Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Предел прочности инструментальных материалов

Предел прочности инструментальных материалов 279 Преобразователи сварочные 180 Прессование металлокерамических изделий 262, 263  [c.781]

Фиг. 125. Изменение формоустойчивости режущей кромки в зависимости от отношения истинных пределов прочности инструментального и обрабатываемого материалов при их различных сочетаниях. Фиг. 125. Изменение <a href="/info/656050">формоустойчивости режущей кромки</a> в зависимости от отношения <a href="/info/113245">истинных пределов прочности</a> инструментального и обрабатываемого материалов при их различных сочетаниях.

Прочность обеспечивает сохранение формы лезвий при силовом нагружении в процессе резания. Разрушение лезвий может быть хрупким, а при высоких температурах нагрева - пластическим. В первом случае имеют место осыпания, выкрошивания и сколы, во втором - пластическое течение с последующим срезом малых объемов инструментального материала. Так как разрушения могут зависеть от циклического изменения нагрузки на лезвии по направлению и знаку, то следует повышать предел усталости инструментальных материалов. Термические удары, например, при прерывистом резапии или неравномерном охлаждении лезвий приводят к растрескиванию инструментального материала. Поэтому важно иметь представление о его сопротивлении термодинамическим нагрузкам.  [c.129]

Быстрорежущие стали по-прежнему остаются широко распространенным инструментальным материалом, из которого изготовляют сложные по конструкции многолезвийные и фасонные инструменты (фрезы, долбяки, шевера, протяжки, сверла, развертки, зенкеры и т. д.). Из быстрорежущей стали изготовляют фасонные и резьбовые резцы, а также и все другие типы резцов, если по условиям обработки к ним не предъявляют повышенных требований в отношении теплостойкости. Основное достоинство быстрорежущих сталей — высокая прочность предел прочности, например, у стали Р18— 320 кгс/мм, а у твердых сплавов— ПО—130 кгс/мм . В отличие от последних, инструмент из быстрорежущей стали хорошо противостоит также вибрациям и ударам, обладает достаточно высокой износостойкостью и работает при нагреве до 500—600° С (твердые сплавы при нагреве до 900—1000° С).  [c.20]

Пределы прочности и текучести, а также ударная вязкость стали повышаются при содержании в ней ванадия без снижения относительные сужения и удлинения. Ванадий связывает азот и снижает чувствительность стали к старению, повышает твердость, износостойкость н устойчивость против отпуска, а также теплостойкость стали, что благоприятно влияет на стойкость режущего инструмента. Ванадий широко используют при производстве конструкционных, жаропрочных и инструментальных сталей. В последнее время все чаще применяется микролегирование ванадием конструкционных сталей, что значительно повышает Их качество. Для легирования стали ванадием используют феррованадии табл. 96) или специальные ванадийсодержащие лигатуры. Реже для легирования стали используют ванадийсодержащие шлаки, ванадийсодержащие металлизированные окатыши н т. п. материалы.  [c.294]


ЛТО позволяет повысить твердость и износостойкость упрочняемых материалов. Твердость зависит от концентрации углерода и легирующих элементов в стали (при постоянном режиме обработки). Методом ЛТО хорошо упрочняют средне- и высоколегированные углеродистые и инструментальные стали. Стали с низким содержанием углерода и высокопрочные низколегированные стали при лазерной термической обработке упрочняются плохо. ЛТО практически не влияет на предел прочности и предел текучести сталей.  [c.133]

Количественные оценки перечисленных показателей обрабатываемости конструкционного материала данного химического состава и структурного состояния определяются в зависимости от его твердости, предела прочности и относительного удлинения, коэффициента трения в паре с инструментальным материалом,  [c.27]

В качестве наполнителей для порошковых пластмасс используют древесную муку, графит, кварц, слюду. Однородное распределение порошка в связуюшей массе обеспечивает высокую степень изотропности структуры и механических свойств пластмасс. Прочность и пластичность их невысокие временное сопротивление 30 МПа, предел прочности при изгибе 60 МПа, ударная вязкость 4...6 кДж/м . Пластмассы с минеральными наполнителями обладают химической стойкостью и повышенными электроизоляционными свойствами. Материалы на эпоксидной основе используются для залечивания отливок и восстановления изношенных деталей при изготовлении инструментальной и литейной оснастки.  [c.155]

Характерной особенностью испытания на изгиб является то, что гладкие образцы из пластичных материалов (медь, алюминий, железо и их сплавы в отожженном, а часто и в улучшенном состояниях) не могут быть доведены до разрушения, так как образцы изгибаются до соприкосновения концов, не разрушаясь. Поэтому испытания на изгиб гладких образцов с определением предела прочности и максимальной стрелы прогиба применяют прежде всего для малопластичных при растяжении материалов (чугунов, инструментальных сталей). В этом случае предел прочности  [c.196]

При испытании на изгиб в образце возникают как растягивающие, так и сжимающие напряжения. По этой причине изгиб — более мягкий способ нагружения, чем растяжение. На изгиб испытывают малопластичные материалы чугуны, инструментальные стали, стали после поверхностного упрочнения, керамику. Испытания проводят на образцах большой длины (I . h > 10) цилиндрической или прямоугольной формы, которые устанавливают на две опоры (рис. 2.2). Используют две схемы нагружения сосредоточенной силой (этот способ применяют чаще) и двумя симметричными силами (испытания на чистый изгиб). Определяемыми характеристиками служат предел прочности и стрела прогиба.  [c.51]

Количественные выражения показателей обрабатываемости конструкционного металла данного химического состава и структурного состояния определяются твердостью, пределом прочности и относительным удлинением, коэффициентом трения в паре с инструментальным материалом, свойством изнашивать лезвия инструмента, теплопроводностью и т. д. В реальных производственных условиях перечисленные свойства конструкционных металлов в связи с отклонениями химического состава и неоднородностью микроструктуры не являются постоянными.  [c.12]

По таким важным параметрам, как твердость, предел прочности на сжатие, температуро- и износостойкость, твердые сплавы превосходят быстрорежущие стали. Металлорежущие инструменты, оснащенные твердосплавными пластинками, могут обрабатывать стали и чугуны со скоростями, в 2...3 раза превосходящими скорости доступные инструментам из быстрорежущих сталей. Снова возникла ситуация, когда парк металлорежущих станков, рассчитанный на работу с быстрорежущим инструментом, сдерживал использование высоких режущих свойств твердосплавных инструментов. Таким образом, появление новых инструментальных материалов — твердых сплавов — вновь явилось причиной очередного скачка в области станкостроения и механической обработки деталей машин. Вновь возросли скоростные и мощност-ные характеристики станков. Частота вращения шпинделей станков повысилась до 2000 об/мин. Мощность, например, токарных станков достигла 13... 15 кВт. Рациональное использование нового станочного оборудования и твердосплавных инструментов привело к повышению производительности труда и экономичности обработки металлов резанием.  [c.16]


Из всех инструментальных материалов наилучшим сочетанием прочностных характеристик обладают инструментальные стали. Отношение между их пределами прочности на изгиб и растяжение равно  [c.18]

Затем в порядке убывания прочностных характеристик следуют твердые сплавы, минералокерамика, синтетические инструментальные материалы и алмазы. Все эти материалы достаточно хорошо выдерживают сжимающие напряжения. Однако их существенным недостатком является низкое значение прочности на изгиб (СТи = 0,3... 1,0 ГПа). Предел же прочности на растяжение у этих материалов настолько мал, что вообще не позволяет производить обработку резанием при действии в них растягивающих напряжений. При использовании этой группы инструментальных материалов необходимо за счет соответствующей геометрии рабочей части добиваться, чтобы в процессе резания в них действовали только сжимающие напряжения.  [c.18]

МЕХАНИЧЕСКИЕ СВОЙСТВА. Несмотря на сложный химический состав и высокую степень легирования, механические свойства (о , а, твердость) быстрорежущих сталей незначительно выше, чем у углеродистых и низколегированных инструментальных сталей (табл. 2.4). По пределу прочности на растяжение и изгиб все марки быстрорежущих сталей превышают другие инструментальные материалы. В термообработанном состоянии они не только имеют высокую прочность, но сохраняют упругость и вязкость. Изготовленные из них металлорежущие инструменты способны выдержать большие контактные напряжения, возникающие на лезвиях в процессе резания металлов.  [c.24]

Увеличение твердости и предела прочности на изгиб расширяет технологические возможности применения инструментальных материалов, повышает надежность, в том числе и в условиях ударной нагрузки.  [c.221]

Требования, предъявляемые к инструментальным материалам, определяются условиями, в которых находятся контактные поверхности инструмента при срезании с детали припуска, оставленного на обработку. На рис. 1 представлен режущий клин инструмента, срезающий с поверхности резания слой металла толщиной а. Стружка соприкасается с передней поверхностью инструмента в пределах площадки контакта шириной С. Для того чтобы режущий клин, не деформируясь, мог срезать слой обрабатываемого материала и превратить его в стружку, твердость Я инструментального материала должна значительно превосходить твердость Ям обрабатываемого материала. Поэтому первым требованием, которое предъявляют к инструментальному материалу, является его высокая твердость. Если бы при повышении твердости инструментального материала сохранялась его механическая прочность, то увеличение отношения однозначно характеризовало бы улучшение, эксплуатационных свойств инструментального материала. Однако увеличение твердости Я , как правило, сопровождается возрастанием хрупкости, а поэтому для различных марок инструментальных материалов существует определенное оптики  [c.11]

Но наряду с перечисленными достоинствами алмаз имеет и ряд серьезных недостатков, из которых главным является пониженная прочность. Предел прочности алмаза на сжатие составляет а = = 200 кгс/мм , а предел прочности на изгиб = >30 кгс/мм , что значительно меньше, чем у твердых сплавов и у минеральной керамики. Несмотря на очень большую твердость, химическая устойчивость алмаза невысока. При нагреве на воздухе до температур 700— 800° С происходит графитизация алмаза и наружные поверхности кристаллов превращаются в аморфный углерод. При нагревании алмаза в контакте с железом при температуре 750° С происходит интенсивное растворение алмаза в железе. Поэтому критические температуры при резании не должны превышать 700—750° С. Алмаз является очень дорогим инструментальным материалом стоимость алмазных инструментов в 50 раз и более выше стоимости аналогичных твердосплавных инструментов.  [c.29]

Оценка прочности производится по пределу прочности прн изгибе Стц, пределу прочности при сжатии и ударной вязкости а,.. Выбор указанных характеристик вызван условиями нагрузки режущего инструмента и в соответствии с условиями их работы прочность режущей части определяется той илн иной прочностной характеристикой. Обычно прочность режущей части ограничивается сопротивлением изгибу, а при переменных и ударных нагрузках решающей оценкой прочности является величина ударной вязкости а . Свойства основных инструментальных материалов приведены в табл. 1.  [c.6]

Хрупкая и пластическая прочность зависят от комплекса физикомеханических свойств инструментальных материалов. Важнейшие из них твердость, пределы прочности при растяжении, сжатии и изгибе, ударная вязкость, модуль упругости. Для материалов, получаемых прессованием, необходимо контролировать плотность. Физико-механические характеристики желательно знать не только в холодном состоянии, но и при пагреве.  [c.129]

Необходимо отметить еще один вид инструментальной керамики -синтетический корунд, находящий применение при лезвийной обработке. Несмотря на низкую прочность и большую хрупкость, он из-за высокой размерной стойкости не уступает режущим материалам. Данный материал при эксплуатации дешевле твердого сплава, прост в изготовлении, из него можно получать режущие элементы крупных размеров. Твердость синтетических корундов находится в пределах 2200-2300, предел прочности при изгибе составляет 565-575 МПа, при сжатии - до 2060 МПа, коэффициент теплопроводности равен 81,5 Вт/(м-К).  [c.157]

Предел упругости сталей, обработанных методом НТМО, чрезвычайно высок [120], что в сочетании с высокой циклической прочностью делает такие стали особо пригодными для изготовления высокопрочных пружин, рессор, подвесок и других подобных материалов. Кроме того, упрочнение материалов с помощью НТМО (а также ВТМО) приводит к резкому увеличению режущей стойкости и вязкости инструментальных сталей [133].  [c.67]


Предел упругости стали, обработанной методом НТМО, достаточно высок, что в сочетании с высокой циклической прочностью делает такие стали пригодными для изготовления высокопрочных пружин, рессор, торсионных стержней, подвесок и других подобных элементов. Кроме того, упрочнение материалов с помощью НТМО (как и ВТМО) приводит к значительному повышению режущей стойкости и вязкости инструментальных сталей.  [c.130]

Быстрорежущие инструментальные стали характеризуются значительным содержанием вольфрама и других легирующих элементов, повышающих их твердость и теплостойкость. Марки и химический состав быстрорежущих инструментальных сталей приведены в табл. 3. Наиболее распространенными являются марки Р18 и Р9. Первая из них имеет в своем составе 17,5—19% вольфрама, а вторая 8,5—10%. Таким образом, среднее содержание вольфрама указывается в обозначении марки. Буква Р показывает, что сталь быстрорежущая. Сталь марки Р9 лучше обрабатывается давлением, дешевле и на 10% легче, чем сталь марки Р18. Кроме того, у стали Р9 температура закалки ниже, что облегчает термическую обработку напаянных пластинок из этой стали. В то же время сталь Р18 обладает большей прочностью при высоких температурах при резании высокопрочных материалов инструменты из стали Р18 более производительны, чем из стали Р9. К положительным сторонам применения стали Р18 также надо отнести наличие более широкого интервала температур при нагреве под закалку, малую чувствительность к перегреву и обезуглероживанию при термической обработке и шлифовании. Твердость в закаленном состоянии находится обычно в пределах f/jR 62—64. Инструменты из стали Р18 позволяют работу со скоростями резания примерно в 2,5 раза более высокими, чем  [c.9]

Механические свойства металлов измеряют на стандартных образцах при растяжении путем однократного нагружения. Условное напряжение, соответствующее максимальной нагрузке, которое выдерживает образец до разрушения, называют временным сопротивлением Спределом прочности) Стй. Условный предел прочности при сжатии Ось для большинства конструкционных сталей в 1,5—2 раза больше Сть, для хрупких материалов (чугун, инструментальная сталь)—в 3—7 раз больше Оь. Предел прочности при срезе Тср у металлов, разрушающихся вязко, составляет (0,604-0,75)fft.  [c.16]

Испытание на изгиб. Для хрупких материалов (чугун, инструментальные стали после поверхностного упрочнения и т. д.) широко применяют испытания на изгиб (ГОСТ 14019—80). Чаще испытания проводят сосредоточенной нагрузкой на образец, лежащий на двух опорах (рис. 63). Предел прочности при изгибе о ивр (ощлх) подсчитывают по формуле  [c.92]

Для хрупких материалов (некоторых легированных и инструментальных сталей, сплавов цветных металлов, металлокерамики и пр.) в качестве предельного напряжения принимают предел прочности ав == о ред или Тв = Тпред) допускаемые напряжения будут  [c.19]

Скорость резания, с которой можно обрабатывать данный металл, при определенной стойкости резца, является характеристикой обрабатываемости металлов. Чем выше скорость, тем лучше обрабатываемость данного металла по сравнению с тем, который при той же стойкости и прочих одинаковых условиях допускает обработку с меньшей скоростью резания. Наихудшую обрабатываемость имеют инструментальные быстрорежущие хро-моникелевольфрамовые, хромомарганцовистые, хромокремнистыс, хромокремнемарганцовистые и кремнемарганцовистые стали. Очень низкой обрабатываемостью обладают жаропрочные стали и сплавы. Это объясняется тем, что жаропрочные материалы имеют значительное количество легирующих элементов (в том числе титан и марганец), склонны к свариванию (к адгезии) с режущим инструментом, незначительно изменяют прочность при нагреве до 800° С, имеют высокий предел прочности на сдвиг (в 2—3 раза выше по сравнению с конструкционной углеродистой сталью) у жаропрочных материалов высокий предел прочности сочетается с большой вязкостью они способны к сильному упрочнению  [c.103]

К режущим сверхтвердым материалам относятся природные (алмаз) и синтетические материалы. Самым твердым из известных инструментальных материалов является алмаз. Он обладает высокой износостойкостью, хорошей теплопроводностью, малыми коэффициентами линейного и объемного расширения, небольшим коэффициентом трения и малой адгезионной способностью к металлам, за исключением железа и его сплавов с углеродом. Наряду с высокой твердостью алмаз обладает и большой хрупкостью (малой прочностью). Предел прочности алмаза при изгибе = = 3000 МПа, а при сжатии = 2000 МПа. Твердость и прочность его в различных направлениях могут изменяться в 100—500 раз. Это следует учитывать при изготовлении лезвийного инструмента. Необходимо, чтобы алмаз обрабатывался в мягком направлении, а направление износа соответствовало бы его твердому направлению. Алмаз обладает высокой теплопроводностью, что благоприятствует отводу теплоты из зоны резания и обусловливает его малые тепловые деформации. Низкий коэффициент линейного расширения и размерная стойкость (малый размерный износ) алмаза обеспечивают высокую точность размеров и формы обрабатываемых деталей. Большая острота режущей кромки и малые сечения среза не вызывают появления заметных сил резания, способных создавать деформацию обрабатываемой детали и отжатия в системе СПИД. К недостаткам алмаза относится и его способность интенсивно растворяться в железе и его сплавах с углеродом при температуре резания, достигающей 750° С (800° С), что в наибольшей мере проявляется в алмазном лезвийном инструменте при непре-швном контакте стружки с поверхностью его режущей части, 1ри температуре свыше 800° С алмаз на воздухе горит, превращаясь в аморфный углерод. К недостаткам алмазных инструментов также относится их высокая стоимость (в 50 и более раз сравнительно с другими инструментами) и дефицитность. В то же время алмазный инструмент отличается высокой производительностью и длительным сроком службы (до 200 ч и более) при обработке цветных металлов и их сплавов, титана и его сплавов, а также пластмасс на высоких скоростях резания. При этом обеспечиваются высокая точность размеров и качество поверхности, что, как правило, исключает необходимость операции шлифования обрабатываемых деталей,  [c.92]

Вместо твердости, прочности и пластичности при разрушении неоднократно предлагалось использовать в качестве определяющего параметра энергию разрушения [33, 55, 77, 84]. Если считать, как это делается в работах [55, 84], что этот параметр примерно пропорционален площади под стандартной кривой напряжение — деформация, то для материала заданной прочности он приблизительно пропорционален удлинению при разрушении и, следовательно, может быть параметром, определяющим сопротивление разрушению пластичных материалов. Существование такого определяющего параметра было подтверждено Тирувенгадамом и др. [84, 88]. Однако между указанным параметром и сопротивлением кавитационному воздействию прочных хрупких материалов, таких, как инструментальная сталь [19, 33, 43], у которых энергия деформации убывает с повышением прочности, существует обратная связь. Другими словами, для таких материалов твердость (или предел прочности) играет главную роль. Исходя из этого, Хоббс [33] предложил в качестве определяющего параметра использовать предельную удельную работу деформации , пропорциональную произведению предела прочности на величину деформации если она остается упругой до момента разрушения). Иначе говоря, он считал, что при хрупком разрушении главную роль играет энергия разрушения. Если учесть, что при кавитации циклы нагружения повторяются с очень высокой частотой, то это допущение становится весьма реалистическим.  [c.442]


Лимитирующим фактором, ограничивающим применение холодной объемной штамповки, являются низкая пластичность некоторых материалов и недостаточная стойкость инструмента, имея в виду его поломку вследствие высоких удельных нагрузок. Установлено, например, что при выдавливании инструмент является достаточно стойким при давлении на пуансон, не превышающем 2000...2500 МН/м . Матрицы могут выдерживать более высокие давления, так как они бандажируются. В ближайшие годы этот предел будет доведен до 3500 МН/м и даже выше, так как разработаны и проходят испытания новые высокопрочные инструментальные стали с пределом, прочности порядка 4000 МН/м .  [c.295]

Определение механических свойств при приложении сжимаюш,их нагрузок применяется для малопластичных материалов, например, чугунов, инструментальных сталей, керамики и для определения расчетных характеристик материалов деталей или узлов, работаюш их на сжатие. Испытание на сжатие имеет характерные особенн ости, существенно отличающие его от испытания на растяжение, а именно 1) пластичные материалы не разрушаются на конечной стадии испытания многие металлы и сплавы могут весьма значительно деформироваться не разрушаясь 2) результаты испытаний образцов на сжатие существенно зависят от отношения высоты образца к его диаметру 3) на предел прочности и характеристики пластичности заметно влияют условия трения в опорных торцах образца.  [c.49]

По значениям пределов прочности и твердости различных материалов, согласно данным М. Г. Лозинского [193], А. И. Бетанели [30], М. И. Зуева, В. С. Култыгина и др. [129] и др., были построены графики изменения отношений пределов прочности и твердости в зависимости от температуры для различных пар обрабатываемого и инструментального материалов (см. фиг. 128—132).  [c.141]

Поэтому испытания на изгиб с определением характеристик стадии разрушения (предел прочности при изгибе и максимальная стрела прогиба) применяются преждс-всего для малопластичных при растяжении материалов (чугунов, инструментальных сталей). В этом случае предел прочности подсчитывают по обычной формуле  [c.26]

Выбор геометрических параметров ЛИ проводят исходя из обеспечения прочности лезвия и верщины, требуемых параметров щероховатости обработанной поверхности с учетом свойств инструментального и обрабатываемого материалов. Главный задний угол лезвия а назначается в пределах 6...12°, вспомогательный угол О] = 3...8°, передний угол у выбирают в зависимости от обрабатываемого и инструментального материалов и вида обработки в пределах от -25 до +25°. Для тяжелых условий обработки с ударом угол у назначают о ицательным для чистовой и точной обработки пластичных материалов — положительным, в пределах 10...25°, для хрупких материалов О...10°. Для некоторых точных размерных инструментов (развертки) принимают у = 0. Для дробления стружки на передних поверхностях резцов выполняют лунки, усту-  [c.550]

Влияние борирования на предел прочности и вязкость изучали на трех типах материалов конструкционная сталь 45, инструментальная углеродистая У8 и легированная сталь 40Х. Испытания на разрыв образцов диаметром 5 мм проводили на машине Р-4, ударную вязкость определяли на стандартных образцах (10X10) с помощью маятникового копра М-30. Испытывали образцы, не подвергнутые борированию и борироваиные но режиму время 3,5 ч, температура 920°С, плотность тока борируемой поверхности 0,15 акм . Результаты исследований приведены в табл. 2 и показаны на рис. 16. Данные приведены для сталей, подвергнутых до борирования нормализации.  [c.22]

При напряжениях, постоянных во времени, коэффициент а достаточно хорошо характеризует прочность детали, изготовленной из хрупкого материала однородной структуры (например, из инструментальной стали). При достижении местными напряжениями а акс величины, равной Оа, произойдет разрушение детали. Для деталей, изготовленных из пластичных материалов, влияние концентрации напряжений при постоянной нагрузке оказывается меньшим, чем это определяется коэффициентом а . В этом случае, после того, как напряжения Омакс достигнут предела текучести, рост их прекращается, материал в точках т начинает течь . Дополнительная нагрузка воспринимается средними волокнами, напряжения в них растут. Процесс роста напряжений в средних голокнах продолжается до тех пор, пока не прекратится течение  [c.200]

Карбиды и их взаимные сплавы, будучи хрупкими, мало прочными и недостаточно жаростойкими материалами, могут быть значительно улучшены путем их легирования металлическими связками, т. е. вязкими металлами, повышающими прочность, термостойкость и другие свойства. Известна большая группа металлокераыи-ческих твердых сплавов систем карбид—металл, используемых в инструментальной технике для механической обработки металлов (табл. 19). Коэффициент линейного расширения перечисленных сплавов колеблется в пределах 6- 10 -ь 10-10" град .  [c.423]


Смотреть страницы где упоминается термин Предел прочности инструментальных материалов : [c.78]    [c.105]    [c.180]    [c.265]    [c.318]   
Справочник машиностроителя Том 5 Изд.2 (1955) -- [ c.279 ]



ПОИСК



Инструментальные

Материалы Прочность

Предел инструментальных материалов

Предел прочности

Предел прочности алюминиевых сплаве инструментальных материалов

Предел прочности инструментальных

Предел прочности материала



© 2025 Mash-xxl.info Реклама на сайте