Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Контроль структуры и состава материалов

КОНТРОЛЬ СТРУКТУРЫ и СОСТАВА МАТЕРИАЛОВ СВЧ МЕТОДАМИ  [c.33]

По результатам усталостных испытаний образцов с покрытиями можно отрабатывать технологию нанесения покрытий выбирать оптимальное сочетание химического состава, структуры и свойств материалов покрытия и основного металла рассчитывать и проектировать конструкции проводить промежуточный и выходной контроль качества композиции покрытие — основной металл осуществлять контроль ответственных деталей с покрытиями перед эксплу-, атацией [49].  [c.29]


Приведенные примеры использования феррозондового метода составляют лишь небольшую часть возможных случаев удачного применения этого метода для целей дефектоскопии. Как будет показано ниже, феррозондовый метод весьма успешно используется в приборах для контроля структуры и фазового состава металлических материалов, для контроля качества сварных соединений (в сочетании с другими методами) и т. п.  [c.202]

Разрушающие (лабораторные) методы контроля, применяемые для оценки состава, структуры и свойств сварных соединений, включают в себя химический анализ, механические испытания и металлографические исследования Эти виды контроля выполняют на материале специальных образцов — свидетелей, которые подвергаются тем же технологическим воздействиям, что и материал в изделии. В исключительных случаях для разрушающего контроля может быть использовано само изделие.  [c.378]

Протекание ползучести обусловливается напряжением, температурой и временем. Действие каждого из этих факторов определяется структурой, химическим составом и свойствами материалов. Основными физическими величинами, определяющими процесс ползучести и практически используемыми прн контроле металла котельных установок и трубопроводов, являются следующие.  [c.45]

При изучении диаграммы состояния металлических, соляных и органических систем, полиморфных и других фазовых превращений в них, а также фаз переменного состава рентгенографические методы определяют присутствующие в системах фазы, их природу, кристаллическую структуру и границы распространения. Эти методы находят применение не только в практике научно-исследовательских институтов, но и используются в промышленности для контроля технологических процессов и создания более современных способов получения материалов с нужными свойствами. Однако методы рентгеноструктурного анализа широко используются в основном при исследованиях в области комнатных температур.  [c.68]

Шихтовка должна проводиться более тщательно. часто с введением в состав шихты определённых сортов исходного материала. Необходим контроль химического состава отливок и исходных материалов. Структура металла — с явным преобладанием перлита графит обычно средней величины. Для железнодорожного транспорта отливаются корпуса и диафрагмы турбины вентилятора, корпуса перепускного клапана турбины вентилятора, корпуса турбины дымососа, подшипники турбины дымососа, корпуса и крышки перепускного клапана турбины дымососа и другие детали.  [c.34]


Контроль ферромагнитных материалов существенно затрудняется вариациями магнитных свойств, вызванными небольшими отклонениями химического состава, структуры, режима термической обработки и т. д. Для стабилизации магнитных свойств используют подмагничивание сильным постоянным магнитным полем. При этом уменьшаются полезные сигналы и помехи, но отношение сигнал/помеха обычно возрастает.  [c.135]

Значительное внимание в последнее время уделяется вопросам контроля состава и структуры композиционных материалов и стеклопластиков, так как дефекты структуры (нарушение ориентации наполнителя, несоответствия содержания компонент среды и т. д.) являются основными источниками изменения физикомеханических характеристик материалов. В этом отношении интерес представляют зависимости, устанавливающие взаимосвязь между скоростью упругих волн и параметрами структуры материала. Так, в работе [24] показано, что по аналогии с железобетоном для стеклопластика может быть использована следующая зависимость  [c.78]

На протяжении длительного времени многими учеными делались попытки получить наиболее надежные и точные зависимости, устанавливающие функциональную взаимосвязь состава и структуры гетерофазных материалов с физическими характеристиками отдельных компонент и композиции. Для контроля изотропных гетерогенных многокомпонентных сред получен ряд классических зависимостей при определении содержания компонент по характеристикам обобщенной проводимости (электропроводность, теплопроводность, диэлектрическая проницаемость и т. д.).  [c.79]

Основные операции ремонта должны быть обеспечены, кроме того, средствами контроля материалов (состава и структуры), технологических сред (состава, концентрации, температуры и давления) и режимов, устройствами для контроля технологической точности средств ремонта. Оборудование оснащают средствами активного контроля, предназначенными для измерений в ходе обработки и останова станка по достижении заданного размера. Измерительные лаборатории (в пределах своей компетенции) оснащают аттестованными устройствами для поверки средств измерений.  [c.639]

Контроль состава и структуры конструкционных материалов  [c.188]

Следовательно, получение сварных соединений, однородных по химическому составу и структуре, весьма желательно как в отношении эксплуатационной надежности, так и надежности контроля качества, в частности магнитной дефектоскопии сварных соединений. Получение сварных соединений, однородных по составу и структуре, в некоторой степени можно обеспечить за счет применения соответствующих сварочных материалов и соблюдения определенного термического цикла сварки. Идеальным выполнением этого условия является использование сварочных проволок того же состава, что и основной металл. Однако условия технологического процесса сварки и природа образования сварного соединения таковы, что почти всегда получаются сварные соединения, в которых образуется химическая и структурная неоднородность. Так, например, с целью предупреждения образования кристаллизационных трещин, как правило, применяют сварочные проволоки  [c.72]

Для наблюдения явления парамагнитного резонанса испытуемый образец вносят в ячейку с волноводом или объемным резонатором, помещенную между полюсами магнита. Источник переменного модулирующего напряжения вырабатывает пилообразное напряжение, которое подается в усилитель мощности и служит для питания катушки электромагнита или для модуляции СВЧ генератора. В контрольную ячейку помещается исследуемый образец и от источника вводится энергия СВЧ. Выходной сигнал этой ячейки поступает на прие.мник или болометрический детектор, мост, синхронный усилитель и гальванометр. Болометр включается в плечо моста, который балансируется нри бездефектном образце. Возникновение дефекта и связанного с ним резонансного поглощения приводит к разбалансу моста, сигнал с частотой модуляции усиливается синхронным усилителем и гальванометр фиксирует появление дефекта. В тех случаях, когда линии поглощения очень острые (например, когда полость дефекта заполняется некоторыми газами), применяется модуляция СВЧ источника, а выходной сигнал ячейки детектируется балансным смесителем СВЧ приемника, усиливается и после вторичного детектирования наблюдается на осциллографе. развертка которого производится пропорционально частоте СВЧ источника. Появление дефекта фиксируется по форме кривой на осциллографе. В этом случае можно использовать другой вид индикатора. Измеряя расстояние между пиками поглощения (по частоте или напряженности магнитного поля), можно судить о составе материала дефекта, а по ширине пика на определенном уровне контролировать его структуру. Резонансные частоты не зависят от размеров образца, поэтому результаты контроля свидетельствуют об эффектах, связанных только с материалом изделия или дефекта.  [c.458]


При использовании резонансных радиоволновых СВЧ методов имеется возможность многопараметрового контроля геометрии, состава и структуры материалов в здоровой и дефектной зонах.  [c.420]

Первым условием успешной работы кузнечного или прессового цеха является тщательный технический контроль исходных материалов. Этот контроль включает проверку химического состава, структуры, геометрических размеров, качества поверхности и т. д. Для предотвращения брака производится контроль выполнения основных операций режима и количества нагревов, режима ковки, степени деформации за весь процесс и после каждого нагрева, режима охлаждения и качества поковки в соответствии с техническими требованиями..  [c.658]

Измерения статических магнитных параметров материалов проводят с целью контроля качества магнитных металлов и сплавов, для определения характеристик деталей и узлов различных приборов, а также для косвенной оценки изменений количества, химического состава и структуры фаз в сплавах при проведении металлофизических исследований.  [c.107]

Р. широко применяют в физ. химии для определения состава и структуры вещества, а также для контроля качества и состава разл. продуктов в хии., фармацеа-тич., пищевой и др. отраслях промышленности. Знание градиентов п позволяет производить расчёт градиентов плотности и концентрации. Р. используют при проверке однородности твёрдых образцов и жидкостей в аэро- и гидродинамич. исследованиях. Особое значение имеют Р. в оптич. промышленности, т. к. п н дисперсия стекла и др. оптич, материалов являются их важнейшими характеристиками.  [c.386]

По электрическим характеристикам материала, полученным расчетным или экспериментальным путем, могут быть определены другие характеристики состава и структуры материала, из которых в первую очередь представляет интерес определение содержания компонентов гетерогенной среды, в частности, коэффициент армирования композитных материалов. Параметры таких гетерогенных систем вычисляют с помощью формул, определяющих средние значения диэлектрической проницаемости через диэлектрические проницаемости компонентов и их объемную или массовую концентрацию (табл. 3). Эти формулы могут быть использованы и для обратной задачи - определения характеристик состава материала, например, коэффициента армирования, пористости, влажности по диэлектрической проницаемости всей композиции и отдельных ее компонентов, а также для определения диэлектрической проницаемости одного из компонентов, если известны остальные параметры. Для более удобного и оперативного получения результатов контроля могут быть составлены номограммы. На рис. 6 приведены номограммы, предназначенные для определения объемного содержания сферических включений (алгоритм нахождения этого параметра - слева) и диэлектрической проницаемости включений (алгоритм справа). При контроле параметров структуры и состава сыпучих материалов, в частности, влажности, основными мешающими факторами являются следующие плотность заполнения ЭП (см. рис. 3), химический состав отдельных частиц, проводимость (минерализованность) воды, степень дисперсности материала, формы связи воды с материалами. Наиболее радикальным средством устранения влияния этих мешающих факторов является применение многопараметровых методов контроля, в основном многочастотных методов и амплитуднофазового разделения.  [c.462]

Неоднородность поверхности излома, обусловленная наличием. в материале зон с различным составом, структурой и свойствами, учитывается для оценки дефектности материала, для различных видов технологического контроля (выявление крупных неметаллических включений, рыхлот, флокенов, расслоений, серых пятен, глубины альфированного, цементированного и других слоев).  [c.12]

Структуроскопы (анализаторы структуры) — это приборы неразрущающего контроля, предназначенные для определения физико-механических и физико-химических свойств и характеристик материалов (химического состава, твердости, пластичности, электрических и магнитных характеристик, коррозионных поражений и т.п.). Для струк-туроскопии различных материалов чаще всего используются акустический, магнитный и вихретоковый виды контроля.  [c.381]

Кроме контроля дефектов, микрорадиоволновые методы находят все большее применение для определения состава, структуры и напряженного состояния материалов [116].  [c.62]

Существенный вклад в развитие неразрушающих методов для диагностики прочности и жесткости конструкций и изделий из стеклопластиков внесла работа В. А. Латишенко [136]. В ней изложены основные физические предпосылки применения методов диагностики прочностных и деформативных характеристик материалов. Рассмотрены вопросы установления корреляции между механическими и физическими параметрами поли.мерных и ряда других композиционных материалов. Значительное внимание в работе уделено вопросам контроля состава и структуры стеклопластиков и взаимосвязи их с физическими параметрами, поставлены задачи дальнейшего развития неразрушающих методов контроля качества и определения физико-механических характеристик материалов.  [c.72]

Подшипниковые материалы подвергают различным испытаниям в зависимости от целей исследования. При входном контроле металл подвергают тщательному анализу, в процессе которого проверяется соответствие нормам стандартов химического состава, твердости, зафязненности неметаллическими включениями, пористости, неоднородности структуры и др. У металла для сепараторов, кроме того, испытаниями на растяжение проверяются удлинение до разрушения и временное сопротивление. Методы и нормы входного контроля подшипниковых материалов приведены в стандартах и технических условиях.  [c.330]

Помимо обнаружения дефектов вихретоковый вид неразрушающего контроля широко применяют в целях структуроскопии для контроля физико-механических свойств объектов, связанных со структурой, химическим составом и внутренними напряжениями их материалов. Кроме того, вихретоковые приборы и установки используют для контроля размеров объекта, параметров его вибрации, обнаружения электропроводящих объектов (металлоискатели) и других целей.  [c.132]


Проверка параметров комплектующих изделий производится в соответствий с документацией на технологические процессы входного контроля. Испытание (анализ) материалов (физико-механических свойств, химического состава, структуры и т.д.) проводится в лабораторных условиях. При этом подрмзделение входного контроля контролирует отбор выборок или проб для проведения испытаний (анализов), оформляет заявку на их проведение, передает в ЦЗЛ отобранные образцы продукции.  [c.264]

Радиоспектроскопические методы контроля основаны на использовании зависимости резонансных явлений в твердых, жидких и газообразных материалах от состава материала, его структуры и в ряде случаев от формы изделия. Поэтому по измерению частот резонансного поглощения, напряженностей магнитных полей и форл1Ы резонансной кривой можно обнаруживать скрытые пороки внутри объемов, в которых возбуждаются электромагнитные колебания.  [c.456]

Р. нашла широкое применение в физ. химии для определения состава и структуры в-ва, а также для контроля кач-ва и состава разл. продуктов в хим., фармацевтич., пищ. и др. отраслях пром-сти. Знание градиентов п позволяет производить расчёт градиентов плотности и концентрации. Методы Р. используют при проверке однородности ТВ. образцов и жидкостей в аэро- и гидродинамич. исследованиях. Особую роль играет Р. в оптич. пром-сти, т. к. п и дисперсия стекла и др. оптич. материалов явл, их важнейшими хар-ками.  [c.647]

По электрическим характеристикам материала, полученным расчетным или экспериментальным путем, могут быть определены другие характеристики состава и структуры материала, из которых в первую очередь представляет интерес определение содержания компонентов гетерогенной среды, в частности коэффициент армирования композитных материалов. Параметры таких гетерогенных систем вычисляют с помощью формул, определяющих средние значения диэлектрической проницаемости через диэлектрические проницаемости компонентов и их объемную или массовую концентрацию (табл. 3). Эти формулы могут быть использованы и для обратной задачи — определения характерис1ик состава материала, например коэффициента армирования, пористости, влажности по диэлектрической проницаемости всей композиции и отдельных ее компонентов, а также для определения диэлектрической проницаемости одного из компонентов, если известны остальные параметры. Для более удобного и оперативного получения результатов контроля могут быть составлены номограммы. На рис. 9 приведены номограммы, предназначенные для определения объемного содержания сферических включений (алгоритм нахождения этого параметра — слева) и диэлектрической проницаемости включений (алгоритм справа). При  [c.172]

Обнаружение сверхпластичности в ультрамелкозернистых материалах при относительно низких температурах и очень высоких скоростях деформации указывают на возможность значительного и эффективного повышения уровня использования сверхпласти-ческой формовки в различных промышленных сплавах за счет измельчения их структуры. Однако для достижения более высоких сверхпластических свойств в ультрамелкозернистых сплавах необходим тщательный контроль за их микроструктурой и фазовым составом.  [c.212]

В бинарных сплавах N1—Ре наблюдается уменьшение склонности к индуцированным водородом потерям пластичности по мере возрастания содержания железа [108, 109], особенно в интервале 20—50% Ре. Этот эффект интересен в сравнении с поведением сплавов, содержащих 20—30% Ре в дополнение к 20% Сг. Подобные тройные сплавы N1—Сг—Ре, к числу которых относятся, например, Ни-о-нель, Инколой 800 и Инколой 804, подвержен-ны КР в некоторых средах [241, 262, 265—268], причем при определенных обстоятельствах их стойкость к КР оказывается ниже, чем у сплавов на основе системы №—20 Сг [241]. Более того, последовательное замещение РенаИ при переходе от Инколой 800 (33% N1) к Инколой 825 (42% N1) и Инконель 625 (61% N1) сопровождается возрастанием стойкости сплава к КР [66, 67, 241, 267, 269]. Разрушения вследствие КР могут, однако, происходить во всех перечисленных сплавах, а на сплавы Монель 625 и Хастел-лой X, как было показано, отрицательно влияет также и водород при высоком давлении [39, 84, 122, 270]. В отсутствие систематических исследований поведения железа, можно предположить, что оно оказывает отрицательное воздействие на тройные и более сложные системы, обусловленное, в частности, еще не изученными синергитическими эффектами, которые подавляют поведение, свойственное Ре в бинарных сплавах. Следует, однако, также учитывать, что сплавы 800, 804, 825 (и даже 625) могли быть состарены с образованием упрочняющей у -фазы (см. ниже). Такая возможность вытекает из представленных в табл. 7 составов сплавов. В некоторых из упомянутых выше работ нет данных о термической предыстории исследованных материалов и поэтому микроструктура сплавов неизвестна. Следовательно, сравнение подобных сплавов с такими, в которых у -фаза не образуется (в частности. Инконель 600 и Хастеллой X), может быть неправомочным. По-видимому, в этой области нужны дальнейшие исследования при соответствующем контроле однофазной структуры.  [c.112]

Широко применяют порошковые материалы типа СГдС + 10, 15 или 30% Ni ( соответственно ГК-10, ГК-15 и ГК-30). Исходные порошки карбида хрома и никеля в требуемом количестве смешивают в шаровой вращающейся мельнице в спирте (400 мл/кг смеси) в течение 50 ч. После размола смесь высушивают при 50 °С в течение 1 - 2 ч, просеивают через сетку № 01 и замешивают с 6 %-ным раствором каучука в бензине (500 мл раствора на 1 кг смеси). После подсушки вентилятором в вытяжном шкафу замешанную смесь протирают через сетку № 04, снова подсушивают в течение 0,5 ч и передают на мундштучное формование. Полученные стержни (например, продавленные в матрице диаметром 70 мм через очко диаметром 8 мм при усилии 300 кН) сушат в вентилируемом сушильном шкафу при 50 - 60 °С в течение 25 - 30 ч до полного исчезновения паров бензина, после чего их помещают в графитовый патрон с каналами, диаметр которых на 1 - 2 мм больше диаметра стержня (отверстия с двух сторон закрывают графитовыми пробками), или в графитовую лодочку в засыпку из прокаленного при 1000 °С оксида алюминия. Спекание проводят в печах (например, муфельных) в защитной атмосфере (водород, конвертированный природный газ, диссоциированный аммиак) при 1250-1350 °С и изотермической выдержке 1 ч. Спеченные стержни подвергают внешнему осмотру и контролю твердости, химического и структурного составов. Для качественной наплавки сплав должен иметь гетерогенную структуру (твердый и жесткий каркас из частиц карбида хрома и равномерно распределенную между зернами карбида и вокруг них пластичную никелевую связку), плотность не ниже 5,8 г/см и твер-  [c.132]

Аналогичное изменение претерпел и порядок установления диапазона варьирования аттестуемых в СО концентраций элементов путем согласования с государственными стандартами на марки материалов. В связи с тем, что достаточно большое количество металла производят не по стандартам, а по техническим условиям, а также из-за регламентирования в нормативно-технической документации поля допуска многих элементов односторонним пределом (не более или не менее), содержащаяся в стандартах информация оказалась недостаточной для назначения требуемого в СО диапазона концентраций аттестуемых характеристик. Для получения более объективной информации ИСО ЦНИИЧМ была исследована структура химико-аналити-ческого контроля на предприятиях отрасли и у потребителей металла. Распределение среднегодового объема аналитических работ применительно к измерениям химического состава чугунов, сталей и сплавов на никелевой основе показало, что из 31 определяемого элемента на 9 (С, S, Р, Мп, Сг, Si, Ni, Си, N) приходится 97,4 % работ, вып9лня-емых в заводских лабораториях, для 8 элементов доля работ снижается от 0,71 до 0,11 %, а при контроле остальных 14 элементов суммарная доля не превышает 0,18 %  [c.73]


В мае 1971 г. в ленинградском Доме научно-технической пропаганды состоялся семинар-совещание, посвященный неразрушающему контролю качества конструкций и изделий из стеклопластиков. На совещании обсуждались доклады, в которых были сделаны сообщения по результатам исследования физикомеханических характеристик, состава и структуры, влажности, контроля толщины, дефектов, технологических параметров при помощи ультразвуковых, микрорадиоволновых, инфракрасных, радиометрических, рентгеновских, электронных, электрических и других методов. Основные материалы совещания были опубликованы в сборнике [149]. В результате дискуссии и обсуждения результатов исследований были приняты рекомендации совещания, направленные на дальнейшее развитие методов и средств неразрушающего контроля качества конструкций и изделий из стеклопластиков.  [c.72]

Из чисда радиационных методов (см, табл. 1.2) для обнаружения и измерения внутренних дефектов в изделии используются методы прошедшего излучейия. При прохождений через контролируе ое изделие ионизирующее излучение ослабляется за счет его поглощения и рассеяния в материале изделия. Степень ослабления зависит от толщины изделия, химического состава И структуры материала, наличия в нем газовых полостей, сульфидных раскатов и других инородных включений. В результате прохождения ионизирующего излучения через контролируемое изделие детектором фиксируется распределение интенсивности дошедшего до него потока излучения, называемого радиационным изображением изделия. Наличие и ха-ракгеристики дефектов определяют по плотности полученного радиационного изображения. Равномерная интенсивность излучения, дошедшего до детектора, свидетельствует об отсутствии дефектов. Уменьшение плотности радиационного изображения соответствует увеличению толщины контролируемого изделия, например в зоне сварных швов или брызг (капелек) металла от сварок. В свою очередь увеличение плотности соответствует участкам изделий с меньшей радиационной толщиной, имеющих дефекты. Схема радиационного контроля методом прошедшего излучения приведена на рис. 6.4.  [c.92]

Метод капиллярной дефектоскопии может быть применен для контроля качества заготовок и деталей, изготовленных из любых немагнитных материалов аустенитных сталей, цветных сплавов, пластмасс, керамики,— кроме материалов, обладающих пористой структурой. Он основан на принципах капиллярного проникновения индикаторной жидкости (пене-транта) в полость дефекта, адсорбции ее проявляющим составом и люминесценции индикаторного состава в лучах ультрафиолетового света (УФС). В качестве источника УФС используется ртутно-кварцевая лампа типа ДРШ-1000, помещенная в защитный кожух с параболическим рефлектором.  [c.545]

Следует установить систему входного контроля (для материалов, поступающих в серийное производство, комплектующих деталей, узлов, агрегатов). Для контроля в процессе производства детали и узлы разбивают на различные группы контроля в зависимости от назначения и ответственности. Условия контроля указывают в чертеже детали. Для ответственных деталей следует применять контроль геометрии, механических свойств, твердости, структуры материала, химического состава и др. Для выявления дефектов (трещин, рыхлот, засорений и т. п.), особенно в литых деталях, сварных швах, поковках, необходимо применять дефектоскопию (цветную, лю5 инесцентную и др.), рентгеноскопический анализ, ультразвуковой контроль. Рекомендуется применять разрезку одной детали из партии для проведения более полного исследования использовать микрообразцы, вырезаемые из деталей для проверки кеханических свойств. В отдельных случаях целесообразно применять образцы-свидетели, проходящие вместе с основной деталью определенную технологическую операцию (например, термообработку, литье, сварку и т. п.).  [c.631]

Селенид олова не кристаллизуется в структуре каменной. соли, поэтому в этой системе не существует непрерывного ряда твердых растворов во всей области составов. В зависимости от температуры максимально достижимая величина х лежит между 0,4 и 0,5. Имеются данные только по фазовым диаграммам конденсированных фаз бинарных соединений [93], псевдобинарным равновесиям между жидкой и твердой фазами и кривым метасолидуса [87, 91]. Сообщений об исследовании легирования этих. соединений нет, по-видимому, вследствие большой концентрадии собственных дефектов (10 —10 см- ). Контроль концентрации носителей путем введения примеси может быть осуществлен только в материале, который был выращен или отожжен при. низких температурах (с 650°С), а также при условии, что имеется примесь, растворимая в больших количествах.  [c.127]


Смотреть страницы где упоминается термин Контроль структуры и состава материалов : [c.238]    [c.3]    [c.155]    [c.341]    [c.175]    [c.703]    [c.184]    [c.21]   
Смотреть главы в:

Проектирование радиоволновых СВЧ приборов неразрушающего контроля материалов  -> Контроль структуры и состава материалов



ПОИСК



Контроль материалов

Контроль состава и структуры конструкционных материалов

Материал структура

Материалы для состав

Состав и структура ЭС

Структура материала — Контроль



© 2025 Mash-xxl.info Реклама на сайте