Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Алюминиевые отжиг

Бронза алюминиевая — Отжиг — Режимы 344  [c.434]

Для упрочнения алюминиевых сплавов применяют закалку и старение, Для устранения неравновесных структур и деформационных дефектов строения, снижающих пластичность сплава, применяют отжиг.  [c.322]

Отжиг алюминиевых сплавов  [c.326]

Обозначения режимов термической обработки литейных алюминиевых сплавов следующие Т1 —старение Т2 — отжиг Т4 — закалка Т5 — закалка и частичное старение Тб — закалка и полное старение до наибольшей твердости Т7 — закалка и стабилизирующий отпуск Т8 — закалка и смягчающий отпуск.  [c.326]


Для некоторых металлов значение температурного порога рекристаллизации приведено в табл.2. Рекристаллизационный отжиг малоуглеродистых сталей проводят при 600...700 °С, латуней и бронз при 560...700 С, алюминиевых сплавов при 350...450 °С, титановых сплавов при 550...750 С.  [c.28]

Термической обработке подвергают также поковки из цветных сплавов. Виды термообработки в этом случае связаны с особенностями этих сплавов. Например, поковки из алюминиевых сплавов подвергают закалке и старению, из магниевых сплавов — отжигу, закалке или старению, из титановых сплавов — отжигу или гомогенизации.  [c.144]

Холодная прокатка ленты из алюминиевых сплавов АМц, Д1, Д16 производится из горячекатаных листов толщиной около 6 мм. Ленту толщиной до 0,5—0,6 мм катают без промежуточного умягчающего отжига. Заготовками для холодной прокатки лент из меди и латуни Л62 служат свернутые в рулоны полосы толщиной 5—6 мм, полученные горячей прокаткой из слитков. Отожженные и протравленные рулоны прокатываются на специальных станах до толщины 0,01—0,2 мм в течение четырех-пяти операций холодной прокатки, чередующихся умягчающими отжигами и травлением для удаления окалины.  [c.64]

Ниже приведены свойства алюминиевой фольги после 4 ч отжига при 600 °С в атмосфере воздуха или в расплавленных флюсах и последующего испытания в тех же условиях [1]  [c.52]

Режимы отжига деформируемых алюминиевых сплавов  [c.49]

Железо измельчает структуру, задерживает фазовую перекристаллизацию алюминиевых бронз, предотвращая тем самым явление самопроизвольного отжига при литье, заключающееся в образовании крупнозернистой хрупкой у-фа-зы. Железо повышает прочность, твердость и антифрикционные свойства этих бронз.  [c.218]

Результаты испытаиий этих образцов приведены на рис. 32. С увеличением продолжительности предварительного отжига при 811 К поперечная прочность незначительно уменьшается после обработки О , а после обработки Т-б — максимальна при средних продолжительностях отжига. Исследование излома этих образцов показало, что основным типом разрушения является разрушение матрицы (в чистом виде или в сочетании с расщеплением волокон). Иногда матрица разрушалась путем отслаивания материала, нанесенного плазменным напылением, от фольги-подложки значит, из-за несовершенства связи прочность алюминия, занесенного путем плазменного напыления, может быть меньше прочности алюминиевой фольги. Меньшую роль играло разрушение по поверхности раздела между долей этого типа разрушения и продолжительностью предварительного отжига нет прямой связи. В случае обработки Т-6 низкие значения прочности при малых продолжительностях предварительного отжига, вероятно, обусловлены неполным переходом матрицы в твердый раствор, а при большей продолжительности отжига (160 ч)—тем, что усиливается расщепление волокон (причина этого явления пока неизвестна). Поперечная прочность данной серии образцов, как правило, не зависела от термической обработки, приводящей к изменению состояния поверхности раздела, так как расщепление волоков или разрушение матрицы происходило до того, как на-  [c.224]


При этом использовались данные работ [68, ПО] и опытные данные, полученные во ВНИИНМАШ. В виде одной генеральной совокупности рассматривались образцы свыше 20 наиболее распространенных алюминиевых сплавов с различными видами обработки (отжиг, диффузионное твердение и т. д.). В процессе испытаний для каждого вида образцов фиксировались пределы ограниченной выносливости при 10 , 10 , 10 и 10 циклах.  [c.73]

При стабилизации алюминиевых сплавов необходимо иметь в виду, что температура их плавления находится значительно ниже температуры плавления стали, а следовательно, соответственно снижаются области температур отжига, отпуска и старения. Обычно применяющееся кратковременное искусственное старение алюминиевых сплавов при температурах 150 и 175° С недостаточно способствует стабилизации структуры и снятию внутренних напряжений. Старение для стабилизации размеров алюминиевых и магниевых сплавов желательно производить при более высоких температурах — не ниже 200° С, желательно около 290° С.  [c.410]

Режим обработки холодом алюминиевых и магниевых сплавов следующий охлаждение до температуры —50—100° С, нагрев до температуры 100° С и затем до температуры обычного отжига. Эффективность обработки холодом тем больше, чем  [c.410]

Физические свойства 275, 277, 278 Отжиг сплавов алюминиевых деформируемых 69—71  [c.296]

Фиг. 47. Изменение механических свойств алюминиевой бронзы Бр А5 в зависимости от температуры отжига. Фиг. 47. Изменение <a href="/info/57139">механических свойств алюминиевой бронзы</a> Бр А5 в зависимости от температуры отжига.
Прессованным заготовкам — пруткам из алюминиевых сплавов, прессованным на горизонтальных гидравлических прессах Дика прямим методом, присущи типичная дефектная структура, неоднородность величины и формы зерна по сечению прутка и неравномерность расположения составляющих сплава и загрязнения по границам зёрен. Структура прессованных этим методом прутков состоит из крупных равноосных зёрен, расположенных в периферийных слоях, и из строчечной волокнистой структуры внутренних слоев. В отдельных случаях при прессовании образуются расслаивания и трещины между слоями вследствие смещения зёрен относительно друг друга. Увеличение концентрации пористости и загрязнений в средней части слитков, отливаемых в чугунные изложницы, усиливает неравномерность структуры. Рекристаллизация средней зоны с резко выраженным анизотропным строением зерна крайне затруднительна. Прессованные прутки из сплава АК-5 с подобной структурой не обнаружили склонности к рекристаллизации в процессе отжига в течение 3 час. даже при температуре 540° С, т. е. близкой к температуре плавления эвтектики. Прессованная заготовка с нерекристаллизованной структурой, при расположении в штампе направлением волокна перпендикулярно действию деформирующей силы, часто даёт брак в виде трещин.  [c.460]

Величина зерна деформируемых алюминиевых сплавов была определена после отжига при температуре 500° С в течение 3 час. Как показывают кривые, все сплавы в той или иной мере имеют интервал критической степени деформации, в пределах которого наблюдается сильный рост зерна.  [c.466]

Способ заключается в погружении деталей в расплавленный алюминиевый сплав (92—940/0 А1-I-6—80/oFe) при температуре 750—800° С, с выдержкой 45—60 мин. и последующим отжигом при 1100—1150° С продолжительностью 90 мин. При таком режиме алитирования получается глубина слоя до 1,0 мм.  [c.527]

Температура отжига алюминиевых бронз в  [c.556]

Бронза алюминиевая. Алюминиевые бронзы подвергают отжигу, закалке и отпуску вследствие значительного изменения механических свойств этих сплавов. Закалка алюминиевой бронзы, близкой к эвтектоидному составу (10,0% А1), приводит к понижению твёрдости, а отпуск закалённой бронзы увеличивает её твёрдость.  [c.556]


В табл. 96 приведены температуры отжига для алюминиевых бронз некоторых марок.  [c.556]

АК12(АЛ2) по ГОСТ 1583-93 Литейные алюминиевы Отжиг при +290 °С е сплавы 25 8...12 6...8  [c.116]

Рекристаллизационный отжиг. Рекристаллизационный отжиг заключается в нагреве деформированного сплава до температур выше температуры окончания первично рекристаллизации, применяется для снятия наклепа и получения мелкого зерна. У больил1нства алюминиевых сплавов при степеин деформации 50—70 % температура начала рекристаллизации находится в пределах 280—300 Температура рекристаллнзацнонного отжига в зависимости от состава сплава колеблется от 300 до 500 °С (высокий отжиг), с выдержкой  [c.327]

В холоднотянутой алюминиевой проволоке (99,95% А1) с аксиальной текстурой <111> последняя сохранилась после отжига при 500° С и сменилась текстурой <С112> после отжига при 600° С.  [c.409]

Для электротехнических целей используют алюминий марки А1, содержащий не более 0,5% примесей. Еще более чистый алюминий марки АВОО (не более 0,03% примесей) применяют для изготовления алюминиевой фольги, электродов и корпусов электролитических конденсаторов. Алюминий ншшысшей чистоты АВОООО содержит не более 0,004% примесей. Прокатка, протяжка и отжиг алюминия аналогичны соответствующим операциям для меди. Из алюминия может прокатываться тонкая (до 6—7 мкм) фольга, применяемая в качестве обкладок в бумажных и пленочных конденсаторах.  [c.20]

Непосредственно после осаждения Ni — Со — Р-покрытия имеют малую твердость и слабое сцепление с основным метачлом Но их твердость и адгезия повышаются после часового нагрева При 350—400 °С — для стальных и медных деталей и при 200 — 220 °С — для алюминиевых В исходном состоянии твердость покрытий не зависит от химического состава осадка и составляет 5000—5500 МПа. С повышением температуры отжига твердость этих сплавов растет, достигая максимального значения 5500 МПа после отжига при 300—350 °С При дальнейшем отжиге твердость покрытий уменьшается (рис 21)  [c.65]

Покрытие наносят в герметически закрытом контейнере. Очи-щенные металлические изделия погружают в порошок, содержащий металл покрытия. В течение нескольких часов контейнер нагревается при температуре, близкой (но меньшей) точке плавления металла. Цинковые покрытия, нанесенные на сталь, называются шерадизационными. Диффузионный слой представляет собой сплав, содержащий 8—9% железа в цинке. Алюминиевые покрытия на стали или меди называют алитиро-ванными. На них образуется окись алюминия во всех поверхностных слоях с содержанием алюминия более 8%. Эта окисная пленка обеспечивает высокую сопротивляемость действию коррозии, но сильно охрупчивает поверхностные слои, поэтому после алитирования необходимо подвергнуть изделие отжигу.  [c.105]

В ряде случаев существенное влияние на структуру и свойства оказывает термическая обработка композиционного материала, например в боралюминиевой композиции, при использовании в качестве матрицы алюминиевых сплавов, предел прочности при растяжении в направлении поперек укладки волокон может быть увеличен в 2—3 раза за счет применения термической обработки. Прочность связи между компонентами и сдвиговые характеристики материалов, полученных сваркой взрывом или экструзией, могут быть улучшены в результате правильно выбранного режима отжига. Кроме того, термическая обработка может изменить структуру вследствие образования промежуточных фаз, положительное или отрицательное влияние которых на структуру и свойства следует учитывать.  [c.9]

В самом простом методе — нанесении покрытия путем распыления алюминия (металлизация)—толщина слоя должна быть примерно 0,3 мм. Кроме того, этот метод требует продолжительного (до 5 ч) отжига и наличия тонкого покрытия из расплавленного стекла во избежание окисления в процессе отжига. При порошковом алитировании очищенные от окалины изделия загружают в герметизированную емкость, содержащую смесь 407о алюминиевой пудры, 60% окиси алюминия и добавок хлорида аммония, графита или цинка. Алитирование осуществляют при температуре 950—1050°С в течение 4—20 ч. В основе этого процесса лежит реакция обмена между хлоридом алюминия в газовой фазе и железом, в результате которой образуется дихлорид железа и алюминий. Слой содержит 50—70% алюминия.  [c.106]

Изучались алюминиевые, титановые, никелевые сплавы и нержавеющие стали. Отливки из алюминиевого сплава А-356 (стержни размерами 380x51 X Хб мм) закаливали в воде от температуры 811 К (выдержка 10 ч) и подвергали старению 16 ч при комнатной температуре и при 427 К 4 ч. Сплавы 6061-Т6 и 7075-Т6 были исследованы в виде листов толщиной 6 мм. Листы из нержавеющей стали 347 испытывали в го-чекатаном состоянии с последующим отжигом и травлением. Нержавеющая сталь 410 закаливалась в масле от температуры 1255 К и отпускалась при 839 К. Нержавеющую сталь А-286 в виде горячекатаных и травленых плит закаливали на воздухе от 1255 К (выдержка 1,5 ч) и старили при 1005 К в течение 16 ч. Титановый сплав имел очень низкое содержание примесей. Его испытывали после горячей прокатки н отжига. Образцы сплава Hastelloy С вырезали из листа толщиной 6 мм и испытывали после обработки на твердый раствор в соответствии с AMS-5530-С. Холоднокатаный и травленый лист толщиной 6 мм из сплава In onel Х-750 был состарен при 977 К в течение 20 ч с последующим охлаждением на воздухе. Образцы из сплава D-979 вырезали из штамповок для дисков турбины. В табл. 1 приведены механические свойства этих материалов при комнатной температуре.  [c.93]

Применение деформации в нагретом состоянии позволяет избежать той степени планарности скольжения, которая характерна для деформации при комнатной температуре. Деформированная структура при этом сравнительно однородна, и отжиг, возвращающий в состояние меньшей прочности (например, в состояние, эквивалентное Тб, при котором начинался процесс), сопровождается одновременным перестариванием выделений. Весь процесс схематично изображен на рис. 26. Объяснение повышения прочности по сравнению с обычным состоянием Т73 образованием дислокационной субструктуры и вывод о перестарива-нии выделений подтверждаются электронно-микроскопическими данными [160], Таким образом, очевидно, что ТМО заслуживает тщательного исследования как один из методов модификации микроструктуры для получения прочных, пластичных и стойких к КР алюминиевых сплавов [160—162].  [c.92]


В реальных деталях из сплавов АЛ2 и АЛ9 охлаждение до температуры —70° С приводит к снижению внутренних напряжений на 20—40% в зависимости от величины начального напряжения и формы детали. Основное значение при обработке холодом имеет первый цикл охлаждения. Дополнительное снижение напряжений после второго цикла обычно не превышает нескольких процентов. Третий цикл практически почти не меняет величину остаточных напряжений. Поэтому при стабилизирующей обработке алюминиевых и магниевых сплавов с применением охлаждения ниже нуля (так называемой циклической обработки) практически достаточно одного — двух циклов охлаждения и нагрева. При отрицательной температуре длительной выдержки деталей из легких сплавов (более 1 ч) не требуется. Скорость охлаждения до отрицательной температуры также практически не сказывается на эффективности циклической обработки. Нагрев при циклической обработке должен быть по возмолаюсти более высоким. Для сплавов в термически упрочненном состоянии он ограничивается температурой искусственного старения. Для неупрочняемых сплавов температура нагрева должна соответствовать температуре обычного отжига, т. е. 260—300° С.  [c.411]

Технологические особенности обработки САП. При холодной деформации алюминиевых сплавов применяют промежуточный отжиг для снятия нагартовки, САП почти не нагартовывается в процессе деформирования, и промежуточные отжиги лишь незначительно повышают его пластичность. Например, при изготовлении из САП фольги толщиной 0,03—0,05 мм используется заготовка толщиной 6 мм, которая прокатывается в холодную без промежуточного отжига до толщины 0,03—0,05 мм, при этом относительное удлинение сравнительно низкое.  [c.110]

В связи с изготовлением биметаллических вкладышей начала успешно применяться новая группа высоколегированных алюминиево-оловянных сплавов. Особенностью этих сплавов (99,5% олова и 0,5% алюминия) является наличие в их структуре большого количества мягкой, легкоплавкой эвтектики, механические и физические свойства которой весьма близки к чистому олову. Антифрикционные свойства высокооловянистых алюминиевых сплавов близки к свойствам баббитов. Конструкционная прочность подшипника из такого сплава обеспечивается стальной основой, а усталостная прочность в большой мере — состоянием алюминиевого сплава с оловом. Рядом исследований показано, что от размера, количества и характера распределения оловянистой составляющей двойных и более легированных сплавов в значительной мере зависят их антифрикционные и механические свойства, особенно усталостная прочность. С увеличением содержания олова в сплавах наблюдается тенденция к образованию междендритной и межэеренной непрерывной сетки олова. Эту тенденцию в некоторой области концентрации можно устранить применением повышенной скорости кристаллизации, а также путем добавок никеля и меди. При содержании олова около 20% и более оловянистая эвтектика образует непрерывную сетку при всех условиях охлаждения и легирования. Большое влияние на структуру сплава оказывает режим термической обработки. В случае применения отжига выше температуры рекристаллизации сплава (350° С) оловянистая эвтектика в сплавах, содержащих даже менее 20% олова, распределяется в форме непрерывной сетки. Как показали исследования, применением холодной деформации с последующей рекристаллизацией можно добиться дискретного распределения оловянистой эвтектики в сплавах, содержащих до 30% олова. При этом характер и величина включений оловянистой фазы зависят от степени холодной деформации и температуры отжига. Чем выше первая и ниже вторая, тем более дискретна структура сплава. В случае дискретной формы оловянистой фазы усталостная прочность сплавов значительно возрастет, превышая усталостную прочность свинцовистых бинарных бронз. Антифрикционные свойства сохраняются на высоком уровне и характеризуются низким коэффициентом трения с высокой устойчивостью против заедания.  [c.120]

Технологический процесс получения биметаллической полосы сталь — высокооловянистый алюминиевый сплав сходен с процессом получения биметаллической полосы сталь — сплав A M. Отличие сводится к применению высокотемпературного отжига готовой полосы, обеспечивающего рекристаллизацию стали, Такой режим отжига потребовал применения промежуточного подслоя из алюминиевого сплава АМК во избежание возникновения хрупкой фазы на стыке металлов и механической обработки, обеспечивающей снижение процентного содержания олова в поверхностном слое сплава с оловом. При содержании олова в 3—5% по поверхности стыка биметаллической полосы со сплавом АМК ослабления прочности сцепления при отжи1е не наблюдается  [c.121]

Биметаллическая полоса сталь—сплав KS411B перед изготовлением из нее вкладышей подвергается рекристаллизационному отжигу, в связи с чем она имеет специальный промежуточный слой алюминиевого сплава с кремнием.  [c.124]

Сталь ЭИ240 более окалиностойка, чем сталь ЭИ69, коэффициент ее линейного расширения близок по значению к алюминиевым сплавам. Клапанные седла поршневых моторов из этой стали изготовляют в состоянии после горячей деформации и отжига в течение 2—5 ч при 820° С с охлаждением на воздухе.  [c.165]


Смотреть страницы где упоминается термин Алюминиевые отжиг : [c.20]    [c.251]    [c.265]    [c.121]    [c.113]    [c.611]    [c.16]    [c.87]    [c.128]    [c.19]    [c.47]   
Конструкционные материалы Энциклопедия (1965) -- [ c.3 , c.302 ]



ПОИСК



Бронза алюминиевая Отжиг кремнистая — Сварка аргоно-дуговая

Бронза алюминиевая Отжиг оловянистая — Коэффициент линейного расширения

Бронза алюминиевая — Отжиг — Режимы

Отжиг

Отжиг Обозначения Режимы сплав алюминиевых литейных

Отжиг алюминиевых сплавов

Отжиг бронз алюминиевых вакуумный деталей из титановых

Отжиг бронз алюминиевых неполный

Отжиг бронз алюминиевых — Режим сплавов

Отжиг сплавов алюминиевых алюминиевых литейных

Отжиг сплавов алюминиевых деформируемых

Отжиг сплавов алюминиевых титановых

Отжиг — Применение нагрева сплавов алюминиевых деформируемых

Режимы доводки отжига бронз алюминиевых



© 2025 Mash-xxl.info Реклама на сайте