участков на быстром ходу.- Помимо предохранения станка и инструмента от перегрузок, система адаптивного управления позволяет сокращать машинное время, повышать точность обработки.  [c.141]

СИСТЕМЫ АДАПТИВНОГО УПРАВЛЕНИЯ АВТОМАТИЧЕСКИХ СБОРОЧНЫХ МАШИН 435  [c.435]

СИСТЕМЫ адаптивного УПРАВЛЕНИЯ АВТОМАТИЧЕСКИХ СБОРОЧНЫХ МАШИН 447  [c.447]

Универсальная автоматическая сборочная машина с системой адаптивного управления положением деталей пригодна для сборки соединений с различными конфигурацией и размерами посадочных поверхностей.  [c.448]

Машина универсальная автоматическая сборочная с системой адаптивного управления 446-448  [c.634]

Робототехнические системы, особенно с адаптивными и интеллектуальными роботами, нуждаются в микропроцессорном управлении. Здесь речь идет о распределенном, а не централизованном управлении. Распределенное машинное управление возможно либо с немощью микроЭВМ, либо с помощью микропроцессорных блоков функционального назначения (БФН) [12]. Преимущественное предпочтение отдается БФН. Когда в алгоритмах встречаются необходимые операции с матрицами, то самым удобным языком встроенного программирования оказывается язык с по-следовате.льной логикой диапрограмм перехода состояний. За универсальность пришлось платить снижением реального быстродействия и объемом памяти. Число управляющих ЭВМ не монеет быть слишком большим, так как это требует использования для управления распределенными объектами весьма развитой периферии. Трудности возникают также при взаимодействии программистов с операционными системами. Частично их можно решить разработкой специализированных операционных систем и специальных языков. Однако принципиальное решение проблемы os-Дания экономичных управляющих комплексов получено лишь в последние годы. Появление мини- и микроЭВМ, микропроцессорной техники дало возможность реализовать децентрализованный принцип построения сложных систем управления. Применение микропроцессорной техники для управления роботами существенно сократило и число и объем задач, для решения которых необходимо использовать управляющую ЭВМ.  [c.75]


По способу передачи движения от двигательного устройства к исполнительному органу машины различают приводы прямого действия (безредукторные, dire t drive) и с передаточными механизмами. По степени управляемости можно выделить следующие приводы нерегулируемые (работающие на одной рабочей скорости) регулируемые (способные реализовать движения на разных скоростях) программно-управляемые следящие (автоматически отрабатывающие перемещение рабочего органа машины с определенной точностью в соответствии с изменением задающего сигнала) адаптивные (автоматически меняющие структуру и параметры системы управления в целях поддержания оптимального закона движения при изменяющихся непредсказуемым образом условиях работы машины). По уровню автоматизации управления различают приводы неавтоматизированные, автоматизированные (обеспечивается автоматическое регулирование параметров) и автоматические (с автоматическим выбором управляющего взаимодействия).  [c.539]

В системах ЧПУ от ЭВМ, или МЧПУ, традиционные управляющие устройства, реализованные на базе неперестраиваемой ( жестко запаянной ) аппаратуры, заменяются малой (мини- или микро-) ЭВМ. Эта малая ЭВМ используется для выполнения всех (или части) основных функций ЧПУ с помощью программ, хранящихся в ее оперативной памяти. Одним из отличительных свойств МЧПУ является то, что здесь один станок управляется одной ЭВМ. В отличие от этого при другом типе управления от ЭВМ-прямом цифровом управлении (ПЦУ)-одна большая ЭВМ используется для управления несколькими отдельными станками с ЧПУ. Третий тип управления-адаптивное управление-не требует для своей реализации использования дополнительной цифровой вычислительной машины. Механическая обработка с адаптивным управлением предусматривает измерение управляющей системой одной или большего числа переменных, характеризующих процесс обработки (например, усилия резания, температуры, потребляемой мощноста и Т.Д.Х и соответствующее изменение скоростей подачи и (или) резания для компенсации нежелательных отклонений переменных управляемого  [c.224]

К этой же группе систем относятся станки с адаптивным управлением, у которых производится автоматическое регулирование подачи столов и суппортов, например, из условия сохранения постоянным усилия резания или величины упругой деформации системы (метод проф. Б. С Балакшина [174]) автоматическая виброзащита машин путем измерения вибраций и создания антивибраций, обратных по фазе система автоматического уравновешивания узла шпинделя и детали для ликвидации вредного влияния дисбаланса заготовки функциональная разгрузка направляющих, учитдлвающая переменность сил трения [137] автоматическая непрерывная коррекция кинематических цепей зуборезных и других станков, исключающая влияние погрешностей изготовления эле-  [c.461]

В перспективе получат массовое распространение станки с числовым программным управлением, допускающие быструю переналадку на другие типы изделий. Производство таких станков увеличивается постоянно. Но и эти станки в их современных моделях еще не решают задач комплексной автоматизации. Будущее — за автоматическими программными системами, объединяющими комплексы станков с числовым программным управлением с электронно-вычислительными машинами. Такие системы обеспечат необходимую гибкость и приспособляемость производства к быстрой переналадке на выпуск новых видов изделий и будут обладать адаптивностью, т. е. способностью вырабатывать оптимальную технологию и режимы оборудования самонастраиваться на основе анализа, отбора, запоминания и реализации наилучших решений.  [c.86]

На рис. 9.8 приведена общая схема системы адаптивного управления качеством заготовки 2 при шлифовании кругом 1. Данные о диаметре шероховатости поверхности заготовки и радиальной силе шлифования Р в виде электрических сигналов от соответствующих преобразователей поступают в электронные преобразующие устройства 3, откуда их значения поступают на аналоговый вход вычислительной машины 4. Сигнал работы шлифования А определяется по скорости изменения измеряемого диаметра В заготовки. Вычислительная машина в зависимости от измеренных и вычисленных параметров (Лд, Р, В, А) оптимизирует значение поперечной подачи передаваемой в управляющее устройство 5, где оно кодируется и поступает в виде электрического сигнала на шаговый электродвигатель 6. Сигнал радиальной силы шлифования Р также поступает на управляющее устройство для своевременного переключения быстрого подвода круга на рабочую подачу при соприкосновении круга с заготовкой и остановки станка, если радиальная сила шлифования превысит допустимую.  [c.465]

Наибольшей эффективности в области совершенствования приводов строительных машин и оборудования в текущем столетии можно ожидать от автоматизации систем их управления, которая будет развиваться в направлении разработки и внедрения более совершенных автоматизированных эргатических (человеко-операторных), жестких автоматических неадаптивных и адаптивных микропроцессорных систем управления. По-видимому, внедрение двух последних видов систем управления станет доминирующим. Функции машинистов строительных машин будут постепенно сводиться к функциям операторов, подобных работе пилотов современных летательных аппаратов, диспетчеров тепловых и атомных энергетических установок. Это несомненно потребует подготовки новых кадров машинистов-операторов со среднетехническим и высшим образованием. Конкурентоспособность строительных машин и оборудования в первую очередь будет обеспечиваться современными пультами управления, включающими дисплейные системы информации от большого числа контролируемых параметров, обеспечивающих безопасную работу машин, диагностирование технического состояния их основных агрегатов и узлов, наработку, учет их производительности и др.  [c.362]


Метод механической обработки с адаптивным управлением (АУ) был разработан в результате исследований, проведенных в начале 1960-х годов под эгидой ВВС США в научно-исследовательской лаборатории компании Bendix. Первые системы АУ базировались на аналоговых управляющих устройствах, что соответствовало состоянию технологии того времени. Современные системы адаптивного управления используют микропроцессоры и обычно составляют единое целое с существующими системами МЧПУ. Именно по этим соображениям мы считаем целесообразным рассмотреть вопросы адаптивного управления в данной главе, посвященной машинному числовому программному управлению.  [c.241]

Повышение точности обусловливается непрерывным ростом требований к новым машинам, а также тем, что основной объем механической обработки перемещается в область отделочных операций в связи с совершенствованием технологии изготовления заготовок. Точность повышается при увеличении и выравнивании жесткости технологической системы уменьшении размерного износа режущих инструментов сокращении погрешностей настройки технологической системы, уменьшении ее тепловых деформаций создании адаптивных и самооптимизирующих систем управления точностью, а также установлении рациональных требований к точности станка и режущего инструмента. В каждом отдельном случае необходимо проанализировать возможности уменьшения первичных погрешностей обработки и определить суммарную погрешность. Развитие и совершенствование подобных расчетов важно в поточном и автоматизированном производстве для обоснования технологических решений, установления оптимальных допусков на промежуточные размеры заготовок и управления точностью.  [c.411]

Конструктивность рассматриваемого подхода состоит в том, что при проектировании программного обеспечения адаптивного робота используется универсальная операционная система не только как программная база инструментальных робототехнических комплексов, но и как ядро разрабатываемого проблемно-ориентированного обеспечения. На рис. 1.5 изображены уровни вычислительной машины при этом каждый из уровней представляет собой некоторую виртуальную машину с собственной системой команд, так что уровень проблемно-ориентированного обеспечения адаптивных роботов использует все мощные средства программирования, которые предоставляются уровнем операционной системы сюда входят не только языки программирования, но и системная поддержка исполнения рабочих программ управления движением манипулятора (обработка прерываний, управление вводом, выводом, распределение ресурсов при мультизадачном режиме работы).  [c.20]

Однако сварка деталей сложных профилей требует строгой ориентации и коррекции положения инструмента. Для этой цели на нем должны быть установлены тактильные датчики, ощупывающие поверхность детали в области сварной точки и подающие командные сигналы на управление положением инструмента. Подобная система разработана фирмой Сиаки (Франция) [49]. Машина для контактной точечной сварки с адаптивным управлением, разработанная фирмой для самолетостроительной промышленности, позволяет сваривать крупногабаритные детали, профильный и листовой материал различной толпщны, производить контактную точечную сварку подкрепляющих элементов конструкции к  [c.187]


Смотреть страницы где упоминается термин Система управления (СУ) адаптивна машины : [c.304]    [c.104]    [c.220]    [c.225]    [c.327]   
Курсовое проектирование по теории механизмов и машин (1986) -- [ c.168 ]



ПОИСК



Адаптивные машины

Адаптивные системы —

Машина универсальная автоматическая сборочная с системой адаптивного управления

Система управления (СУ) адаптивна

Системы адаптивного управления автоматических сборочных машин

Системы машин

Управление машин с ДВС

Управление машинами и системами



© 2025 Mash-xxl.info Реклама на сайте