Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Переохлаждение термическое

Превращение одной аллотропической формы в другую при пагреве чистого металла сопровождается поглощением тепла и происходит при постоянной температуре. На термической кривой (в координатах температура — время) превращение отмечается горизонтальным участком (рис. 37). При охлаждении происходит выделение тепла (выделение скрытой теплоты превращения) теоретически при такой же температуре, что и при нагреве, но практически при несколько более низкой вследствие переохлаждения.  [c.55]


В данной главе рассмотрена теория термической обработки стали на основе общей теории фазовых превращений переохлажденных систем, кратко описанных в гл. V п. 10. Перед изучением данной главы рекомендуем повторить материал в гл. V п. 10.  [c.235]

Хотя обязательным условием любого мартенситного превращения является переохлаждение исходной (аустенитной) фазы до температур, когда диффузионные перемещения можно считать подавленным, кинетика изотермического мартенситного превращения похожа на диффузионный распад, что свидетельствует (или является результатом) о том, что зарождение центров кристаллизации мартенсита есть термически активируемый процесс.  [c.266]

Сталь легированная (аустенит склонен к переохлаждению), зона термического влияния узкая, скорость охлаждения после сварки большая. Наблюдается рост зерна аустенита и укрупнение структуры. В этой зоне прочность металла повышается. но пластичность резко падает, часто до нуля (рис. 305,е).  [c.399]

Наличие у сплавов титана высокотемпературной модификации твердого раствора (Р), способной к значительному переохлаждению, обусловливает получение разнообразных структур в зависимости от режимов термической обработки (рис. 376).  [c.511]

Термические кривые, характеризующие процесс кристаллизации чистых металлов при охлаждении с разной скоростью, даны на рис, 17, При очень медленном охлаждении степень переохлаждения невелика и процесс кристаллизации протекает при темиературе, близкой к равновесной (рис, 17, кривая t j). На термической кривой при температуре кристаллизации отмечается горизонтальная площадка (остановка в падении температуры), образование которой объясняется выделением скрытой теплоты кристаллизации, несмотря на отвод тепла при охлаждении.  [c.29]

В рассматриваемых случаях можно выделить две стадии первая, или динамическая, во время которой в течение времени давление в пузырьке отличается от роо = Ре здесь возможны пульсации вторая или термическая стадия, когда давление и температура газа установились и равны pgg =роо+2Е/а и T ge = s(Poo -Ь 21.1а), а пузырек монотонно растет в перегретой жидкости (pg С Ро) или уменьшается в переохлажденной жидкости (pg >> ро). Термическая стадия определяется способностью жидкости отводить или подводить теплоту фазовых переходов. Следует отметить существенно меньшее, чем в газовых пузырьках,  [c.287]


Рассмотрим качественные оценки для термической стадии роста (в перегретой жидкости) или смыкания (в переохлажденной жидкости) парового пузырька. Пусть — характерная толщина слоя жидкости а а г а а в котором температура жидко-  [c.290]

При наличии термического переохлаждения АТ (рис. 12.9) выступы, образовавшиеся на меж-фазной поверхности, попадают в зону переохлаждения. Скорость их кристаллизации увеличивается, и они прорастают вперед. Плоский фронт теряет устойчивость, искривляется, на нем появляются ячеистые выступы. В момент выделения скрытой теплоты плавления процесс роста кристалла приостанавливается, возможно даже его оплавление. Кристаллизация приобретает прерывистый характер.  [c.442]

Большое влияние оказывает характер структуры, образующейся при кристаллизации. Благоприятной, например, считается дендритная равноосная. Для ее получения прибегают к модифицированию сварных щвов редкоземельными, тугоплавкими или поверхностно-активными элементами. Нередко применяют также различные способы внешнего воздействия на кристаллизующийся металл шва — электромагнитное и ультразвуковое перемешивание, механические колебания ванны в процессе кристаллизации и др. Для создания условий, способствующих переходу от плоской схемы кристаллизации к объемной, иногда прибегают к введению в сварочную ванну дополнительного холодного металла в виде проволоки или металлической крупки того же состава, что и свариваемый металл. Введение охлаждающей присадки создает в ванне зону термического переохлаждения и способствует получению объемной схемы кристаллизации.  [c.488]

Известно [27, 30], что ограничение значений твердости металла сварного шва является одним из практических методов снижения склонности сварного соединения к сероводородному растрескиванию. Как следует из [11, 12, 25, 31], на образование трещин в сварном соединении оказывает влияние неоднородность структуры металла, наличие в ней зон, склонных к растрескиванию, уровни действующих и остаточных напряжений. Именно в сварных соединениях локализуется большая часть разрушений металла, связанных с сероводородным растрескиванием. Наиболее негативное влияние оказывает быстрое охлаждение шва с образованием перлитно-бейнитной смеси с мартенситом. Стойкость к сероводородному растрескиванию металла сварного шва меньше, чем основного металла не только из-за наличия остаточных напряжений, но и вследствие присутствия различных дефектов. Для сталей повышенной прочности характерно сероводородное растрескивание по сварному шву и зоне термического влияния. Для сталей обычной прочности избирательное разрушение по шву и зоне термического влияния отмечается лишь при переохлаждении.  [c.63]

Качественные оценки для интенсивности теплообмена в термическом режиме роста (в перегретой жидкости) или смыкания (в переохлажденной жидкости) парового пузырька представлены формулами (1.6.19).  [c.194]

Научной основой технологии термической обработки стали является совместный анализ и применение диаграмм состояния (фазовых диаграмм) и диаграмм распада переохлажденного аустенита. К настоящему времени для сплавов на железной основе известны двойные диаграммы состояния а для большинства широко применяемых в промышленности сплавов и сталей — и тройные диаграммы. Для сталей, применяемых в отечественном машиностроении, построено около 600 диаграмм распада переохлажденного аустенита (изотермических и термокинетических кривых) [23, 64—66, 117, 174, 178, 202, 210]  [c.146]

Начиная с 40-х годов исследования и построения диаграмм переохлажденного распада аустенита позволили вести разработку технологических процессов термической обработки на строго научной основе для каждой марки стали в отдельности, позволили пшроко внедрять в производство изотермические процессы (изотермический отжиг, изотермическую закалку на мартенсит, ступенчатую закалку и др.), в первую очередь — для инструментов и деталей, обладающих упругими свойствами в малых сечениях.  [c.147]


За последнее время разработаны и начинают внедряться в практику машиностроения новые способы упрочнения. Сущность одного из них заключается в проведении деформации переохлажденного аустенита с последующим осуществлением закалки и низкого отпуска. Это приводит к увеличению предела прочности хромоникелевой стали (4,5% Ni, 1,5% Сг и 0,35% С) с 209 кгс/мм после обычной термической обработки до 280 кгс/мм при проведении обработки по рассматриваемому способу. Весьма важным являлось возрастание значений пластических свойств стали относительного удлинения с 2 до 12% и сужения с 5 до А2% [79].  [c.316]

С помощью формул (1-2-12) и (1-2-13) можно перейти от пересыщения пара Ар к его переохлаждению АТк- Ввиду малости термического сопротивления зародышевых образований конденсата переохлаждение можно отождествить с температурным напором АТ=Тп—Тс.. Очевидно, выводы, сделанные относительно влияния Ар, качественно справедливы и при использовании величины АТ.  [c.18]

Термический анализ, переохлаждение 125, 127  [c.396]

Термомеханическая обработка (ТМО) стали — совокупность операций термической обработки с пластической деформацией, которая проводится либо выше критических точек (ВТМО), либо при температуре переохлажденного (500...700 С) аустенита (НТМО). Такой вид обработки позволяет получить сталь высокой прочности (до 270 МПа). Формирование структуры сталей при ТМО происходит в условиях повышенной  [c.158]

Изотермическая закалка — наиболее прогрессивный метод термической обработки, обеспечивающий получение однородной структуры изделий с минимальными внутренними напряжениями. Она основана на превращениях переохлажденного аустенита при постоянной температуре. Изотермическая закалка осуществляется так же, как и ступенчатая, с той лишь разницей, что изделия выдерживают в ванне более длительное время (30-60 мин и более), пока не закончится распад аустенита. Температуру и время выдержки в горячей ванне устанавливают по диаграмме изотермического превращения аустенита данной стали. Окончательно изделия охлаждают на воздухе. В это время структура стали уже не изменяется. При изотермической закалке удается устранить большое различие в скоростях охлаждения поверхности и сердцевины изделий, что является основной причиной образования напряжений, возникновения деформаций и закалочных трещин. После такой закалки изделия приобретают высокую вязкость и хорошую со-  [c.199]

Кроме указанной термической обработки, применяется обработка холодом. В том случае, когда точки мартенситного превращения у сталей относятся к комнатной температуре или несколько ниже, то обработка холодом вызывает переохлаждение стали ниже точки и этим самым увеличение количества мартенсита в стали.  [c.253]

Эти особенности следует учитывать ири использовании диаграмм состояния в металлографических исследованиях сварных соединений. Структуру сварных соединений можно оцепить ио диаграммам состояния лишь приблизительно и с учетом процессов ликвации и переохлаждения, протекающих при охлаждении сварного шва и связанных часто с образованием неравновесных структур. Для назначения термической обработки готовых сварных швов и контроля за ее проведением использование диаграмм состояния вполне возможно. Другая возможность  [c.32]

Закалка — нагрев выше критической точки Ас с последующим быстрым охлаждением. При медленном охлаждении аус-тенит распадается на феррит+цементит при Аг. С увеличением скорости охлаждения превращение происходит при более низких температурах. Феррито-цементитная смесь по мере снижения Аг1 становится все более мелкодисперсной и твердой. Если же скорость охлаждения была так велика и переохлаждение было так значительно, что выделение цементита и феррита не произошло, то и распада твердого раствора не происходит, а аустеннт (у-тведрый раствор) превращается в мартенсит (шересыщенный твердый раствор углерода в а-железс). Неполная закалка — термическая операция, при которой нагрев проводят до температуры, лежащей выше Ас, но ниже Ас и в структуре стали сохраняется доэвтектоидный феррит (заэвтек-тоидный цементит).  [c.231]

Разная степень упрочнекия при термической обработке обьясняется получением разных структур вследствие различий в кинетике распада переохлажденного аустеннта (рис. 295).  [c.377]

Температура ковки, "С начала 1260, конца 750. Сечение до 600 мм, отжиг [ерекристаллизацией (или нормализация), одно переохлаждение, отпуск. Свариваемость — сваривается без ограничений (кроме химико-термически обработанных деталей). Способы сварки РДС, АДС под флюсом и газовой защитой, КТС без ограничений.  [c.156]

Рассмотрим качественные оценки для термической стадии (когда pz Pi + 22/а) роста в перегретой жпдкости To>Ts) илп смыкания в переохлажденной н идкости Т < Ts) парового пузырька. Температура жидкости (см. рис. 1.6.1, б) меняется от  [c.115]

При конденсации паров органических жидкостей требуемая величина переохлаждения A7"k обычно мала. Требуемое переохлаждение для ртутного пара очень велико. Промежуточное положение занимает конденсация водяного пара. В результате интенсивное образование конденсата паров о)рганических жидкостей при больших температурн"ых напорах может привести к существенному заполнению поверхности стенки жидкостью и увеличению термического сопротивления (эффект, близкий по своему результату к эффекту утолщения пленки при пленочной конденсации). При конденсации ртутного пара на стальных поверхностях образуется сравнительно мало капель, конденсация идет не интенсивно коэффициент теплоотдачи при этом может быть меньше, чем при пленочной конденсации того же пара [Л. 53].  [c.287]


Микротвердость бывших аустенитных участков можно увели чить с помош,ью термической обработки, однако закалка белого чугуна нредставляет определенную трудность, сопровождается воз< никновением микротрещин и приводит к снижению стойкости при многократных ударных нагрузках. В связи с этим основным методом повышения твердости бывших аустенитных участков следует считать легирование белого чугуна элементами, способствуюш,ими переохлаждению аустенита и переводу его в мартенсит при обычных скоростях охлаждения отливок. Такими элементами являются хром, никель (при совместном присутствии), марганец, молибден и некоторые другие.  [c.34]

Осмий стабилизирует р-фазу. Она поддается закалке от 1000 С уже в сплаве с 4 ат. % Os, что соответствует электронной концентрации 4,16 эл1ат и совпадает с таковой, принятой для р-стабйлиза-торов титана. Температура р а-превращения с повышением содержания осмия резко понижается. Величина термических эффектов быстро уменьшается и, начиная с 5 ат. % Os, это превращение на термограммах не обнаруживается. Превращение р -v а идет с большим переохлаждением. Растворимость осмия в а-титане при 600 С составляет примерно 1 ат.%,  [c.179]

Дельные части которых различаются по толщине, вследствие чего превращение лустенита в них происходи с различной скоростью и при различной степени переохлаждения. Поэтому в массивных и относительно тонких частях одной и той же отливки получаются сильно различающиеся структуры и свойства. Применяемое печное оборудование не всегда обеспечивает достаточную равномерность температур по всему объему садки. Это особенно опасно при заключительной операции термической обработки отливок — отпуске. Термическую обработку нужно производить в специальных печах с большим числом газовых беспламенных горелок, которые могут обеспечить равномерное распределение температур в рабочем пространстве печи.  [c.162]

Скорость охлаждения при термической обработке зависит от требуемых конечной структуры и свойств стали. Ниже точки А, (723" С) аустенит неустойчив. Если степень переохлаждения аустенита невелика, он распадается на ферритно-цемеититиую сыесь.  [c.121]

Теплота переохлаждения конденсата 43 Термический коэффициент объемного расширения 23 Термодинамическая теория капиллярности 6 Термодинамический потенциал двухфазной системы 16 Термокапиллярная сила 146 Тол1цина поверхности разрыва 6  [c.236]

Однако быстрое охлаждение вызывает сильное переохлаждение аустенита, что уменьшает количество свободного феррита и приводит к образованию тонкой ферритно-цементитной структуры (троостит, сорбит). После закалки следует отпуск, чаще самоот-пуск за счет теплоты, сохранившейся при неполном охлаждении при. закалке. После упрочнения сортового проката временное сопротивление о в возрастает в 1,5—2,0 раза при сохранении bu o кой пластичности и понижении порога хладноломкости. Одновременно повышается и предел выносливости. Термическая обработка с прокатного нагрева позволяет сэкономить 10—50 % металла для изготовления конструкций, дает экономию энергетических ресурсов и позволяет в ряде случаев заменить легированные стали термически упрочненными углеродистыми сталями.  [c.257]

Хромоникелемолибденованадиевые стали. Нередко в хромоникелевую сталь кроме молибдена (вольфрама) добавляют ванадий, который способствует получению мелкозернистой структуры. Примером сталей, легированных Сг, N1, Мо и V, могут служить 38ХНЗМФ и 36Х2Н2МФА. Большая устойчивость переохлажденного аустенита обеспечивает высокую прокаливае.мость, что позволяет упрочнять термической обработкой крупные детали. Даже в очень больших сечениях (1000—1500 мм и более) в сердце-вине после закалки образуется бейннт, а после отпуска — сорбит. Указанные стали обладают высокой прочностью, пластичностью и вязкостью и низким порогом хладноломкости (см. табл. 8). Этому способствует высокое содержание никеля. Молибден, присутствующий в стали, повышает ее теплостойкость. Эти стали можно использовать при температуре 400—450 С.  [c.281]

После закалки имеют структуру переохлажденной метастабильной Р -фазы, обеспечивающей высокую пластичность сплавам (б = 12-н40%, з = = ЗО-н-60%) и хорошую обрабатываемость давлением Св 650-г 1000 МПа. При старении сплавов временное сопротивление увеличивается приблизительно в 1,5 раза и достигает 1300— 1800 МПа. Плотность сплавов находится в Интервале 4,9—5,1 г/м , а удельная прочность, самая высокая среди титановых сплавов, превышает 30 км. Сплавы обладают низкой склонностью к водородной хрупкости, но чувствительны к примесям — кислороду и углероду, вызывающим снижение пластичности и вязкости сварные швы имеют пониженную пластичность термическая стабильность низкая. Наибольшее распространение в промышленности получил сплав ВТ15 ( 3 % А1, 8 % Мо и 11 % Сг). Этот сплав выпускается в виде полос, листов.  [c.314]

Перечисленные условия дают возможность фиксировать термические остановки в области температур до 1100° с точностью до +0,3°. Как будет показано в главе 13, эта степень точности обычно больше точности, с которой можно определять состав расплава в момент затвердевания. Конечно, самая высокая точность получается только при отсутствии переохлаждения. Когда имеется заметное переохлаждение, то необходимо продолжить определение термической остановки. В этом случае первую кривую, полученную с переохлаждением, можно использовать для приблизительного суждения о положении точки затвердевания сплава. Затем опыт повторяют в условиях, которые обеспечивают более энергичное перемешивание металла и уменьшение скорости охлаждения до 0,5 град/мин. Если это не устраняет переохлаждения, должен быть применен метод модификации расплава. Дл1я этого в верхней части ттигля должны быть предусмотрены отверстия, через которые опускаются небольшие крупинки твердого сплава твердые частички опускаются, когда температура будет выше ожидаемой точки ликвидуса на 1—2°. Введенные частицы служат зародышами, у поверхности которых начинается кристаллизация. В зависимости от того, будет ли температура сплава выше или ниже точки ликвидуса, образующиеся кристаллы твердой фазы могут растворяться или продолжать расти.  [c.153]

Концентрационное и термическое переохлаждение способствует развитию дендритной или микроскопической ликвации. В аустенитных швах направленность столбчатых кристаллов выражена наиболее четко. Повышенное сечение и поэтому малая поверхность столбчатых кристаллов способствуют образованию межкристаллитных прослоек повышенной толщины, что и увеличивает вероятность образования горячих трещин. Применение методов, способствующих измельчению кристаллов и дезориентации структуры, утоньшая межкристаллитные прослойки, несколько повышает стойкость швов против горячих трещин.  [c.353]

В процессе термической обработки стали часто превращение переохлажденного аустенита происходит ие при изотермической выде1ржке, а при непрерывном охлаждении. Так как диаграмма изотермического распада аустенита построена в координатах температура — время, то на нее можно наложить кривые охлаждения стали (рис. 73).  [c.133]

Конденсат, стекающий с верхних труб и охлажденный ниже температуры насыщения смешиваясь с паром в нижней части конденсатора, вновь нагревается почти до температуры насыщения. Такие конденсаторы называются регенеративными. В регенеративных конденсаторах устраняется возможность охлаждения конденсата до температуры более низкой, чем температура насыщенного конденсирующегося пара, т.е. переохлаждение кон енсд-ffjfl. Переохлаждение представляет собой недопустимую потерю, так как при нем увеличивается тепло, передаваемое охлаждающей воде, т.е. понижается термический КПД цикла.  [c.211]


Без переохлаждения кристаллизация невозможна. Переохлаждение может быть термическим и концентрационным. Термическое переохлаждение технически чистых металлов имеет значение только при образовании зародышей. Однако в сварных швах всегда есть уже готовые центры кристаллизации. Поэтому вследствие уменьшения энергии образования зародыша требуемое переохлаждение может быть меньшим или необходимость в нем может отсутствовать. Особого внимания в этом отношении заслуживают нерасплавившиеея кристаллы основного металла, на которых может происходить эпитаксиальная кристаллизация из жидкой фазы 1.  [c.30]

Переход от металла шва (слева) к зоне термического влияния uZn37 (справа). Оба участка имеют структуру, состоящую из а- и Р-твердого раствора, образовавшегося вследствие переохлаждения (ср. с разделом 6,2.2.3). 200 1, (22) табл. 2.4.  [c.111]


Смотреть страницы где упоминается термин Переохлаждение термическое : [c.286]    [c.260]    [c.271]    [c.194]    [c.65]    [c.318]    [c.26]    [c.155]    [c.128]    [c.177]    [c.229]   
Теория сварочных процессов (1988) -- [ c.435 , c.439 , c.442 ]



ПОИСК



Переохлаждение

Переохлаждение в термическом анализ

Термический анализ, переохлаждени



© 2025 Mash-xxl.info Реклама на сайте