Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стали низкоуглеродистые — Ударная

В мае 1955 г. Регистр судоходства Ллойда представил в общих чертах спецификацию для стали с хорошей ударной вязкостью, известной как сталь XNT, которая согласно правилам должна была использоваться в конструкциях без клепаных швов, выполняющих функцию барьерных швов. Это была низкоуглеродистая сталь (максимальное содержание углерода 0,17%) с высоким содержанием марганца (0,95% —1,40%), полностью успокоенная, с контролируемым зерном и нормализованная. Ударные испытания образцов Шарпи с V-образным надрезом давали минимальное значение энергии разрушения 6,3 кгс м с максимальной кристалличностью 40% при —10° С.  [c.402]


Стали низкоуглеродистые — Ударная вязкость 217  [c.457]

Низкоуглеродистые стали с содержанием углерода менее 0,2% целесообразно подвергать термообработке. В результате термообработки заготовок диаметром 20—55 мм От возрастает более чем в 1,5 раза, а а — в 2 раза при весьма небольшом уменьшении O и увеличенном значении я]) (табл. 35). Для небольших сечений (5—10 мм) прочность закаленной стали 15 достигает прочности легированной стали ЗОХГСА, а ударная вязкость даже превосходит по величине ударную вязкость стали ЗОХГСА. И что очень важно, критическая температура хрупкости после термообработки значительно понижается (табл. 35).  [c.36]

Металл околошовной зоны при сварке низкоуглеродистых сталей незначительно упрочняется в зоне перегрева. Необходимо учитывать, что при сварке кипящих и полуспокойных низкоуглеродистых сталей наблюдается снижение ударной вязкости на участке рекристаллизации околошовной зоны. При этом металл околошовной зоны охрупчивается более интенсивно при многослойной сварке, чем при однослойной, за счет интенсификации процессов старения.  [c.368]

Взаимодействие железа и хрома, описываемое диаграммой, очень важно для понимания особенностей структуры и свойств высокохромистых сталей. Низкоуглеродистые (С = 0,1 %) стали с Сг = 13 % и выше являются ферритными и не могут упрочняться термической обработкой. Низкая скорость фазовых превращений в твердых растворах замещения способствует сохранению феррита в метастабильном состоянии, т.е. без расслоения на два твердых раствора и без образования а-фазы. При нагреве феррита при температуре около 475 ° С с выдержкой около 1 ч происходит расслоение исходного феррита и значительно снижается ударная вязкость, 475 °С-охрупчивание обратимо, исчезает при нагреве свыше 500 °С и возникает вновь при 475 °С 25 °С.  [c.20]

Металл шва при сварке низкоуглеродистых сталей отличается по составу от основного металла более низким содержанием углерода и несколько повышенным содержанием марганца и кремния. Металл околошовной зоны низкоуглеродистых сталей незначительно упрочняется в участке перегрева. Необходимо учитывать, что при сварке кипящих и полуспокойных низкоуглеродистых сталей наблюдается снижение ударной вязкости на участке рекристаллизации околошовной зоны. При этом металл околошовной зоны охрупчивается более интенсивно при многослойной сварке, чем при однослойной, за счет интенсификации процессов старения.  [c.289]


Таблица 44. Ударная вязкость некоторых низкоуглеродистых конструкционных сталей Таблица 44. <a href="/info/4821">Ударная вязкость</a> некоторых низкоуглеродистых конструкционных сталей
Металл, подвергнутый холодной обработке давлением, обладает повышенным запасом внутренней энергии и поэтому находится в термодинамически неустойчивом состоянии. В соответствии со вторым законом термодинамики такая система стремится к состоянию с наименьшим запасом свободной энергии. Этот процесс в низкоуглеродистой стали протекает при обычной температуре — так называемое естественное деформационное старение, однако для этого необходимо длительное время. В результате деформационного старения прочность и твердость стали повышаются, а пластичность и особенно ударная вязкость понижаются. Порог хладноломкости сдвигается в область более высоких температур. При повышении температуры (например, при нагреве стали до 100—250° С) этот процесс ускоряется — так называемое искусственное деформационное старение.  [c.87]

Рис. Н1. Влияние величины зерна d на условный предел текучести ад 2> предел выносливости а 1 а) и ударную вязкость K U (б) низкоуглеродистой стали 1 — мелкое зерно 0,04 мм) 2 — крупное зерно (0,09 мм) Рис. Н1. Влияние <a href="/info/134811">величины зерна</a> d на <a href="/info/1800">условный предел текучести</a> ад 2> <a href="/info/1473">предел выносливости</a> а 1 а) и <a href="/info/4821">ударную вязкость</a> K U (б) <a href="/info/271628">низкоуглеродистой стали</a> 1 — мелкое зерно 0,04 мм) 2 — крупное зерно (0,09 мм)
Низкоуглеродистые литейные стали применяют для изготовления деталей, подвергающихся ударным нагрузкам арматуры деталей сварнолитых конструкций. Среднеуглеродистые литейные стали применяют дня отливки станин и валков прокатных станов, крупных шестерен, зубчатых колес. Стальные отливки часто подвергают термической обработке для уменьшения литейных напряжений.  [c.178]

Кроме простых низкоуглеродистых сталей в строительстве и вагоностроении применяют низколегированные стали. Строительные стали очень часто подвергаются сварке и не должны давать горячих или холодных трещин, и вблизи сварочного шва в зоне термического влияния по свойствам не должны отличаться от свойств исходного металла. Для этого содержание углерода не должно превышать 0,22% в низколегированных и 0,25 в простых углеродистых. Кроме хорошей свариваемости, к строительным сталям предъявляются еще следующие требования 1) высокая прочность, и ударная вязкость как при обыкновенной, так и при пониженных температурах 2) сопротивление коррозии 3) хорошие технологические свойства (обрабатываемость и штампуемость). Химический состав некоторых марок низколегированных сталей приведен в табл. 23.  [c.342]

Твердость хромированного слоя увеличивается с возрастанием содержания углерода. Для низкоуглеродистой стали HV 150. .. 180, для среднеуглеродистой HV 190. .. 300 и для высокоуглеродистой стали HV 1300. .. 1500. Хромированный слой малоуглеродистой стали обладает большой вязкостью, что позволяет подвергать хромированные детали пластической деформации. Пределы текучести и прочности, судя по испытаниям образцов из стали Ст2, после твердого хромирования при температуре 1100 С снижаются. Ударная вязкость уменьшается в несколько раз по сравнению с вязкостью нормализованных образцов предел выносливости несколько повышается.  [c.355]


Важная характеристика, которая может быть получена при испытаниях на ударную вязкость, — температура перехода е хрупкое состояние. Для металлов с объемноцентрированной решеткой, а также низкоуглеродистых сталей характерно резкое снижение ударной вязкости ниже некоторой области температур, характеризующих порог хладноломкости.  [c.55]

После двойной закалки и низкого отпуска поверхностный слой приобретает структуру отпущенного мартенсита с включениями глобулярных карбидов. Структура сердцевины детали зависит от легированности стали. Если для цементации выбрана углеродистая сталь, то из-за малой прокаливаемости в сердцевине получится сорбитная структура если же цементировалась легированная сталь, то в зависимости от количества легирующих элементов сердцевина может приобрести структуру бейнита или низкоуглеродистого мартенсита. Во всех случаях из-за низкого содержания углерода будет обеспечена достаточно высокая ударная вязкость.  [c.203]

Среднеуглеродистые стали 30, 35, 40, 45, 50, 55 отличаются большей прочностью, но меньшей пластичностью, чем низкоуглеродистые (см. табл. 9.3). Их применяют после улучшения, нормализации и поверхностной закалки. В улучшенном состоянии — после закалки и высокого отпуска на структуру сорбита — достигаются высокая ударная вязкость, пластичность (рис. 9.5, а) и, как следствие, малая чувствительность к концентраторам напряжений. При увеличении сечения деталей из-за несквозной прокаливаемости механические свойства таких сталей снижаются (рис. 9.5, 6).  [c.249]

Наиболее напряженные детали (зубчатые колеса, вал-шестерни и др.) подвергают цементации, применяя для их изготовления низкоуглеродистые стали (см. табл. 9.7). После насыщения углеродом, закалки и низкого отпуска эти стали при высокой поверхностной твердости сохраняют вязкую сердцевину, способную воспринимать ударные нагрузки. Достоинство цементации — возможность получить упрочненные слои большой толщины (0,8 - 2 мм и более), выдерживающее высокие удельные нагрузки. Однако максимальной циклической прочности отвечают слои меньшей толщины (0,4 - 0,8 мм), когда остаточные напряжения сжатия высоки у поверхности, а очаг разрушения находится неглубоко от нее. С увеличением толщины слоя остаточные напряжения и предел выносливости снижаются, очаг разрушения смещается в глубь слоя — на границу с сердцевиной. По этой причине циклическая прочность цементированных деталей зависит не только от свойств поверхностного слоя, но и от свойств  [c.280]

Рис. 2.9. Температурная зависимость ударной вязкости низкоуглеродистой стали Рис. 2.9. <a href="/info/191882">Температурная зависимость</a> <a href="/info/4821">ударной вязкости</a> низкоуглеродистой стали
Смысл этого результата состоит в том, что, даже когда трещина зарождается под воздействием больших сдвиговых напряжений, разрушение в целом все-таки может контролироваться величиной приложенных растягивающих напряжений. Экспериментальное подтверждение этого положения получено при испытаниях образцов с надрезом различной толщины при 77К (см. рис. 108) [24]. Перед лавинным двойникованием пластическая зона под надрезом должна достичь критического размера. В толстых образцах растягивающее напряжение под надрезом в момент образования двойников более чем достаточно для немедленного развития любых трещин, зарождающихся в карбидах за счет лавинного двойникования матрицы, с наступлением которого и совпадает окончательное разрушение. В тонких образцах напряженное состояние практически плоское, и растягивающие напряжения при двойниковании недостаточны для роста зародыша трещины. Они могут быть увеличены путем роста пластической зоны, т. е. приложенной к образцу нагрузки. Следовательно, разрушающие нагрузки тонких образцов значительно превышают нагрузки, необходимые для разрушения толстых образцов. Предсказана более сильная температурная зависимость 0/ для разрушения, вызванного двойникованием [уравнение (382)] по сравнению с разрушением, вызванным скольжением, так как Ту существенно изменяется с температурой. Разрушение, вызванное двойникованием, не имеет места при температурах выше 50 К, даже в крупнозернистой низкоуглеродистой стали, если скорости приложения нагрузок невелики и равны обычно используемым в практике стандартных испытаний на вязкость разрушения. Только если происходит ударное нагружение, то зарождение разрушения сколом при температуре окружающей среды можно связать с двойникованием. Тем не менее, двойникование часто связывают и с распространением трещин, так как перед движущейся с ускорением вершиной трещины возникают очень высокие скорости деформации.  [c.185]

Аналогичная последовательность изменения РТ с температурой обнаружена при ударных испытаниях с записью динамических нагрузок [16]. При испытании низкоуглеродистой стали основное влияние высоких скоростей деформации заключается в увеличении предела текучести независимо от температуры испытания, так как уменьшается время, необходимое для термически активируемых процессов, понижающих напряжение скольжения дислокаций в матрице (температурно зависимую компоненту а- в напряжении трения а,). При дальнейшем росте скорости деформации достигается предел, за которым теряется чувствительность напряжения течения к скорости деформации [17] и который уменьшается с повышением температуры. Этот предел может быть связан с наступлением двойникования как механизма общей пластической деформации, но подробных исследований проведено не было. В высокопрочных сталях как температурная зависимость, так и скоростная чувствительность предела текучести уменьшаются пропорционально, поскольку основная доля напряжения трения приходится на температурно-независимую компоненту a l (дально-действующие поля напряжений). К сожалению, информация о механизмах микроскопической деформации таких сталей при высоких скоростях явно недостаточна.  [c.203]


Таким образом, сериальная кривая ударной вязкости чистой отожженной низкоуглеродистой стали имеет низкий уровень нижнего плато и высокую ТНП (Т , Tqy), так как разрушение сколом облегчено. Релаксация напряжений при ТНП Т, ) определяет резкий переход и высокий уровень верхнего плато . Добавки включений сульфидов в сталь снижают уровень верхнего плато , но не влияют на переходную температуру. Подобный эффект получается при испытаниях материалов, имеющих постоянное число различно ориентированных включений [14] (см. рис. 120), так как межчастичное расстояние в поперечном направлении меньше. Аналогичные кривые для среднеуглеродистых сталей такой же чистоты гораздо более плавные. Нижнее плато расположено выше (так как измельчение микроструктуры с избытком компенсирует увеличение предела текучести), ТНП — ниже, а уровень верхнего плато также ниже, благодаря повышенному пределу текучести и малым значениям коэффициента деформационного упрочнения.  [c.207]

Прочность сварных швов оказывается вполне удовлетворительной, не уступающей основному металлу, при сварке низкоуглеродистых сталей, при работе соединений под статическим, ударным и переменными нагрузками. Это условие обеспечивается при разных автоматических и ручных процессах.  [c.596]

Наличие в металле эндогенных шлаковых включений, служащих концентраторами напряжений, сильно влияет на физикомеханические свойства металла шва, в частности, на его пластичность и ударную вязкость. При сварке низкоуглеродистых низколегированных сталей ударная вязкость достаточно большая и влияние концентраторов напряжений мало, но при сварке средне-и высокоуглеродистых и легированных сталей, запас пластичности у которых мал, влияние таких концентраторов может привести к образованию холодных трещин или замедленному разрушению при высоком уровне напряжений и при наличии других охрупчи-вающих факторов (водород).  [c.373]

С—0.08-0.018 Si—0.6—0.9 Мп—0.8 — 14 Сг —0.1—0.5 Ni —0.1—0.5 Си-0.1— 0.5 А1 — 0.4—0.6. (Дает металл шва с повышенной ударной вязкостью при отрицательных температурах. При сварке низкоуглеродистой и углеродистой стали ударная вязкость 8,2—9.5 кгс-м/см2при —40° С).  [c.91]

ЗАВИСИМОСТЬ ПРВДЕЛА ТЕКУЧЕСТИ, ПРЕДЕЛА ВЫНОСЛИВОСТИ И УДАРНОЙ ВЯЗКОСТИ НИЗКОУГЛЕРОДИСТОЙ СТАЛИ ОТ ВЕЛИЧИНЫ ЗЕРНА  [c.72]

У электродов с кислым покрытием (А) шлакообразующую основу составляют железные (гематит-Ре20з) и марганцевые (MnOj) руды, а также кремнезем (Si02). Газовая защита расплавленного металла осуществляется органическими компонентами, сгорающими в процессе плавления электрода. В качестве раскис-лителя в покрытие вводят ферромарганец. Образующиеся кислые шлаки не содержат СаО и не очищают металл от серы и фосфора. В наплавленном металле много растворенного кислорода (до 0,12%), водорода (до 15 см в 100 г металла) и неметаллических включений. В результате швы обладают невысокой стойкостью к образованию горячих трещин и пониженной ударной вязкостью. Электроды с такими покрытиями непригодны для сварки сталей, легированных кремнием и другими элементами, так как они интенсивно окисляются. При сварке спокойных низкоуглеродистых сталей с высоким содержанием кремния возможно образование пор. При сварке выделяется много токсичной пыли, содержащей оксиды марганца и кремния, и происходит довольно сильное разбрызгивание металла.  [c.61]

Склонность низкоуглеродистой котельной стали к старению проверяется испытанием на деформационное старение. Для этого ее подвергают вытяжке с удлинением 10% и нагреву при 250° С в течение 1 ч с последующим охлаждением на воздухе и опредёляют ударную вязкость.  [c.250]

Хромоникельмолибденовые (вольфрамовые) стали являются наи лучшими из всех известных конструкционных машиностроительных ста леи В последнее время разработаны конструкционные высокопроч ные низкоуглеродистые стали мартенситного класса, имеющие хорошее сочетание характеристик прочности пластичности и ударной вязкости К таким сталям относится предложенная Ю А Башниным с сотруд  [c.174]

Функциональное назначение низкоуглеродистых сталей — цементуемые (нктроцементуемые) детали (зубчатые колеса, кулачки и т.п.), работающие в условиях трения. После насыщения поверхности углеродом, закалки и низкого отпуска низкоуглеродистые стали наряду с твердой поверхностью (58- 63 HR ) имеют достаточно прочную и вязкую сердце-вину, устойчивую к воздействию циклических и ударных нагрузок. Работоспособность цементованных деталей зависит от свойств поверхностного слоя и сердцевины. При одних и тех же свойствах цементованного слоя работоспособность деталей повышается по мере увеличения предела текучести и твердости сердцевины. При недостаточном уровне этих свойств под цементованным слоем происходит пластическая деформация, которая вызывает его преждевременное разрушение.  [c.262]

Низкоуглеродистая сталь при большом содержании хрома приобретает однофазную ферритную структуру. В процессе длительной работы при высоких температурах кристаллы феррита растут, что сопровождается понижением ударной вязкости. Для предотвращения охрупчивания сталь дополнительно легируют карбидообразуюш ими элементами (например, Ti). Карбиды затрудняют рост зерна феррита. Химический состав и свойства некоторых жаростойких сталей приведены в табл. 15.4.  [c.491]

Железо и стали. Железо и стали различных марок достаточно широко экспериментально исследованы. В качестве типичных представителей этих материалов рассмотрим армко-железо, низкоуглеродистую сталь Ст.З, легированные сталь 40Х и сталь 12Х18Н10Т. Откольная. прочность стали Ст.З, определенная в [4] методом емкостного датчика измерения скорости в опытах при нагружении цилиндрических образцов плоской детонационной волной, составила 1.66 ГПа (амплитуда ударной волны в стали 16 ГПа, характерное время нагружения с). Там же показано достаточно  [c.153]

Двухслойные листы с плакирующим слоем из ферритной стали подвергают нормализации при 900—925° С с последующим высоким отпуском при 650—700° С, что значительно повышает ударную вязкость стали. Для двухслойной стали с основным слоем из низкоуглеродистой стали иногда применяют закалку в воде от 780—800° С. Наиболее целесообразной следует считать ступенчатую термическую обработку по режиму нагрев до 830—850° С, охлаждение до температуры ниже Аг1 для стали основного слоя и дальнейшее охлаждение в воде. При такой обработке обеспечивается мелкозернистая структура плакирующего слоя и высокие механические свойства основного и плакирующего сдоев, так как ускоренног охлаждение от температуры ниже Аг не вызывает трещин в основном слое и не приводит к охрупчиванию плакирующего слоя.  [c.677]

Обычно испытания образцов с надрезом проводятся в условиях ударного нагружения (см. гл. I, раздел 7). Образцы разрушаются на маятниковом копре с определенным запасом энергии маятника. Количество поглощенной при разрушении энергии определяют по высоте подъема маятника после удара. Эта энергия разрушения обычно измеряется в функции температуры испытания, и результаты представляются в виде сериальных кривых, типичный вид которых для низкоуглеродистых сталей приведен на рис. 3. На кривых имеется несколько критических температур. Мы рассмотрим температуру, при которой излом состоит из 50% вязкой и 50% хрупкой составляющих (критическая температура, определяемая по виду излома или КТВИ), и температуру, при которой начинается крутой подъем кривой ударной вязкости (тем-166  [c.166]


Хотя двойникование может происходить при низких температурах и высоких скоростях деформации, эксперименты, выполненные на нормализованной и отожженной низкоуглеродистой стали, показывают, что при Tqy инициированное скольжением разрушение сколом происходит даже в условиях ударного нагружения. Проведенный Ноттом [18] анализ экспериментальных данных [19] показал, что определяющее влияние на разрушение оказывает критическое напряжение скола в интервале изменения скоростей 10 . Оутс [20] определил непосредственные значения разрушающего напряжения сколом низкоуглеродистой стали в интервале скоростей, отличающихся на четыре порядка. Зарождение разрушения путем скольжения не происходит только в случае самых высоких скоростей деформации и наинизших температур. Для марганцевой стали с одинаковым размером зерна, но содержащей дисперсные зернограничные карбиды, общий уровень температур был существенно ниже, поскольку в образовании трещин скола при Tqy участвовали двойники.  [c.204]

В низкоуглеродистых сталях при. наличии молибдена после закалки всегда обнаруживается нерастворенный феррит, что отрицательно сказывается на эрозионной стойкости этих сталей. В то же время молибден способствует измельчению структуры перлита и уменьшает чувствительность стали к перегреву и росту зерна аустенита. Известно, что в отожженном состоянии низко-углеродистая сталь при небольшом содержании молибдена имеет более всокую прочность, чем сталь без молибдена. В термически необработанной стали после обработки давлением молибден увеличивает твердость, временное сопротивление, предел текучести, уменьшает относительное удлинение и ударную вязкость. Положительное влияние молибдена на механические свойства стали наиболее сильно проявляется после закалки и высокого отпуска-  [c.170]

Практика технического металловедения убедительно показала, что величина ударной вязкости при комнатной температуре испытаний не может служить мерой сопротивления разрушению материалов в различных ужесточенных условиях испытаний (например, при понижении их температуры) и во многих случаях не может выявить влияние различных структурных и металлургических факторов, ответственных за ухудшение эксплуатационных характеристик. Это обусловлено тем обстоятельством, что при вязком разрушении чувствительность к структурным факторам охрупчивания резко снижается. В то же время изменение условий нагружения, способствующее хрупкому разрушению, позволяет четко выявить отрицательное влияние тех или иных структурных факторов. Такое изменение условий может быть достигнуто путем снижения температуры испытаний, обеспечивающей в ряде о. ц. к. металлов выявление вязко-хрупкого перехода. Определяемая таким образом температура хладноломкости достаточно адекватно отражает склонность сталей к опасному хрупкому разрушению в различных экстремальных условиях эксплуатации. Температуру хладноломкости, вопреки встречающимся ошибочным воззрениям, нельзя рассматривать как константу материала она зависит от конфигурации и размеров образцов, остроты надреза и вида испытаний (рис, 19.1). Положение порога хладноломкости, четко детерминированное для низкоуглеродистых сталей, становится трудноопределяемым при повышении их прочности в связи с увеличением содержания углерода (рис. 19.2) или снижением температуры отпуска после закалки. Тогда в ряде случаев в связи с пологим характером температурных зависимостей ра-  [c.326]

Шэнк (1954 г.), Пеллини и Пьюзак (1963 г.) и Аудич (1966 г.) исследовали другие конструкции. На основании результатов этих исследований, а. также изучения разрушений судов были установлены некоторые общие тенденции. Так как наиболее широкое применение в конструкциях нашли низкоуглеродистые стали по сравнению с недавно разработанными легированными конструкционными сталями, наибольшая информация касается именно этих сталей. Установлено, что факторы, способствующие разрушению, снижают значения ударной вязкости образцов с надрезом для сталей при эксплуатационной температуре, как указано на примере разрушения образцов Шарпи с V-образным надрезом, и зависят от технологии изготовления стали (например, качество кипящей стали ниже, чем качество полностью успокоенной стали), химического состава и характеристик прочности материала, толщины сечения, наличия дефектов или других концентраторов напряжений, часто возникающих от остаточных напряжений и металлургического повреждения вследствие сварки.  [c.217]

Пятый уча1сток (5) аколошавиой зоны, получивший название участка рекристаллизации или старения, включает в себя металл, нагретый от температуры 500° С до температуры 720° С. На этом участке происходит сращивание раздробленных при пластических деформациях (прокатке, проковке и т. д.) зерен основного металла. В процессе рекристаллизации из обломков зерен зарождаются и растут новые, равновесные зерна. Если выдержка при температуре рекристаллизации будет излишне продолжительной, то произойдет не объединение раздробленных осколков, а значительный рост зерен. При сварке металлов, не подвергшихся пластическим деформациям (например, литые сплавы), процесс рекристаллизации не имеет места. На этом же участке околошовной зоны при некоторых условиях сварки углеродистых конструкционных сталей с содержанием углерода до 0,3% происходит снижение пластичности, и в первую очередь ударной вязкости, и повышение прочности металла. Снижение пластичности может явиться причиной снижения работоспособности сварного соединения при эксплуатации. За пятым участком околошовной зоны расположены участки, нагретые в пределах 100—500° С. Эти участки в процессе сварки не претерпевают видимых структурных изменений. Однако при сварке низкоуглеродистых сталей на узком участке (участок 6), подвергшемся иагреву в пределах 100—300° С, наблюдается резкое падение ударной вязкости. Так как участок расположен вне зоны концентрации напряжений, наличие его в большинстве случаев не представляет непосредственной опасности для работоспособности сварного соединения. При многослойной сварке строение околошовной зоны несколько меняется. Изменение строения околошовной зоны при сварке длинными участками, когда ко времени наложения последующего прохода металл успел остыть до температуры окружающей среды, проявляется в менее четком строении околошовной зоны всех проходов, кроме последнего. Менее четкое строение околошовной зоны обусловливается повторным термическим воздействием, являющимся своего рсда отпуском. При сварке короткими про-  [c.93]

Технологию сварки для этих сталей выбирают из условий соблюдения комплекса требований, обеспечивающих прежде всего равнопрочность сварного соединения с основным металлом и отсутствие дефектов в сварном соединении. Сварное соединение должно быть стойким против перехода в хрупкое состояние, а деформация конструкции должна быть в пределах, не отражающихся на ее работоспособности Металл шва при сварке низкоуглеродистой стали незпачительно отличается по своему составу от основного металла — снижается содержание углерода и повышается содержание марганца и кремния. Однако обеспечение равнопрочности при дуговой сварке не вызывает затруднений. Это достигается за счет увеличения скорости охлаждения и легирования марганцем и кремнием через сварочные материалы. Влияние скорости охлаждения в значительной степени проявляется при сварке однослойных швов, а также в последних слоях многослойного шва. Механические свойства металла околошовной зоны подвергаются некоторым изменениям по сравнению со свойствами основного металла — при всех видах дуговой сварки это незначительное упрочнение металла в зоне перегрева. При сварке стареющих (например, кипящих и полуспокойных) низкоуглеродистых сталей на участке рекристаллизации околошовной зоны возможно снижение ударной вязкости металла. Металл околошовной зоны охрупчивается более интенсивно при многослойной сварке по сравнению с однослойной. Сварные конструкции из низкоуглеродистой стали иногда подвергают термической обработке. Однако у конструкций с угловыми однослойными швами и многослойными, наложенными с перерывом, все виды термической обработки, кроме закалки, приводят к снижению прочности и повышению пластичности металла шва. Швы, выполненные всеми видами и способами сварки плавлением, имеют вполне удовлетворительную стойкость против образования кристаллизационных трещин из-за низкого содержания углерода. Однако при сварке стали с верхним пределом содержания углерода могут появиться кристаллизационные трещины, прежде всего в угловых швах, первом слое многослойных стыковых швов, односторонних швах с полным проваром кромок и первом слое стыкового шва, сваренного с обязательным зазором.  [c.102]


Для строительных конструкций нз низкоуглеродистой стали, подвергающихся динамическим и вибрационным нагрузкам, за исключением подкрановых балок под краны легкого и среднего режимов работ, должна применяться сталь, удовлетворяющая дополнительным требованиям по ударной вязкости 7— 10 кгс-м1см при нормальной температуре, если эксплуатационная температура выше —20°С, и не менее 3 кгс-м1см при отрицательной температуре, если эксплуатационная температура ниже —20°С. Понижение температуры стали в эксплуатационных условиях способствует повышению ее твердости и прочности и снижению пластичности (относительного удлинения и ударной вязкости).  [c.19]


Смотреть страницы где упоминается термин Стали низкоуглеродистые — Ударная : [c.239]    [c.205]    [c.256]    [c.408]    [c.338]    [c.242]    [c.211]    [c.218]    [c.376]   
Разрушение Том5 Расчет конструкций на хрупкую прочность (1977) -- [ c.0 ]



ПОИСК



Стали низкоуглеродистые

Стали низкоуглеродистые — Ударная вязкость



© 2025 Mash-xxl.info Реклама на сайте