Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напыление плазменно-дуговое

В зависимости от вида источника диспергирования частиц напыляемого материала и источника тепловой энергии различают основные способы газопламенного напыления (ГОСТ 28076-89) электродуговое, газопламенное, детонационное и плазменное. Плазменное напыление, в свою очередь, подразделяется на индукционное и плазменно-дуговое. По виду защиты рабочей зоны напыления различают его виды без защиты, с местной защитой и в герметичной камере.  [c.142]


Кроме диффузионных способов получения защитных покрытий с успехом применяют плазменно-дуговое напыление поверхности детали различными сплавами в вакуумных установках. Однако этот способ требует исключительной чистоты покрываемой поверхности и неприменим для получения покрытий во внутренних полостях деталей.  [c.220]

Для нанесения керамических покрытий можно пользоваться также методом плазменно-дугового напыления.  [c.648]

К первому типу обычно относят соединение материалов (сварка, пайка) обработка поверхности материалов и изделий (наплавка, напыление, формование, резка, строжка, полировка, насыщение поверхностного слоя металла, например азотирование, обработка камня, буренке горных пород и т. д.) улучшение физико-химических свойств материалов (переплав, зонная плавка, выращивание монокристаллов 134], плазменно-дуговое рафинирование металлов) получение качественных материалов (плавка, получение сферических и ультрадисперсных порошков) и процессы, связанные с использованием плазмы как источника мощного излучения.  [c.8]

Наиболее широкое распространение получил дуговой разряд, зажигаемый между электродом и обрабатываемым материалом, особенно в процессах сварки, резки (рис. 2), наплавки, напыления, строжки, плавки (рис. 4), плазменно-дугового переплава (рис. 3). Струйные плазмотроны нашли применение в процессах нанесения покрытий, обработки дисперсных материалов, в плазмохимии. В настоящее время существует большое количество способов возбуждения и стабилизации дугового разряда и особенно способов стабилизации положения столба дуги и ее электродных участков как на постоянном, так и на переменном токах.  [c.21]

Высокотемпературное напыление материалов применяют для восстановления изношенных поверхностей, создания различных видов покрытий (декоративных, противокоррозионных, жаростойких, антифрикционных и др,), заделки трещин на корпусных деталях, выравнивания поверхностей деталей из тонколистового материала и т. д. По виду источника тепла для расплавления материалов имеется газопламенное, электродуговое, плазменно-дуговое и другие способы напыления.  [c.67]

Валы двигателей ЯМЗ-236, ЯМЗ-238 трудно поддаются наплавке под флюсом из-за образования трещин вследствие достаточно высокого содержания углерода в стали 50Г. Поэтому валы этих двигателей можно восстанавливать газовой металлизацией, а еще целесообразнее — плазменно-дуговой металлизацией с использованием для напыления порошкообразной проволоки из твердых сплавов.  [c.362]


Основные технические данные некоторых установок для ручной и механизированной плазменно-дуговой сварки, наплавки, напыления и закалки приведены в табл. 9.8.  [c.180]

В зависимости от источника нагрева различают три основных способа напыления газопламенный, дуговую металлизацию и плазменно-дуговой.  [c.469]

Поиск принципиально новых научных и технических решений, обеспечивающих существенное расширение перечня материалов, поддающихся обработке высокотемпературным распылением, и, главное, повышение качества напыленного материала и улучшение его сцепления с защищаемой деталью. Решающая роль в этом направлении принадлежит разработкам новых способов напыления плазменного, детонационного, взрывающимися проволочками, напыления в контролируемой атмосфере и др. Наиболее развито напыление с использованием плазменно-дуговых источников нагрева, позволяющее обрабатывать практически любые материалы. Наряду с расширением перечня обрабатываемых материалов характерно существенное улучшение свойств наносимого материала с приближением их к свойствам исходного материала.  [c.7]

Плазменно-дуговое напыление  [c.288]

Это необходимо учитывать при разработке дугового или плазменного напыления порошков на поверхность детали.  [c.306]

Рассматриваются некоторые свойства, определяющие области применения различных тугоплавких покрытий, нанесенных на углеродные материалы плазменным напылением, газофазным, химическим и электрохимическим методами. Показано, что покрытие из двуокиси циркония, получаемое путем нанесения на графит методом аргоно-дуговой наплавки циркония и окислением последнего в кислороде, отличается высокой термостойкостью, определяемой металлическими прожилками циркония в двуокиси, а также наличием пластичного металлического слоя, демпфирующего напряжения, возникающие в окисной плевке при эксплуатации. Метод газофазного осаждения может быть использован для нанесения различных тугоплавких покрытий как на графитовые изделия, так и в качестве барьерных на углеродные волокна при этом толщина покрытия определяется его назначением. Путем химического и последующего электрохимического наращивания, например меди на углеродные волокна, возможно получение композиции медь—углеродное волокно с содержанием волоков 20—50 об.%.  [c.264]

Из всех методов газотермического напыления (газопламенного, электродугового, высокочастотного и др.) для целей получения композиционных материалов наиболее широко используют — метод и аппаратуру плазменного напыления. В аппаратах плазменного типа для плавления и распыления материала покрытия используется струя дуговой плазмы, представляюш,ая собой поток газообразного вещества, состоящего из свободных электронов, положительных ионов и нейтральных атомов. Плазменную струю получают путем вдувания плазмообразующего газа (аргона, гелия, азота, водорода и их смесп) в электрическую дугу, возбуждаемую между двумя электродами. Напыляемый материал подается в плазменную горелку либо в виде проволоки, либо в виде порошка. Принципиальные схемы устройства головок плазменных горелок показаны на рис. 75. В головке, представленной на рис. 75, а, напыляемый порошок вводится в дуговую плазму, образуемую между вольфрамовым электродом (катодом) и соплом (анодом). В головке, представленной на рис. 75, б, сопло остается электрически нейтральным, а дуговой разряд возникает между вольфрамовым электродом горелки и напыляемой проволокой, которая является расходуемым анодом [36].  [c.170]

Плазменное напыление с помощью дуговых плазматронов.  [c.107]

Вольфрамовые электроды применяются при дуговой сварке в инертных газах — аргоне и гелии, а также при плазменных процессах сварки и резки, наплавки и напыления. Их выпускают в соответствии с ГОСТ 23949—80 из чистого вольфрама и вольфрама с активирующими присадками (диоксид тория, оксиды лантана и иттрия). Размеры электродов, предельные отклонения и химический состав должны соответствовать указанным в табл. 4.6.  [c.90]

Металлизационные покрытия получают нанесением металла в виде порошка или проволоки, расплавленного электродуговым, газопламенным или плазменным способом, с использованием газопламенных металлизаторов МГИ-2 (табл. 3,31) и МГИ-4, электро-дуговых ЭМ-10 (табл. 3.32) и ЭМ-14 [31 ]. Требуемая толщина покрытия достигается за несколько проходов. Оптимальная толщина одного слоя — 0,05—0,06 мм. При нанесении толстослойных покрытий необходимо делать перерывы между напылением слоев, так как температура покрытия не должна превышать 100 °С.  [c.237]


Взаимосвязь толщины покрытия и параметров шероховатости проявляется в том, что микроморфология предельно тонких покрытий определяется структурой исходной поверхности. Когда толщина покрытия много больше высоты микронеровностей на исходной поверхности, его микроморфология определяется исключительно условиями нанесения, например, размером капельной фазы при напылении элект-ро дуговых ионно-плазменных покрытий по методу КИБ Подробный анализ микроморфологии таких покрытий дан в гл. 4, В промежуточном диапазоне толщин существенны как шероховатость поверхности, так и параметры формирования покрытий. При осаждении электродуговых покрытий нитрида титана толщиной в единицы микрометров можно различать следующие случаи 1) если у исходного материала Ra 0,4 мкм, нанесение покрытия приведет к ухудшению качества поверхности 2) если Ка ОЯ мкм — к улучшению. В диапазоне  [c.27]

При напылении деталей их устанавливают в вакуумную камеру и создают в ней рабочий вакуум через патрубок 1, который соединен с вакуумным насосом. Подводят к катоду и аноду напряжение от источников питания. Электродом поджига возбуждают электрическую дугу. Под действием дугового разряда материал катода переходит в плазменное состояние. Металлическая плазма под действием магнитного поля соленоида ускоряется в ее движении к деталям, на которые подан отрицательный потенциал.  [c.123]

Технологически струя плазмы близка к газосварочному пламени, отличаясь более высокой температурой. Плазменной струей или факелом можно осуществлять различные виды обработки сварку, резку, напыление пайку, термообработку и т. п., причем можно обрабатывать как металл, так и неметаллические материалы — стекла, керамику и пр. Плазма может быть получена различными способами, самый простой и распространенный из них нагрев газа в дуговом разряде.  [c.368]

Плазменные покрытия. Предпосылкой применения дуговой плазмы в качестве источника нагрева явилась возможность выделения из разрядного промежутка потока ионизированных частиц с высокими температурами, скоростью и энтальпией. В настоящее время разработано много конструкций плазмотронов, обеспечивающих получение потока термической плазмы в непрерывном режиме, с принудительным движением плазмообразующего газа через электрическую дугу. Получаемый таким образом поток плазмы характеризуется следующими энергетическими показателями температура в ядре потока 5000—10 000° К, скорость струи 300—600 м/сек, коэффициент теплопередачи 5000 ккал/см . С учетом этих параметров, а также возможности поддержания при напылении безокислительной среды плазменный метод дает возможность напыления любых кислородных и бескислородных тугоплавких соединений.  [c.9]

Для напыления таких тугоплавких металлов, как молибде , вол 1фрам, титан и др., в последнее время предложены плазмет -но-дуговой и ракетный методы металлизации. Схема плазменно-дуговой горелки приведена на рис. 215. Металл в виде проволоки или порошка подается в пистолет пр 1 помощи подающего  [c.323]

Влияние поверхности раздела на поперечную прочность композитов А16061—25% борсик исследовали Кляйн и др. [12]. Композиты были приготовлены горячим прессованием лент, полученных путем плазменного дугового напыления, с волокнами диаметром 140 мкм. После предварительной термической обработки при 811 К (для изменения состояния поверхности раздела) образцы композита закаливали в воду и подвергали старению при 450 К (обработка Т-6 ) или выдерживали в течение 2 ч при 700 К, медленно охлаждали до 450 К и выдерживали при этой температуре 7 ч (обработка О ). Выдержка при 450 К предназначалась как для снятия остаточных напряжений, так и для ст-арения закаленных образцов.  [c.224]

К газотермическому напылению относят методы, при которых распыляемый материал нагревается до температуры плавления п образовавшийся двухфазный газопорошковый поток переносится на поверхность изделия. Это процессы плазменного напыления, электро-дуговой металлизации, газопламенного напыления (непрерывные методы) и детонационно-газовый метод нанесения покрытий (импульсный метод). Покрытия формируются из частиц размером в десятки микромиллиметров. Термическим методом покрытие можно наносить также в вакуумной технологической камере (термовакуумное напыление), при этом материал покрытия нагревают до состояния пара, и паровой поток конденсируется на поверхности изделия. При использовании этих методов покрытие образуется из атомов или молекул вещества, а в некоторых случаях (электронно-лучевое плазменное, с помощью плазменных испарителей) — из ноиов испаряемого материала. Следует отметить, что чем выше степень ионизации потока вещества, тем выше качество покрытий.  [c.138]

Технология металлизации весьма разнообразна и сводится к следующим вариантам а) нанесение на поверхность керамики пасты, состоящей из тонкодисперсного металла на органической связке, с последующим вжиганием б) нанесение на поверхность изделия соли металла (например, АдгСОз) в смеси с восстановителем с последующим вжиганием в) путем пламенного или плазменного (дугового) напыления разогретых до температуры выше Гпл металла и конденсации их на поверхности керамики. Особенно перспективна для нанесе-  [c.84]

Для защиты от высокочастотного шума при плазменном напылении металлов применяют наружные анти< юны типов ПН-2К и ВЦНИОТ. При плазменно-дуговой резке уши защищают от шума ультратонкой ватой в виде тампонов или применяют противошумные тампоны типа ПГФПП15 (ВТУ 2-813-62-002).  [c.270]

В Основных направлениях развития народного хозяйства СССР на 1976 —1980 годы , принятых XXV съездом КПСС, особое внимание уделено техническому перевооружению всех отраслей народного хозяйства. В частности, рекомендуется особое внимание уделить разработке и внедрению оборудования для принципиально новых технологических процессов. В настоящее время все большее значение начинают приобретать новые технологические процессы и установки, основанные на применении низкотемпературной плазмы. Хорошо зарекомендовали себя плазменная и микроплаз-менная сварка, резка и наплавка сжатой дугой, напыление покрытий с помощью Электр оду говых плазмотронов, плазменно-дуговой переплав металлов, сфероидизация и дисперсизация порошков.  [c.3]


Наплавку шеек стальных коленчатых валов с большим содержанием углерода проф. В. А. Шадричев предлагает осуществлять газовой металлизацией и, что еще целесообразней, плазменно-дуговой металлизацией с использованием для напыления порошковой проволоки из твердых сплавов.  [c.156]

Материалы для напыления. Для плазменно-дуговой металлизации материалами для напыления могут быть любые тугоплавкие металлы в виде проволоки или порошка, но могут использоваться и среднеуглеродистые и легированные проволоки типа Нп-40, Нп-ЗОХГСА, Нп-ЗХ13 и др. В условиях авторемонтных предприятий в качестве тугоплавких материалов может применяться сплав типа ВЗК (стеллит) или сормайт, обладающий высокими износостойкостью и коррозионной стойкостью.  [c.262]

Прочность сцепления покрытий плазменно-дуговой металлизации, полученных напылением трубчатой проволоки Меко-405, из алюминия и углеродистой стали 10 со сталью 20, составляют 1,67—2,21 кгс/мм (16,7—22,1 МПа) [30], а из углеродистой проволоки типа У-7, У-8 со сталью 45 3,0—3,25 кгс/мм (30,0—32,5 МПа).  [c.267]

Вторая проблема — оптимизация физико-химических и металлургических условий, обеспечивающих наивысшее качество обработки материалов. Процессы газопламенной обработки представляют собой далеко не простые объекты для физического моделирования и построения математических моделей. В настоящее время сделаны лишь первые шаги по разработке физических и газогидродинамических моделей некоторых процессов, например кислородной и плазменно-дуговой резки, напыления материалов на поверхности изделий и т. д. В будущем должны быть созданы замкнутые системы управления и контроля за ходом физикохимических реакций, тепловых процессов и т. д. при сварке, резке и напылении материалов. В этих системах необходимо предусмотреть устройства для сбора и обработки информации о данном технологическом процессе, а также оптимизации выдаваемых управляющих воздействий на параметры процесса, получаемых с помощью электронно-вычислительных систем. Проблема, безусловно, весьма сложная, но решение ее будет, несомненно, способствовать дальнейшему прогрессу газопламенной техники.  [c.250]

В последние годы в целях повышения износостойкости стали применять материалы на никелевой основе для поверхностного армирования методами плазменного и газоплазменного напыления и плазменно-дуговой наплавки. Ниже рассмотрены наиболее широко применяемые сплавы на основе железа. Условия воздействия на металл абразивной среды и разрушение его металлической поверхности предопределяют необходимый состав, микростроение, фазовое состояние и сзойства наплавленного металла.  [c.314]

Плазменное напыление — это метод нанесения покрытий, в котором для расплавления напыляемого материала используется низкотемпературная плазма (рис. 2.9.48). Для получения плазмы используют два типа горелок плазменно-дуговые и плазменно-струйные. В плазменно-дуговой горелке электрическая дуга горит между анодом-деталью и катодом, изготовленным из вольфрама или вольфрамового сплава, содержащего приблизительно 2 % тория. Дугу стабилизирует закрученный поток рабочего газа, истекающий из сопла горелки. В плазменноструйной горелке дуга образуется между вольфрамовым катодом и анодом, которым является медное, охлаждаемое водой сопло.  [c.421]

Материал Электродуговое напыление из проволоки Ацетилено-кисло-родное напыление порошка Плазменно-дуговое напыление  [c.289]

Принципиально новым методом из1 о-товления деталей является плазменное напыление. В камеру плазмотро11а подается порошкообразный конструкционный материал и одновременно инертный газ под высоким давлением. Под действием дугового разряда конструкционный материал плавится и переходит  [c.415]

Принщ1пиально новым методом изготовления деталей является плазменное напыление с целью получения заданных размеров. В камеру плазмотрона подаются порошкообразный конструкционный материал и одновременно инертный газ под высоким давлением. Под действием дугового разряда конструкционный материал плавится и переходит в состояние плазмы. Струя плазмы сжимается в плазмотроне плазмообразующим газом. Выходя из сопла, струя плазмы направляется на обрабатываемую заготовку. Системы вертикальной и горизонтальной разверток обеспечивают перемещение струи по поверхности обработки.  [c.455]

ГОСТ 23949-80 "Электроды вольфрамовые сварочные неплавящие-ся" распространяется на электроды из чистого вольфрама марки ЭВЧ, вольфрама с присадкой оксида лантана марки ЭВИ-1, ЭВИ-2 и ЭВИ-3 и вольфрама с присадкой двуокиси тория марки ЭВТ-15. Эти электроды предназначены для дуговой сварки неплавящимся электродом в среде инертных газов, а также для плазменных процессов сварки, резки, наплавки и напыления. В ГОСТе приводится химический состав электродов, требования к поверхности и методы испытаний. Электроды диметром 0,5 мм выпускают в мотках, а электроды диаметром 1. .. 10 мм выпускают прутками длиной 75, 150, 200 и 300 мм.  [c.62]

На рис. 49, а приведена микроструктура бездиффузи-онного спая, полученного при напылении никеля на железо. Для сравнения приведена микроструктура шва при пайке железа никелем с обычными выдержками (рис. 49, б). Плазменное напыление производилось независимой дуговой плазмой, расстояние между срезом сопла и поверхностью основного металла выбирали таким, чтобы частицы падали в расплавленном состоянии, но без существенного перегрева. Как показывает микроструктура, между железом и никелем в случае бездиф-фузионного спая имеется резкая граница раздела, а в отдельных местах отсутствует спай, т. е. соединение имеется лишь в отдельных точках.  [c.114]

Развитие генераторов водороднр-кислород-ной смеси эффективно по пути совершенствования их конструкции — снижения массы газогенераторов производительностью более 1,7 м /ч с 300 до 100 кг разработки газогенераторов с раздельным получением водорода и кислорода. Эта тенденция обусловлена необходимостью и возможностью существенного расширения технологических свойств водородо-кислород-ного пламени, например, при использовании водорода в комбинации с другими газами в процессе плазменной обработки, в дуговых методах нагрева для интенсификации процессов сварки, резки, напыления.  [c.326]

Напыление применяют в целях компенсации износа наружных и внутренних цилиндрических поверхностей деталей. Сущность способа напыления состоит в нанесении струей сжатого газа предварительно расплавленного металла на подготовленную изношенную поверхность восстанавливаемых деталей. При ударе о поверхность детали мелкие частицы распыленного металла деформируются, внедряются в ее поры и неровности, образуя покрытие. В зависимости от вида тепловой энергии, используемой в аппаратах для напыления, различают способы напыления газопламенный, элект-родуговой, высокочастотный, детанационный, плазменный. Газопламенное напыление осуществляется с помощью специальных аппаратов, в которых плавление напыляемого металла осуществляется ацителено-кислородным пламенем, а распыление — струей сжатого воздуха. В качестве напыляемого материала при газопламенном напылении используют также металлические порошки, поступающие в горелку с помощью сжатого воздуха (газа). Электро-дуговое напыление производится аппаратами, в которых металл плавится электрической дугой, горящей между двумя проволоками, а распыление — струей сжатого воздуха. Высокочастотное напыление происходит путем индукционного нагрева проволоки, как материала покрытия, сопровождаемого распылением струей сжатого воздуха. Головка высокочастотного аппарата имеет индуктор, питаемый от генератора тока высокой частоты и концентратор тока, который обеспечивает плавление проволоки на небольшом участке ее длины. При детонационном способе напыления, расплавление металла, его распыление и перенос на поверхность детали достигается за счет энергии взрыва смеси газов ацетилена и кислорода. Процесс напыления покрытий всеми применяемыми способами включает подготовку детали к напылению, непосредственно нанесение покрытия и обработку детали после операции напыления.  [c.387]


Широкое распространение получили струйнодуговые плазменные установки для напыления покрытий, работающие по принципу сжатого электрического разряда (сжатая или закрытая дуга). При закрытом дуговом разряде в приэлектродной зоне в результате принудительной продувки газа (азот, аргон, водород, гелий, воздух и их смеси) образуется интенсивная плазменная струя,. температура которой достигает. 15ООО°С. Газ при соударении с электронами, испускаемыми катодом, ионизируется, приобретает свойства плазмы и выходит из сопла специальной плазменной головки (плазмотрона) в виде яркого высокотемпературного потока (рис. 29).  [c.71]


Смотреть страницы где упоминается термин Напыление плазменно-дуговое : [c.486]    [c.128]    [c.427]    [c.304]    [c.268]    [c.90]    [c.257]    [c.256]   
Машиностроение Энциклопедия Оборудование для сварки ТомIV-6 (1999) -- [ c.427 ]



ПОИСК



Напыление

Напыление плазменное

Печ ь дуговая плазменная

Плазменное эхо



© 2025 Mash-xxl.info Реклама на сайте