Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Малые возмущения пограничного слоя в газе

Малые возмущения пограничного слоя в газе  [c.98]

Постановка задачи. Рассмотрим устойчивость двумерного пограничного слоя колебательно-неравновесного газа, обтекающего плоскую пластинку. Если плоскость пластинки совпадает с плоскостью (х, г), а ось у перпендикулярна этой плоскости, то малые возмущения пограничного слоя можно представить в виде А = Л1(у)ехр[/а(х-  [c.82]


Однако для случая крыльев, у которых достигается не на кромке (например, квадранты I и II на рис. 5.12), знак го может быть положительным. Например, при в плоскости симметрии гс > О, по крайней мере во внутренней части пограничного слоя, в точной постановке интегрирование задачи затруднено тем, что знак (5.67) при некотором значении А должен измениться для любых малых, но конечных го. При этом направление интегрирования должно быть противоположным в разных частях пограничного слоя. Эта особенность аналогична особенности, возникающей при появлении возвратных течений в двумерном пограничном слое. Однако в предельном случае го О решение задачи удается получить обычным путем, поскольку в (5.67) выпадает второй член и можно применять маршевый метод расчета. Таким образом, пренебрежение влиянием передачи возмущений вверх по поперечному течению приводит к погрешности О (го). Такое приближение все же может быть полезным при сравнительном анализе характеристик крыльев в гиперзвуковом потоке вязкого газа.  [c.213]

Аналогичный метод малых возмущений был использован Ц. Линем и П. Лисом ) при исследовании устойчивости ламинарного пограничного слоя на плоской пластине, обтекаемой потоком сжимаемого газа. В этом случае уравнение нейтральной кривой может быть записано в виде  [c.311]

Экспериментально установлено, что ламинарный поток можно стабилизировать при возрастающих числах Рейнольдса, если уменьшить возмущения. Вместе с тем важно установить, устойчив ли заданный ламинарный пограничный слой относительно возникающих малых возмущений. Это и является задачей газо(гидро)динамической устойчивости. Решение подобной задачи имеет важное значение, поскольку позволяет отыскать условия сохранения ламинарного течения. Вместе с тем оно важно также и потому, что нахождение места и условий потери устойчивости ламинарного пограничного слоя связано с определением перехода этого слоя в турбулентный.  [c.88]

Кроме дисперсии, другой важной характеристикой процесса распространения звуковой волны, которую необходимо учитывать в двухфазных средах, является диссипация волны. Под диссипацией волны понимается переход энергии волны в энергию теплового движения молекул в возмущенной части волны за ее фронтом. К процессам, приводящим к диссипации энергии волны в однофазных средах, относятся трение между слоями газа и в пограничном слое (влияние сдвиговой вязкости), молекулярная диссипация (влияние объемной вязкости), теплообмен и другие процессы, приводящие к диссипативным потерям энергии волны. Учет всех этих факторов в двухфазной среде вызывает определенные трудности и вместе с тем представляет интерес лишь в очень ограниченной области распространения волны, поскольку оказывает пренебрежимо малое влияние по сравнению с затуханием волны, обусловленным дисперсией, связанной с релаксационными процессами.  [c.34]


С целью возможного применения методов теории возмущений (асимптотических методов) важно выделить малые или большие параметры, входящие в систему урав нений и характеризующие основные особенности изучаемых физических процессов. Знание таких параметров может позволить упростить исходную систему уравнений в некоторых областях определения решения и тем самым применить более экономичные численные подходы. Так обстоит дело, например, в задачах стационарного обтекания тел вязким газом на основе уравнений Навье-Стокса, когда вязкость зачастую можно учитывать лишь в области пограничного слоя вблизи тела, а в основной области течения можно пользоваться более простыми уравнениями Эйлера.  [c.22]

Рассмотрим схему введения таких критериев подобия для некоторых частных видов течений, учитывая результаты предыдущего раздела и замечание в статье [Нейланд В.Я., 1970,6], согласно которым большая часть области течения, включая срывную зону, описывается уравнениями пограничного слоя. Очевидно, при этом должны учитываться граничные условия для всей области течения, в которой возмущения передаются вверх по потоку Для произвольного тонкого профиля при малом угле атаки а т область передачи возмущений замыкается в некоторой точке следа, где за счет разгона газа возникает течение запирания возмущений. Условия в сечении запирания для, общего случая трехмерного течения получены в п. I статьи [Нейланд В.Я., 1974,6].  [c.157]

Рассмотрим решения (1.2.7), которые описывают бегущие волны. Простейший тип такого рода волн с = О и 0 = О или п был указан в [38]. В системе координат, движущейся вместе с волной, возмущенные параметры газа не меняются со временем и становятся экспоненциально малыми на бесконечности вверх по потоку. Благодаря чисто действительной форме решения, в пограничном слое нет колебаний по времени и продольной координате, но с ростом развиваются мелкомасштабные поперечные пульсации. Ветви дисперсионных кривых в плоскости со, А показаны на рис. 1.6 (1т ш = 1т Л = 0). Зададим вместо  [c.33]

В нек-рых условиях гиперзвукового полёта на больших высотах (см. Динамика разреженных газов) процессы, происходящие в газе, нельзя считать термодинамически равновесными. Установление термодинамич, равновесия в движущейся частице (т. е. очень малом объёме) газа происходит не мгновенно, а требует определённого времени — т. н. времени релаксации, к-рое различно для разл. процессов. Отступления от термодинамич. равновесия могут заметно влиять на процессы, происходящие в пограничном слое (в частности, на величину тепловых потоков от газа к телу), на структуру скачков уплотнения, на распространение слабых возмущений и др. явления. Так, при сжатии воздуха в головной ударной волне легче всего возбуждаются поступат. степени свободы молекул, определяющие темп-ру воздуха возбуждение колебат. степеней свободы требует большего времени. Поэтому темп-ра воздуха и его излучение в области за ударной волной могут быть намного выше, чем по расчёту, не учитывающему релаксацию колебат. степеней свободы.  [c.656]

Рассмотрим поверхность нагрева, находящуюся в контакте с жидкостью. При этом давление превышает критическое, а температура жидкости ниже псевдокритической. Допустим, что температура стенки превышает псевдокритическую. Тогда жидкость вдали от стенки представляет собой псевдожидкость, а в нагретом пограничном слое свойства жидкости напоминают свойства газа. Таким образом, жидкость в пограничном слое характеризуется высокой сжимаемостью и малой плотностью. Волна конденсации, проходящая через поверхность нагрева, стремится сжать н Идкость в пограничном слое и кратковременно увеличить теплоотдачу. Когда через поверхность проходит волна разрежения, пограничный слой расширяется, вызывая мгновенное уменьшение теплоотдачи. По-видимому, эти условия являются идеальными для поддержания пульсаций. Аналогичный вывод справедлив и для докритической двухфазной системы, когда существует пузырьковый пограничный слой . Способность теплового источника, зависящего от давления, поддерживать резонансные акустические колебания, известна с 1777 г. Отдельные задачи подобного рода были рассмотрены Зондхаузом и Релеем [18, 19). Очевидно, необходимо, чтобы рабочее тело вдали от стенки было в состоянии нсевдожидкости, поскольку пульсации при температуре в массе жидкости, превышающей псевдокритическую, не наблюдались. Возможно, жидкость в пограничном слое (псевдогаз) находится в таком состоянии, что при незначительном росте давления она сжимается и ее плотность приближается к плотности жидкости. Происходящий в этом случае взрыв может генерировать волны давления, которые в дополнение к влиянию нестационарного теплообмена должны усиливать первоначальное возмущение.  [c.358]


Одно из допущений, принимаемое при исследовании трехмерного ламинарного пограничного слоя, состоит в том, что скорость поперечного потока считается малой по сравнению со скоростью основного потока. Общее решение для данного случая было получено в работе [1]. Это решение показывает, что скорость поперечного потока оказывает существенное влияние на характеристики трехмерного пограничного слоя, что представляет большой интерес для инженеров-аэродинамиков. К сожалению, даже при принятых допущениях решение поставленной задачи является достаточно сложным. Поэтому для производства быстрых вычислений желательно иметь упрощенные методы расчета. Существует ряд других задач расчета пограничного слоя, которые могут являться злободневными при конструировании турбомашин. Например, представляет интерес случай, когда толстый ламинарный пограничный слой подвергается внезапному боковому возмущению под действием градиента давления или в результате поперечного перемещения обтекаемой поверхности. В турбомашинах такие условия имеют место, например, когда поток газа с толстым ламинарным слоем поступает на лопатки ротора. Поперечное течение газа начинается не на передней кромке, а в той точке, где возникает боковое возмущение. Таким образом, имеем две характерные постановки задачи, заслуживающие внимания.  [c.27]

В инженерной практике широко распространены конструкции, элементы которых имеют полости или отсеки, содержащие жидкость, иапример, объекты авиационной и ракетно-космической техники, танкеры и плавучие топливозаправочные станции, суда для перевозки сжиженных газов и стационарные резервуары, предназначенные для хранения нефтепродуктов и сжиженных газов, ректификационные колонны и т. д. В большинстве случаев жидкость-заполняет соответствующие полостн или отсеки лишь частично, так что имеется свободная поверхность, являющаяся границей раздела между жидкостью и находящимся над ней газом (в частности, воздухом). Обычно можно считать (за исключением особых случаев движения тела с жидкостью в условиях, близких к невесомости, которые здесь не рассматриваются), что колебания жидкости происходят в поле массовых сил, гравитационных и инерционных, связанных с некоторым невозмущенным движением. Как правило, это поле можно в первом приближении считать потенциальным, а само возмущенное движение отсека и жидкости — носящим характер малых колебаний, что Оправдывает линеаризацию уравнений возмущенного движения. Ряд актуальных для практики случаев возмущенного движения жидкости характеризуется большими числами Рейнольдса, что позволяет использовать при описании этого движения концепцию пограничного слоя, считая, кроме того, жидкость несжимаемой. Эти гипотезы лежат в основе теории, излагаемой ниже [23, 28, 32, 34, 45, 54J. Учету нелинейности немалых колебаний жидкости посвящены, например, работы [15, 26, 29, 30]. Взаимное влияние колебаний отсека и жидкости при ее волновых движениях может сильно изменять устойчивость системы, а иногда порождать неустойчивость, невозможную при отсутствии подвижности жидкости. В качестве примера можно привести резкое ухудшение остойчивости корабля при наличии жидких грузов и Динамическую неустойчивость автоматически управляемых ракет-носителей и космических аппаратов с жидкостными ракетными двигателями при неправильном выборе структуры или параметров автомата стабилизации. Поэтому одной из основных Задач при проектировании всех этих объектов является обеспечение их динамической устойчивости [9, 10, 39, 43]. Для гражданских и промышленных сооружений с отсеками, содержащими жидкость, центр тяжести при исследовании их динамики смещается в область определения дополнительных гидродинамических нагрузок, например при сейсмических колебаниях сооружения [31].  [c.61]

При скоростях движения газа, сравнимых по величине или не слишком превосходящих скорость распространения в нем малых возмущений (скорость звука), возникают специфические для этих режимов движения явления, теоретический анализ которых, как было показано в предыдущих параграфах, представляет скорее вычислительные, чем принципиальные, трудности. Методы интегрирования уравнений пограничного слоя и программы численного их интегрирования на ЭВЦМ в этих случаях уже разработаны. Более серьезные трудности возникают при рассмотрении движений газа в пограничных слоях при очень больших сверхзвуковых, или, как иногда говорят, гиперзвуковых скоростях. Сопровождающие такого рода движения физико-химические явления очень сложны, и многие из них и до сих пор еще недостаточно изучены. Основное значение имеют явления, сопровождающиеся переходом механической энергии потока в тепловую. Это, прежде всего, разогрев газа при прохождении его через скачки уплотнения и особенно через мощную головную волну , образующуюся на тупоносых телах. Большое значение имеет также и диссипация механической энергии в тепло, происходящая в пограничных слоях.  [c.693]

Вопрос о влиянии сжимаемости газа на возникновение турбулентности, так же как и на механизм установившейся турбулентности, еще мало изучен. Теоретические работы по устойчивости ламинарного пограничного слоя при больших скоростях показывают, что при прочих равных условиях с возра-СТЯЙИвТМ ЙИСЛЭ. /1 оо устойчивость ламинарного слоя ослабевает это надо понимать в том смысле, что с ростом Моо должно уменьшаться нижнее критическое число Рвкр, начиная с которого возмущения в слое перестают затухать.  [c.714]


В гиперзвуковом пограничном слое внешняя граница в масштабе толщины слоя определена в первом приближении точно, так как температура на внешней границе обращается в нуль, а плотность — в бесконечность. (Разумеется, есть третий переходный слой, но он влияет на основное течение лишь в высших приближениях [Bush W., 1966 Lee R.S., heng Н.К., 1969].) Расход газа в пограничном слое пренебрежимо мал по сравнению с расходом в невязкой области возмущенного течения, тогда как толщины могут быть одного порядка. Именно различие по порядку в величине расхода позволяет построить корректную теорию пограничного слоя.  [c.143]

Ниже при анализе обтекания тонких крыльев гиперзвуковым потоком газа предполагается, что газ является совершенным, имеет постоянные удельные теплоемкости (7 = onst), постоянное число Прандтля а = onst, динамический коэффициент вязкости, изменяющийся в зависимости от температуры по степенному закону i (0,5 п 1), а также выполняется предположение гиперзвуковой теории малых возмущений величина М т 0(1), где 5 ж т — соответственно характерные безразмерные толщина пограничного слоя и крыла.  [c.201]

В предыдущем разделе на частном примере треугольного крыла обнаружена аналогия между распространением возмущений в сверхкритическом трехмерном пограничном слое и сверхзвуковом потоке невязкого газа. Показано, что при изменении стреловидно сти крыла можно иметь аналогию с обтеканием крыльев сверхзвуковым потоком невязкого газа, имеющих сверхзвуковые или дозвуковые передние кромки. В случае режима сильного гиперзвукового взаимодействия — это наличие вблизи передних кромок закритических областей при малых значениях угла стреловидности передней кромки или их отсутствие при больших углах стреловидности. Естественно попытаться построить характеристические поверхности и соответствующие соотношения в общем случае (помимо характеристик, связанных с поверхностями тока, см., например, [Wang К., 1971]).  [c.317]

Согласно теории малых возмущений при Моо 1 и безразмерной толщине ламинарного пограничного слоя (5 <С 1, в случае выполнения предположения о сильном взаимодействии Моо5 1, индуцированное давление имеет порядок Статическая энтальпия в пограничном слое /1 /2. Тогда из уравнения состояния для плотности газа в пограничном слое получаем оценку  [c.366]

Моделирование группы продольных структур и зарождающихся турбулентных пятен. Подробное экспериментальное исследование процесса развития и структуры локализованных вихревых возмущений ("пафф"-структур) в пограничном слое на плоской пластине проведено в [12]. Детальные термоанемометрические измерения показали, что топология изучаемых локализованных возмущений и их внутренняя структура качественно не изменяются в зависимости от амплитуды возбуждения, скорости набегающего потока и параметров источника возмущений. Пространственным спектральным анализом установлено, что реакция пограничного слоя на вдув или отсос газа через короткую поперечную щель связана с возникновением в нем трех видов возмущений с различной периодичностью по трансверсальной координате двумерной волны Толлмина - Шлихтинга, которая быстро затухала вниз по потоку продольных локализованных структур, генерируемых на краях щели, и наклонных волн, сопровождающих развитие локализованных структур и порождаемых ими. Показано, что локализованные продольные возмущения сохраняют свои основные качественные характеристики при малой и большой амплитудах их возбуждения, изменении скорости набегающего потока, размеров источника и вдува или отсоса газа. Отмечено небольшое "расплывание" возмущения в трансверсальном направлении при малых амплитудах возбуждения.  [c.68]

Разработке методов управления ламинарно-турбулентным переходом уделяется большое внимание в теоретической и экспериментальной аэродинамике как с целью увеличения аэродинамического качества летательных аппаратов [1], так и с совершенствованием аэродинамических труб [2, 3]. Среди активных методов управления наиболее полно изучен метод ламинаризации пограничного слоя отсосом через обтекаемую поверхность небольшого количества заторможенного газа широко известны возможности управления развитием пограничного слоя посредством теплового метода (охлаждения) [4]. Охлаждение делает профиль скорости в пограничном слое более выпуклым, что увеличивает критическое число Рейнольдса. При нагреве обтекаемой поверхности тепловой поток направлен к пограничному слою, что понижает устойчивость ламинарного слоя и приводит к более раннему возникновению турбулентного режима течения. В последнее время опубликован ряд теоретических и экспериментальных работ по управлению развитием малых возмущений и затягиванию ламинарно-турбулентного перехода локальным нагревом передней кромки обтекаемого тела [5-10].  [c.32]


Смотреть страницы где упоминается термин Малые возмущения пограничного слоя в газе : [c.357]    [c.188]    [c.464]    [c.171]    [c.377]   
Смотреть главы в:

Теория гидродинамической устойчивости  -> Малые возмущения пограничного слоя в газе



ПОИСК



Возмущение

Возмущение малое



© 2025 Mash-xxl.info Реклама на сайте