Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Алюминия хлорид

В последние годы в СССР и за рубежом широкое распространение для защиты от коррозии различных стальных конструкций получили алюминиевые покрытия. Для их получения на внутренней и наружной поверхности труб применяют в основном горячее алюминирование. При погружении стали в расплавленный алюминий образуются промежуточные соединения алюминия и железа переменного состава, более твердые и менее вязкие, чем чистый алюминий. Хлориды стимулируют питтинговую коррозию алюминия. Сульфаты являются ингибиторами коррозии в водах, где их концентрация превышает концентрацию хлоридов. В таких водах алюминиевые трубы проявляют высокую стойкость против коррозии, несмотря на довольно высокую концентрацию хлоридов. Однако с повышением pH выше 8,5 стойкость алюминия уменьшается. Алюминиевое покрытие, являясь анодным защитным покрытием, при температурах, характерных для систем горячего водоснабжения, осуществляет протекторную защиту стали в дефектах покрытия.  [c.147]


Химический состав раствора внутри трещины и вблизи вершины трещины может сильно отличаться от химического состава раствора в объеме. Это было убедительно показано много лет назад [88]. Когда трещина в металле заполняется раствором, то внутри трещины образуется хлорид алюминия. Хлорид алюминия может гидролизоваться и подкислять среду. В соответствии с теоретическими расчетами в этих условиях среда в трещине может подкисляться до pH 3,5. Прямые измерения в электролите, находящемся непосредственно в щели, показали значения pH 3,2- -3,4 [88]. Повторные исследования [89] показали те же значения. Поэтому при исследовании фундаментальных аспектов КР должны браться в расчет и химический состав основного раствора, и химический состав раствора внутри трещины.  [c.211]

Обезжелезивание поверхностных вод осуществляют при одновременном осветлении и обесцвечивании. Железо, находящееся в воде в виде коллоидов, тонкодисперсных взвесей и комплексных соединений, удаляется обработкой воды коагулянтами [сульфатом алюминия, хлоридом железа (III) либо смешанным коагулянтом]. Для разрушения комплексных органических соединений железа воду обрабатывают хлором, озоном Или перманганатом калия. При использовании железных коагулянтов обеспечивается более полное удаление железа из  [c.405]

Для осаждения алюминия применяют неводные эфирные электролиты. Состав электролита и условия осаждения алюминия хлорид 2—3 моль/л диэтилового aJ)Hpa, лития гидрид 0,5—1 моль/л диэтилового эфира температура 18—20 °С, катодная плотность тока 1—2 А/дм.  [c.588]

Окись алюминия Хлорид кальция Стекло  [c.167]

Хлористый аммоний, введенный в обмазку № 4, предназначен для облегчения процесса диффузии алюминия в сталь. При высокой температуре хлористый аммоний диссоциирует с образованием хлористого водорода и хлоридов алюминия. Хлориды алюминия при температуре диффузионного отжига диссоциируют, а образовавшийся в результате этого алюминий, находясь в атомарном состоянии, обладает высокой активностью и диффундирует в глубь металла.  [c.40]

Процесс нанесения диффузионных покрытий из алюминия и цинка представляет собой обработку при повышенной температуре в барабане в смеси порошков наносимого металла и инертного материала при этом происходит диффузия осаждаемого металла в поверхностный слой основного металла. Диффузионные покрытия из, хрома, никеля, титана, алюминия и других металлов получают также, погружая металлические изделия в инертной атмосфере в ванну с расплавом хлорида кальция, в котором растворено некоторое количество наносимого металла [1.  [c.231]


При нагреве в контейнере образуется атмосфера из паров хлористого аммония, которые вытесняют воздух, хлоридов металлов (главным образом хлорида алюминия) и продуктов их диссоциации. Большее количество хлорида алюминия определяется большим уменьшением изобарного потенциала ЛZ при образовании газообразного хлорида алюминия  [c.151]

Композитные материалы (кроме эвтектических) обычно изготавливают из двух или более составляющих элементов. Каждый из этих элементов предварительно тщательно очищают от загрязнений тем не менее, после любой обработки (за исключением таких особых видов предварительной обработки, как высокотемпературный вакуумный отжиг или катодное травление) на поверхности остаются пленки адсорбированных веществ. Пленки на металлах возникают, в основном, из-за взаимодействия с кислородом воздуха, но на окислах и некоторых неметаллах пленки могут появиться в результате взаимодействия с водяным паром. Дополнительными источниками образования пленок могут явиться загрязняющие вещества, присутствующие в различных количествах при подготовительных операциях, например масло или смазка, хлориды и сульфиды, пыль и другие посторонние вещества и продукты их взаимных реакций, например гидроокиси. Таким образом, объединение составляющих композита не является простым физико-химическим процессом. Как правило, для образования связи между металлом и упрочнителем пленки должны быть каким-либо способом уничтожены. Иногда, однако, пленки желательно сохранить или видоизменить в частности, окисные пленки на алюминии и боре сводят к минимуму взаимодействие компонентов в соответствующих композитах.  [c.32]

Скорость коррозии алюминия, погруженного в воду, зависит от количества растворенного в воде кислорода, содержания хлорида и в особенности от присутствия тяжелых металлов (таких, как медь). Состав и количество солей в воде, влияющих на образование окислов, также сказываются на скорости коррозии. Очень высокое содержание хлорида вызывает мгновенную общую коррозию поэтому алюминий, как правило, непригоден для эксплуатации в морской воде. В питьевой воде присутствие даже очень небольшого количества растворенной меди способствует возникновению точечной коррозии, а твердые окислы, осаждающиеся в питтингах, вызывают снижение активности микросреды внутри язв. Благодаря последнему фактору скорость коррозии несколько снижается по мере увеличения длительности ее воздействия. При температуре приблизительно до 80° С точечной коррозии не возникает, вероятно, в результате осаждения тяжелых металлов и твердых солей и уменьшения количества растворенного кислорода.  [c.108]

Обычно вначале выявляют материалы, непригодные для исиоль-зования в качестве покрытий, с учетом фактора окружающей среды. Так, из-за избыточной скорости коррозии алюминий в качестве покрытия неприемлем в сильной щелочной среде, алюминий и свинец — в среде с высоким содержанием хлорида алюминия, медь и цинк — в кислотной среде. Алюминий, медь, никель и олово хорощо противостоят атмосферным воздействиям, а алюминий и никель, кроме того, — нагреванию ири повышенной температуре, но они подвержены коррозии ири ограниченном доступе кислорода. Никель, медь и олово устойчивы в пресной и морской воде, алюминий менее устойчив, особенно при высоком содержании хлоридов в воде. Во влажной среде, содержащей пары органических веществ, на цинк следует наносить покрытие кадмия. Алюминий, никель и олово имеют хорошую сопротивляемость к действию кислот. Свинец сохраняет  [c.123]

Влияние солей, склонных к гидролизу, таких, как хлорид алюминия и ацетат натрия, зависит от того, насколько изменился pH среды после гидролиза.  [c.25]

Алюминий наносят на металлическую поверхность путем металлизации, напыления (порошковое алитирование), погружения в расплав, электролитически, а также путем взаимодействия с парами хлорида алюминия.  [c.106]

Практическое значение имеют только первые три метода, причем первый и третий из них требуют дополнительного диффузионного отжига (гомогенизация) при температуре 800 — 1000°С. Порошковое алитирование или алитирование в парах хлорида алюминия осуществляют при температуре 800°С.  [c.106]


Бакинским филиалом ВНИИВОДГЕО проведена работа по исследованию и выбору оптимальных условий коагуляции для очистки биологически очищенных сточных вод г. Баку, представляющих смесь хозяйственно-бытовых и промышленных стоков [148]. В отличие от рассмотренных выше примеров в данной работе вода после смешивания с коагулянтами непосредственно направлялась на скорые фильтры. При этом хлопьеобразование происходило Б толще загрузки и способствовало задержанию оставшихся загрязнений и биогенных элементов. При проведении экспериментов в лабораторных условиях применялись сульфат алюминия, хлорид железа и хлорид алюминия (отход нефтехимиче-124  [c.124]

Насос с винтом и корпусом, изготовленным из нержавеющей стали № 316, и обоймой из натурального или синтетического каучука может перекачивать хлорид и нитрат бария, сулему, уксусную кислоту, квасцы, сульфат алюминия, хлорид, сульфат и нитрат аммония, раствор натриевоцинкового хлорида, железный и медный купорос, сульфат и нитрат меди, хлорид железа, железистый хлорид и сульфат, хлорид ртути, сульфат и хлорид никеля, фосфат калия, фосфорную кислоту, нитрат, сульфат и хлорид цинка, хлорид титана, уксус, фруктовые соки, пиво и дрожжи.  [c.207]

При изготовлении электродов для сварки алюминия и его сплавов ввиду его большого сродства к кислороду применять покрытия из окислов нельзя, так как металл будет разрушать эти окислы и интенсивно окисляться, В этих случаях покрытия практически полностью состоят из бескислородных соединений, хлоридов и фторидов (КС1, Na l, KF и т. п.), которые наносятся па стержни многократным окунанием стерлшей в водные растворы указанных компонентов.  [c.93]

Флюсы для сварки легированных и высоколегированных сталей должны обеспечивать минимальное окисление легирующих элементов в шве. Для этого приме няют плавленые и керамические пизкокремпистые, бескреинистые и фторидные флюсы. Их шлаки имеют высокое содержание СаО, СгР и А1,0ч. Плавленые флюсы изготовляют из плавикового шпата, алюмосиликатов, алюминатов, путем сплавления в электропечах. Их шлаки имеют основной характер. Керамические флюсы приготовляют из порошкообразных компонентов путем замеса их на жидком стекле, гранулирования и последующего прокаливания. Основу керамических флюсов составляет мрамор, плавиковый шпат и хлориды щелочноземельных металлов. В них также входят ферросплавы сильных раскислителей (кремния, титана, алюминия) и легирующих элементов и чистые металла. Шлаки керамических флюсов имеют основной или пассивный характер и обеспечивают получение в металле шва заданное содержание легирующих элементов.  [c.194]

Расчетное значение потенциала алюминия лежит между потенциалами магния и цинка. В воде или грунтах алюминий имеет склонность к пассивации с соответствующим сдвигом потенциала к потенциалу стали. Тогда он перестает выполнять функцию протектора. Для предотвращения пассивации в околоэлектрод-ное пространство можно вводить специальное вещество для создания среды, содержащей хлориды засыпка). Однако это может служить только временной мерой. В морской воде пассивацию лучше всего предупреждать, используя сплавы. Например, сплавление алюминия с 0,1 % Sn с последующей термообработкой при 620 °С в течение 16 ч и закалкой в воде для удержания олова в состоянии твердого раствора очень сильно уменьшает анодную поляризацию в хлоридных растворах [6]. Коррозионный потенциал такого сплава в 0,1т растворе Na l составляет—1,2 В по сравнению с —0,5 В для чистого алюминия. Некоторые алюминиевые протекторы содержат 0,1 % Sn и 5 % Zn [7, 8]. Протекторы с 0,6 % Zn, 0,04 % Hg и 0,06 % Fe при испытаниях в морской воде в течение 254 дней работали с выходом по току 94 % (2802 А-ч/кг). В настоящее время в США на производство протекторов из таких сплавов ежегодно расходуют примерно  [c.219]

Как известно, в кислых средах процесс коррозии цинка из-за высокого перенапряжения выделения водорода протекает очень медленно, однако в присутствии примесей с низким перенапряжением водорода цинк легко растворяется с вьщелением водорода. Некоторые металлические примеси, например алюминий, замедляют коррозию цинка в кислых средах. В присутствии ионов хлора образуются основные хлориды цинка типа 6Zn(OH)2 Zn lj, которые имеют слоистую структуру, аналогичную той, которую имеет карбонат цинка, образующий плотные, хорошо прилегающие слои.  [c.89]

Условие развития электрохимической коррозии — это контакт металла с электролитом, роль которого выполняет пластовая вода, содержащая определенное количество примесей и представляет собой сложные многокомпонентные системы. В пластовых водах нефтяных месторождений содержатся вещества, находящиеся в истинно растворенном состоянии газообразные вещества, растворенные в воде (углеводородные и сернистые газы, азот) вещества, находящиеся в воде в коллоидно-растворенном состоянии (двуокись кремния, гидрат окислов железэ и алюминия). Основные компоненты, растворенные в воде,— это хлориды, суль-  [c.124]

Морская вода содержит большое количество солей, главным образом хлориды, и имеет довольно высокую электропроводность. Эгим обстоятельством объясняется электрохимический характер коррозионных процессов в морской воде и пленке морской воды, образующейся на металлических конструкциях в воздухе. При наличии значительной концентрации хлорид-ионов и растворенного кислорода больишнство технически важных металлов (магний, алюминий и их сплавы, цинк, кадмий, коррозионностойкие и конструкционные стали могут переходить в состояние пробоя и подвергаться питтинговой коррозии.  [c.42]

К химическому методу относится также контактное осажденрге металлов из раствора. Для листовых полуфабрикатов применяется горячий способ нанесения покрытий из расплавов цинка, олова, алюминия. Металлические покрытия должны обладать хорошей пластичностью. Пластичность покрытия определяется промежуточным слоем интерметаллидов, образующихся в результате реактивной диффузии. Для регулирования пластичности в расплавы вводятся добавки других металлов. В промышлен-иости применяется также термодиффузионное поверхностное легирование сталей хромом, алюминием, кремнием и другими элементами G целью повышения их жаростойкости и коррозионной стойкости в агрессивных средах. Процесс проводится при высоких температурах из измельченной твердой или газовой фазы хлоридов или других соединений соответствующих металлов.  [c.49]


Q Травитель 23 [30 мл НС1 15 мл HNO3 10 г AI I3 100 мл HjD ]. -Этот травитель успешно применяют для выявления структуры аустенитных сталей. Добавка хлорида алюминия гарантирует равномерное травление [16].  [c.115]

Цинковые покрытия наносят либо сухим способом, который заключается в химическом удалении окалины в кислотах, дробеструйной обработке основного материала, замачивании в растворе флюса, т. е. в растворе хлоридов аммония и цинка, сушке и погружении в ванну с расплавленным цинком при температуре 440—470° С, либо мокрым способом, т. е. материал после травления помещают в расплавленный цинк под слоем флюса, который по существу представляет собой цинкоаммониевый хлорид. Легирующая добавка алюминия в количестве примерно 0,001—0,2% обеспечивает пластичность покрытия, повышает блеск, ограничивает образование хрупких фаз сплава и гарт-цинка, т. е. химического соединения железа и цинка, и предупреждает окисление поверхности расплавленного цинка, а следовательно, и образование цинковой золы.  [c.76]

Как уже говорилось, для протекания биметаллической коррозии необходимо присутствие электролита. Если поверхность металла суха, то биметаллической коррозии не будет. На наружных конструкциях для протекания биметаллической коррозии достаточно присутствия пленки влаги. Если говорить о комбинациях алюминия с медью, сталью, или нержавеющей сталью, то существенная, с точки зрения практики, биметаллическая коррозия протекает в первую очередь в морской атмосфере и редка в городской или сельской атмосфере. Причина этого в том, что морская атмосфера содержит высокую концентрацию хлоридов, обеспечивающих хорошую электропроводность и, кроме того, способных ослаблять защитное действие оксидных покрытий, существующих бычно на алюминии. В согласии с этим находится опасность биметаллической коррозии при загрязнении поверхности, например дорожной солью. Вероятность биметаллической коррозии для некоторых комбинаций металлов в различных атмосферах сопоставляется в Приложении 1.  [c.40]

При защитном окрашивании стальной поверхности, если покраска должна обеспечить длительную защиту, важно, чтобы прокатная окалина, ржавчина и другие загрязнения были удалены. При ретушировании или перекрашивании предыдущее покрытие, которое было повреждено или отстало от основы, должно быть удалено. Очистку можно производить с помощью скребков, проволочных щеток, шлифования, опескоструивания, травления (на промышленных установках) возможна огневая очистка, за которой следует очистка проволочными щетками. В качестве абразивов для сухой струйной очистки применяют оксид алюминия, силикат алюминия, железный силикат или оливиновый песок, а также стальную дробь или сечку. В прошлом самым распространенным абразивом был кварцевый песок, но теперь его разрешают использовать только при определенных условиях, так как кварцевая пыль может вызывать болезнь, называемую силикозом. Струйная очистка с помощью сжатого воздуха с сухим абразивом является самым распространенным методом подготовки для больших поверхностей под открытым небом. На промышленных установках осуществляют центробежную струйную очистку, при которой быстровращающееся колесо с лопатками выбрасывает абразив на стальную поверхность. В настоящее время начинают широко применять влажную струйную очистку, при которой в струю дроби вводится вода. В отличие от сухой струйной очистки она не дает пыли и в то же время удаляет воднорастворимые поверхностные загрязнения, например хлориды.  [c.85]

Процесс осаждения алюминия является более требующим специальных условий и специального технологического оборудования. Электролит для осаждения алюминия, предложенный в 1952 г. Коухом и Бреннером, состоит из хлорида алюминия — 464 г/л, алюмината лития (лнтийалюминиевого гидрида) — 16 г/л и ди-этилового эфира. Электролит должен быть установлен в герметическом боксе, заполненном сухим азотом. На воздухе довольно быстро происходит отравление электролита образующимся углекислым газом и водой. В процессе осаждения анод необходимо постоянно очищать от образующегося на нем шлама во избежание попадания последнего на покрытие. При соблюдении правильного режима н условий осаждения можно получить чистый, плотный слой, который после отжига приобретает удовлетворительную пластичность [103].  [c.180]


Смотреть страницы где упоминается термин Алюминия хлорид : [c.85]    [c.220]    [c.220]    [c.221]    [c.222]    [c.223]    [c.433]    [c.878]    [c.27]    [c.199]    [c.48]    [c.40]    [c.433]    [c.144]    [c.322]    [c.291]    [c.179]    [c.283]    [c.134]    [c.31]    [c.13]    [c.13]   
Смотреть главы в:

Справочник по коррозии  -> Алюминия хлорид


Коррозионная стойкость материалов в галогенах и их соединениях (1988) -- [ c.85 ]



ПОИСК



Речкин. Тензометрическое исследование систем хлориды кобальта и никеля — алюминий и алюминиды

Схема электролизера с биполярными электродами для J электролиза хлорида алюминия

Технологическая схема получения алюминия из хлорида

Хлорид: алюминия 279, аммония

Хлорид: алюминия 279, аммония лия 284, цинка

Хлориды



© 2025 Mash-xxl.info Реклама на сайте