Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механические движущие силы

По способу передачи перемещаемому грузу движущей силы машины непрерывного транспорта разделяются на машины, действующие с помощью механической движущей силы (например, от электропривода) самотечные (или гравитационные) устройства, в которых груз перемещается посредством своей силы тяжести устройства пневматического транспортирования и устройства гидравлического транспорта, в которых движущей силой являются соответственно поток воздуха или воды.  [c.11]


Механические движущие силы  [c.298]

В настоящей лекции мне хотелось бы дать краткое изложение основных идей метода Кубо ). Я начну с рассмотрения случая необратимых процессов, вызванных механическими движущими силами.  [c.298]

Механическим коэффициентом полезного действия машины или механизма называется отношение работы сил производственного сопротивления к работе движущих сил за один полный цикл установившегося движения. Коэффи-циент полезного действия находят по формуле  [c.175]

Если движущие силы и силы полезного сопротивления приведены к одному и тому же вращающемуся звену, то механический коэффициент полезного действия механизма можно определить как отношение среднего приведенного момента сил полезного сопротивления к среднему приведенному моменту движущих сил W  [c.176]

Если движущие силы и силы полезного сопротивления приведены к одной и той же точке звена приведения механизма и линии действия этих сил совпадают, то механический коэффициент полезного действия определяется как отношение приведенной силы полезного сопротивления к приведенной движущей силе  [c.176]

Отношение работы At непроизводственных сопротивлений к работе движущих сил принято обозначать через ф и называть механическим коэффициентом потерь. В соответствии с этим формулу (14.13) можно написать так  [c.309]

Пружинный двигатель (рис. 4.2) имеет механическую характеристику (рис.4.3, б), аналитическое выражение которой Мд = Мд — —жесткость пружины ср — угол закручивания пружины. У электродвигателя постоянного тока механическая характеристика (4.3, в) представляет собой зависимость движущего момента Мд от угловой скорости ротора со Мд = Мд(со).  [c.116]

Зависимость движущей силы или силы сопротивления (или моментов этих сил) от кинематических параметров, заданная аналитически или графически, называется механической характеристикой соответственно двигателя или рабочей машины.  [c.57]

Механическими характеристиками двигателя и рабС Чей машины называются также зависимости от кинематических параметров мош,-ностей движущих сил и сил сопротивления.  [c.57]

Отношение абсолютной величины работы(или средней мощности) полезных сопротивлений к работе (или средней мощности) движущих сил за один полный цикл установившегося движения механизма называется механическим коэффициентом полезного действия (КПД) механизма.  [c.62]


Наибольшее влияние на закон движения механизма оказывают движущие силы и моменты, а также силы и моменты сопротивления. Их физическая природа, величина и характер действия определяются рабочим процессом машины или прибора, в которых использован рассматриваемый механизм. В большинстве случаев эти силы и моменты не остаются постоянными, а изменяют свою величину при изменении положения звеньев механизма или их скорости. Эти функциональные зависимости, представленные графически, или массивом чисел, или аналитически, носят название механических характеристик и при решении задач считаются известными.  [c.141]

Если механическая характеристика ЭМУ известна, то определяется расчетная тяговая (движущая) сила которая  [c.303]

Зависимость движущих сил от скорости звеньев, а сопротивлений — от времени типична для машин, приводимых в действие электродвигателями. Для электродвигателей разных типов характерны различные формы их механических характеристик (см. гл. 20), различные интегрирующие их аналитические зависимости и способы решения уравнения движения механизма.  [c.288]

Поэтому, по Отту, механическая работа в термодинамическом процессе равна работе движущей силы (8.27) и, следовательно, должна определяться изменением не полного импульса g, а только его части g — Qv/ , не содержащей импульса Qy/ массы Qj , переданного телу при теплообмене.  [c.155]

Механическим коэффициентом полезного действия т] называется отношение работы сил полезного сопротивления к работе движущих сил /4д, ,Т1 = Л с/Лд е< 1.  [c.154]

Механическим коэффициентом полезного действия (к. п. д.) механизма называют отношение работы (или мощности) сил полезных сопротивлений к работе (или мощности) движущих сил  [c.70]

Оптимизация условия передачи сил позволяет получить механизм с достаточно высоким механическим к. п. д. Это осуществляют с помощью углов давления. Углом давления у называют угол между направлением вектора движущей силы, приложенной к ведомому звену, и вектором скорости точки приложения этой силы. Он характеризует условия передачи силы ведомому звену.  [c.58]

Маховые массы накапливают кинетическую энергию на участках цикла, имеющих приведенный момент движущих сил больший, чем приведенный момент сил сопротивления, когда скорость входного звена возрастает. На участках с обратным соотношением этих моментов скорость снижается, маховые массы отдают накопленную кинетическую энергию, выполняя роль механического аккумулятора энергии, и способствуют снижению требуемой мощности двигателя.  [c.375]

Это выражение по своей структуре и физическому смыслу отражает общность природы различных форм энергетического взаимодействия и показывает, что количество передаваемой энергии (работа) определяется произведением двух величин, одна из которых является движущей силой процесса (потенциалом), а другая — координатой состояния, изменение которой характеризует данную форму взаимодействия. Так, механическая работа против внешних сил, связанная с изменением объема, определяется выражением  [c.21]

В зависимости от физической природы двигателя развиваемые на его подвижном элементе движущие силы (моменты) являются функциями различных кинематических параметров. Зависимость, связывающую движущий момент с соответствующим кинематическим параметром, называют энергетической или механической характеристикой двига теля. Обычно эти зависимости достаточно сложны и задаются Б графической форме.  [c.290]

Показателем степени совершенства механизмов служит механический коэффициент полезного действия (к. п. д.) т], выражающий отношение работы сил полезного сопротивления к работе движущих сил за время установившегося движения  [c.85]

Механические характеристики. Перейдем теперь к определению закона движения. Машинный агрегат — это комплекс, состоящий из машины-двигателя, передаточного механизма и рабочей машины. В двигателе создается движущий момент (или движущая сила). В рабочей машине образуется момент (или сила) полезных сопротивлений. Двигатель и рабочая машина имеют собственные кинематические цепи, но при изучении движения агрегата удобно рассматривать его общую кинематическую цепь, не разделяя ее на составные части, т. е. на цепь двигателя, передаточного механизма и рабочей машины. При этом действие внешней среды на механизм изображается внешними моментами (или силами), движущим моментом (силой) и моментом (силой) полезных сопротивлений, приложенными соответственно к ведущему и ведомому звеньям.  [c.58]


Механические тормоза. По принципу действия весьма сходны с фрикционными муфтами механические тормоза. Их задача состоит в том, чтобы остановить и удержать в покое вал, находящийся под действием сил инерции, а иногда и движущих сил (т. е. при начальной скорости 2 0 и конечной 1 = 0), например при необходимости удержать от падения груз, подвешенный на тросе, который наматывается на барабан лебедки, или остановить движущийся по инерции автомобиль. Это подобно присоединению вращающегося вала через фрикционную муфту к стойке.  [c.393]

Зависимость движущей силы (или момента сил) двигателя от скорости его рабочего звена (вала) принято называть механической характеристикой.  [c.130]

Основные закономерности сухого трения. Поверхности звеньев, даже весьма тщательно отполированные, имеют мало заметные для невооруженного глаза выступы и углубления, которые образуют так называемую шероховатость (рис. 7.1, б). При скольжении шероховатых поверхностей происходит механическое зацепление и деформирование отдельных выступов, на что затрачивается некоторая часть энергии движущих сил. Кроме того, в местах весьма плотного соприкасания выступов шероховатых поверхностей возникают силы молекулярного взаимодействия, на преодоление которых также затрачивается энергия движущих сил. Таким образом, сухое трение скольжения и возникающее при этом сопротивление относительному движению звеньев являются, в основном, результатом механического зацепления мельчайших выступов поверхностей и молекулярного взаимодействия их по площадкам контакта.  [c.153]

Когда же началось широкое использование движущей силы огня — появились паровые машины, в которых тепло, получаемое от сжигания топлива, превращалось в механическую работу, термин сила приобрел третье значение — энергии, то есть источника деятельной силы , источника работы. Позже энергию движущейся системы, например, камня или газа, стали называть кинетической, а энергию системы, приведенной в состояние, которое позволяет получить движение, хотя такового пока и нет, — камень поднят над землей, газ сжат в баллоне — потенциальной. С открытием и исследованием по-  [c.7]

Опыты Эрстеда обнаружили новый вид взаимодействия, новый источник механического движения — движущую силу электричества и новое средство измерения электротока.  [c.109]

Все большая замена оборота вещества оборотом энергии, связь энергетики с наиболее прогрессивными производственными технологиями, непрерывный рост энерговооруженности труда — все это делает энергетику мощной движущей силой повышения эффективности производства и производительности труда. Исследования последних лет [13] показывают, что вклад энерговооруженности (понимаемой как сумма конечной механической энергии во всех сило-  [c.26]

Поэтому коэффициенты 1/ j можно трактовать как жесткости этих пружин. Наконец, последний член лагранжиана можно рассматривать как потенциал, вызванный движущими силами = Qj, не зависящими от координат, например гравитационными силами. (Силы могут, однако, зависеть от времени.) Что касается диссипативной функции (2.38), то ее можно считать вызванной наличием диссипативных (вязких) сил, пропорциональных обобщенным скоростям. Такова вторая интерпретация уравнения (2.39) [или функций (2.37), (2.38)]. Согласно этой интерпретации уравнения (2.39) описывают сложную систему масс, связанных пружинами и движущихся в вязкой жидкости под действием внешних сил. Таким образом, мы описали движение двух различных физических систем посредством одного и того же лагранжиана. Отсюда следует, что все результаты и методы исследования, связанные с одной из этих систем, могут быть непосредственно применены и к другой. Так, например, для изучения рассмотренных выше электрических контуров был разработан целый ряд специальных методов, которые применимы и к соответствующим механическим системам. Таким путем было установлено много аналогий между электрическими и механическими или акустическими системами. В связи с этим термины, применяемые при описании электрических колебательных контуров (реактанс, реактивное сопротивление и т. д.), вполне допустимы и в теории механических колебательных систем ).  [c.59]

Эти соображения привели Герца к мысли о том, что, возможно, вся потенциальная энергия приложенных сил порождается скрытыми движениями, выражаемыми при помощи циклических переменных. Дуализм кинетической и потенциальной энергий представляет собой достойную задачу для философских размышлений. Мы имеем инертное свойство материи, с одной стороны, и силу — с другой. Инертное свойство материи есть нечто, вытекающее из самого факта существования массы. Обычная инерция заставляет материю двигаться по прямой линии то же самое происходит и в римановом пространстве, при помощи которого движение даже самых сложных механических систем изображается как движение одной точки. Создается впечатление, что инерция есть первичное свойство материи, которое вряд ли может быть сведено к чему-либо еще более простому. Поэтому с философской точки зрения можно согласиться с тем, что при помощи кинетической энергии выражаются инертные свойства материи. Однако подобного объяснения для силы предложить нельзя. Если кинетическая энергия является главной движущей силой в механике, то нельзя ли как-нибудь обойтись без потенциальной энергии и тем самым устранить необъяснимый дуализм, проникший в механику вместе с понятием о двух глубоко различных формах энергии, кинетической и потенциальной. Герц хотел показать, что потенциальная энергия имеет кинетическое происхождение, что она возникает в результате скрытых движений с циклическими координатами. Место сил в бес-силовой механике Герца занимают кинематические условия, налагаемые на движение с микроскопическими параметрами.  [c.158]


По способу передачи усилия перемещаемому грузу а) устройства, действующие с помсщью механической движущей силы  [c.151]

Необратимые процессы могут быть вызваны также термическими движущими силами типа градиентов концентрации и температуры. В противоположность случаю механических движущих сил мы не можем выразить термические движущие силы в виде определенного гамильтониана. Кубо, Иокота и Накаджима ) указали способ, при помощи которого можно обойти эту трудность. Они предложили воспользоваться фундаментальным предположением, сделанным Онсагером при выводе его знаменитого закона взаимности и заклю-  [c.301]

В теории механизмов, в зависимости от характера решаемых задач, применяют различные классификации сил. Согласно первой классификации действующие на механическую систему силы подразделяют на заданные (активные) и реакции связей. Согласно второй классификации действующие на систему силы делят на внешние и внутренние по отношению к этой системе. Эти две классификации сил известны из курса обнщй механики. Третья классификация является специфичной для теории механизмов. Согласно третьей классификации силы, действующие на механизм и развивающие мощность, подразделяют на силы движущие и силы сопротивления.  [c.56]

В зависимости от источника внешнего силового воздействия силы делятся на двиокущие и силы сопротивления движению. Движущие силы (моменты) появляются при преобразовании какого-либо вида энергии в механическую энергию движения звеньев механизма. Силы сопротивления движению появляются при преобразовании механической энергии движущегося звена в другие виды энергии, как результат взаимодействия его с другим звеном механизма (силы непроизводственного сопротивления) либо с другими механическими системами. Если сила сопротивления является результатом взаимодействия звена с другой механической системой, то она называется силой производственного сопротивления. Например, в компрессорных машинах кинетическая энергия движущихся звеньев преобразуется в потенциальную энергию сжатого газа, в металлорежущих станках — в механическую энергию разрушения обрабатываемого материала.  [c.241]

Для приведения механизма в движение к ведущим звеньям необходимо приложить движущие моменты Тд или силы fд, направленные в сторону движения звена или точек приложения сил. Движущие силы и моменты за время своего действия совершают положительную работу. В механизмах циклического действия они имеют периодический характер. Движущие силы создаются двигателями, которые осуществляют преобразование какого-либо вида энергии в механическую работу. В тепловых двигателях (внутреннего сгорания, паровые и газовые турбины) в механичекую работу превращается тепловая энергия, в электродвигателях —электрическая энергия, в пружинных двигателях — потенциальная энергия де-фор.мированной пружины.  [c.242]

Тип двигателя определяет закон изменения движущей силы и момента. Они по-разному изменяются в зависимости от скорости рабочего звена. Разные двигатели имеют различные механические характеристики Тд = Тд (со) (рис. 20.1). Данная механическая характеристика соответствует определенному уровню преобразуемой энергии. Например, при увеличении количества сжигаемого топлива двигатель внутреннего сгорания имеет механическую характеристику, расположенную выше, чем приведенная на рис. 20.1, е. Уравнения механических характеристик используют при описании воздействия двигателя на механизм.  [c.242]

Наблюдения за работой паровых машин показали неравноценность превращения теплоты в механическую работу и обратго. Эти наблюдения привели гениального французского инженера Сади Карно к опубликованию в 1824 г. труда Размышление о движущей силе огня и о машинах, способных развивать эту силу . В этой работе С. Карно изложил основы второго закона термодинамики, окончательно установленного в 1850 г. Клаузиусом и Томсоном. Строго систематически второй закон термодинамики был обоснован Л. Больцманом, М. Смолуховским, профессором Киевского университета Н. Н. Шиллером.  [c.7]

Движущие силы создаются двигат<У1ями, которые осуществляют преобразование какого-либо вида энергии в механическую работу. В паровых машинах, в паровых и газовых турбинах, в двигателях внутреннего сгорания в механическую работу превращается тепловая энергия, в электродвигателях механическая работа получается из электрической энергии потенциальная энергия, накопленная водой, преобразуется в механическую работу гидротурбинами натянутая пружина может произвести механическую работу превращение электрической энергии в механическую происходит и в электромагните поднятая гиря также может служить источником получения механической работы.  [c.75]

Для определения степени совершенства машины в энергетическом отношении пользуются понятием механического ко 5ффици-ента полезного действия (к. п. д.) машины, который представляет собой отношение абсолютной величины работы с сил производственных сопротивлений к работе Лд всех движущих сил за время цикла установившегося движения  [c.325]

Таким образом, можно сказать, что уже во И—I вв. до н. э, была совершена тихая, почти не замеченная революция в принципах получения движущей силы — открыт и экспериментально проверен способ превращения тепла, получаемого от сжигания органического топлива, в механическую работу более того, создана действующая модель, по существу, универсального теплового двигателя (эолопил). И если бы прогресс зависел только от научно-технических открытий, только от внутренней логики развития науки и техники, то промышленная революция XVn—XVni вв., возможно, наступила бы на несколько столетий раньше...  [c.38]

Карно считал, что тепловым машинам суждедр совершить большой переворот в цивилизованном мйр ё , и задался целью определить причины их несовершенства. Он доказывает теорему Движущая сила тепла не зави< сит от агентов, взятых для ее развития, ее количество исключительно определяется температурами тел, между которыми, в конечном счете, производится перенос теплорода . (Из посмертных записок Карно выяснилось, что он вскоре отказался от теплорода, перейдя на позиции механической теории тепла раньше многих других.) Затем он определяет условия получения максимальной  [c.115]

Чтобы понимать особенности поведения композитных материалов при нагружении в упругопластической области, необходимо разобраться в роли поверхности раздела как элемента структуры, передающего напряжения от матрицы к упрочнителю кюмпо-зита. Классификация поверхности раздела может быть основана на различных принципах. С физико-химической точки зрения различают следующие типы связи (по отдельности или в совокупности) механическую путем смачивания и растворения окисную обменно-реакционную смешанные связи [58]. В зависимости от способа изготовления или выращивания композита можно выделить две основные группы поверхностей раздела в композитах, полученных направленной кристаллизацией (in-situ), и в волокнистых композитах, армированных проволокой или волокнами и изготовленных путем диффузионной сварки, пропитки жидким металлом или методом электроосаждения. В композитах, изготовленных направленной кристаллизацией, фазы находятся практически в равновесии тем не менее в них возможна физикохимическая нестабильность [4, 74], которая приводит к сфероиди-зации или огрублению структуры при незначительном изменении состава и количества какой-либо фазы. Иная ситуация имеет место в волокнистых композитах — различие химических потенциалов в окрестности поверхности раздела является движущей силой химической реакции и (или) диффузии, а эти процессы могут приводить к изменению состава и объемной доли каждой фазы.  [c.232]



Смотреть страницы где упоминается термин Механические движущие силы : [c.124]    [c.341]    [c.82]    [c.183]    [c.242]    [c.354]    [c.153]   
Смотреть главы в:

Термодинамика необратимых процессов  -> Механические движущие силы



ПОИСК



Сила движущая

Силы механические



© 2025 Mash-xxl.info Реклама на сайте