Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Серый Износостойкость

Чугун. Отливки из серого чугуна благодаря невысокой стоимости, хорошим литейным качествам, сравнительно высокой износостойкости получили большое распространение при изготовлении различных деталей машин.  [c.326]

Долговечность цепных передач в основном зависит от материала и термической обработки их деталей. Для обеспечения износостойкости и сопротивляемости ударным нагрузкам детали цепей и звездочки изготовляют из термически обработанных или цементуемых углеродистых или легированных сталей (60, 6.5Г, 20, 20Х и др.). Звездочки тихоходных передач (ц гй 3 м/с) при спокойных нагрузках можно изготовлять из серых чугунов (С4 21—40 и др.) с последующей закалкой.  [c.432]


Чтобы обеспечить износостойкость передачи и увеличить ее К.П.Д., материалы винта и гайки должны представлять собой антифрикционную пару. Поэтому винты изготовляют из углеродистых или легированных сталей, а гайки делают из алюминиевых и оловянных бронз, серого или антифрикционного чугуна винты ответственных передач закаливают, азотируют, а резьбу шлифуют. Рабочие поверхности винта и гайки в зависимости от условий работы передачи смазывают пластичным или жидким смазочным материалом.  [c.205]

Различные материалы деталей трибосистем могут подвергаться модификации различными методами с использованием соответствующих технологических процессов. Образование твердого износостойкого слоя на трущихся поверхностях деталей, изготовленных из средне- и высокоуглеродистых сталей, ковкого, серого и высокопрочного чугуна, обеспечивается соответствующей термической обработкой (закалкой и последующим отпуском).  [c.235]

В результате исследований удалось впервые обнаружить и классифицировать новые виды изнашивания при ударе (ударно-абразивный, ударно-гидроабразивный, ударно-усталостный), вскрыть механизм и основные закономерности этих видов изнашивания, разработать серию специальных лабораторных установок для изучения износостойкости материалов при ударе, создать методические основы изучения новых видов изнашивания.  [c.4]

Белый чугун по сравнению с серым обладает более высокой твердостью и износостойкостью, так как весь имеющийся в нем углерод находится в виде химических соединений —карбидов с металлами (Fe, Сг, W и др.), а мягкая неметаллическая составляющая (графит), отсутствует. В связи с этим белый чугун применяют как конструкционный материал для работы в условиях абразивного изнашивания.  [c.50]

Исследования белых чугунов с содержанием 0,09—1,21% Мо показали, что молибден полностью сосредотачивается в карбидной фазе в феррите он не обнаружен. Износостойкость серого чугуна при введении 1,5% Мо увеличивается в 16 раз.  [c.74]

В серых чугунах медь способствует образованию аустенита и снижает температуру перлитного превращения, что приводит к его измельчению. Легирование медью способствует увеличению жидко-текучести, прочности, твердости и износостойкости серого и высокопрочного чугунов.  [c.77]

При диффузионном сульфидировании происходит диффузия серы или соединения серы и аммиака. Поверхностный слой, обогащенный серой, имеет повышенную износостойкость и стойкость против задиров. Противокоррозионными свойствами такие слои не обладают.  [c.83]


Первое в СССР значительное по масштабу исследование сопротивления сталей абразивному изнашиванию было проведено в начале 30-х годов на лабораторной машине Зайцева по схеме трения образцов о наждачную шкурку, закрепленную на плоской стороне вращающегося диска. Позднее в серии исследований [258] была выявлена зависимость износостойкости от внешних условий, свойств материалов, твердости абразивных частиц, их размера и других факторов.  [c.49]

С 1940 г. Издательством АН СССР производился выпуск серии сборников Трение и износ в машинах (подготавливаемых Институтом машиноведения), в которых освещались главнейшие научно-исследовательские работы, выполненные в СССР за последние 30 лет, по проблеме износостойкости деталей машин (до 1966 г. вышло 19 томов).  [c.52]

Решая вопрос о повышении износостойкости какой-либо конкретной детали, работающей в определенных условиях (при определенных нагрузке, скорости относительного перемещения и условиях теплоотвода), наиболее правильным будет, во-первых, изучить повреждения поверхности изношенной детали, во-вторых, по возможности ближе моделируя условия реального изнашивания на экспериментальной лабораторной установке, получить подобные же повреждения, в-третьих, на основании данных изучения физико-механических изменений изношенной поверхности и серии сравнительных испытаний найти материал, обладающий наибольшим сопротивлением изнашиванию.  [c.29]

С этой целью определены потенциалы медных сплавов по отношению к тонкослойному платиновому электроду и гальвано-ЭДС элементов сталь—глицерин—медный сплав. Измерения проводили по общеизвестной методике на вольтметре с высоким входным сопротивлением. Использовали цилиндрические электроды с изолированной ватерлинией. В результате опыта получена зависимость ЭДС элемента от времени до установления стационарного значения. Средние значения потенциалов, полученные на серии образцов каждого сплава, приведены в табл. 3. Для сравнения дан ряд износостойкости медных сплавов, исследованных в глицерине со сталью 45 в режиме ИП. Сплавы расположены в порядке убывания износостойкости.  [c.35]

Но повысить прочность отливки можно не только модифицированием. Опыты показали, что, воздействуя на расплавленный чугун ультразвуком, можно достигнуть весьма мелкого (пылевидного) распределения графита в структуре серого чугуна и повысить его прочность в 2—3 раза, а износостойкость— в десятки раз. Таким образом, под воздействием ультразвуковых волн чугун приобретает некоторые свойства стали. Наука продолжает поиски новых путей повышения свойств чугуна, и, несомненно, великие достижения современной химии и физики откроют новые мощные средства увеличения его прочности.  [c.153]

Крупным производителем и потребителем отливок из черных металлов и цветных сплавов является автомобильная промышленность. Доля литейных работ в общей трудоемкости изготовления автомобиля составляет в среднем 13%. Основным литейным сплавом (почти 90% общего объема производства отливок) является серый и ковкий чугун. Широкому применению чугуна как конструкционного материала для изготовления автомобильных деталей способствует его высокая износостойкость, достаточная прочность, хорошая обрабатываемость, возможность изготовления отливок практически любой сложности с весьма тонкими стенками.  [c.190]

Сульфидирование Поверхностное насыщение стали серой для увеличения износостойкости деталей. Производится в твердых, жидких и газообразных средах  [c.163]

Тантал — металл серо-стального с синеватым оттенком цвета, хорошо сваривается и поддается обработке давлением. В природе встречается только в виде соединений вместе с ниобием. По химической устойчивости уступает лишь благородным металлам. Тантал применяют для изготовления тугоплавких износостойких и коррозионноустойчивых деталей. Карбид тантала является одним из основных компонентов твердых сплавов.  [c.103]

Церий — мягкий металл серо-стального цвета. Плотность 6,66 г/сж , температура плавления 795° С, кипения 3468° С. Окисляется во влажном воздухе, при 160—180° С воспламеняется и горит ослепительным пламенем. Основной компонент мишметалла. Применяется для повышения долговечности сплавов с высоким омическим сопротивлением, износостойкости электроконтактных сплавов, для повышения качества алюминиевых (в том числе вторичных), магниевых и других сплавов, для образования чугуна с шаровидным графитом и т. д. (табл. 63).  [c.108]


Отличительной особенностью высокопрочного чугуна являются его высокие механические свойства временное сопротивление 373— 1180 МПа, относительное удлинение 2—17 %, твердость НВ 137— 360, что обусловлено шаровидиой формой графита, который в меньшей степени, чем пластинчатый графит в сером чугуне, ослабляет сечение металлической массы и не оказывает на нее надрезающего действия. Этот чугун имеет высокую износостойкость, хорошую коррозионную стойкость, теплостойкость, жаростойкость, хладностой-кость и т. д. Высокопрочный чугун широко используют взамен литых стальных заготовок.  [c.161]

Подбор и проверочный расчет прямобсчного шлицевого соединения. С целью получения соединения высокой точности и износостойкости принимаем центрирование по вьутреннему диаметру d == 32 мм (см. гл. 7), полученному в результате расчета и конструирования II вала (см. рис. 8.13). Приводим геометрические характеристики соединения средней серии п. СТ СЭВ 185—75 2 =8 d = 32 мм D = 38 мм d p = 35 мм 6= 6 мм h = 2,2 мм Sf = ==308 mmVmm (табл. 4.4).  [c.317]

Металлическая основа в сером чугуне обеспечивает наибольшую прочность и износостойкость, если она имеет перлитную структуру (см. рис. 91, б). Присутствие в структуре феррита, не увеличивая пластичность м вязкость чугуна, снижает его прочность и износо ToiiKo Tb. Наименьн1ей прочностью обладает ферритный серьп т чугун.  [c.146]

Лазерная обработка успешно применяется для поверхностного упрочнения отливок из серого, ковкого и высокопрочного чугун()в. Благодаря оплавлению поверхности и образованию ледебуритной эвтектики (отбел чугуна) и мартенеhthoio подслоя твердость на поверхности достигает 7500—9000 МПа Частичное оплавление ухудшает чистоту поверхности. При отсутствии оплавления, твердость [юсле нагрева лазером повышается в результате закалки тонкого поверхностного слоя. Лазерная обработка повышает износостойкость чугунных деталей в 8—10 раз. Лазер может быть использован и для химико-термической обработки, В этом случае перед обработкой лучом лазера на поверхность наносят обмазки или порошки, содержащие насыщающие элементы (А), Сг, С, N, В и т. д.).  [c.226]

Другое направление заключается в улучшении антифрикционных свойств поверхностей осаждением фосфатных пленок (фосфатирование), насышением поверхностного слоя серой (сульфидирование), графитом (графитирование), дисульфидом молибдена и др. При умеренной твердости такие поверхности обладают повышенной скользкостью, малым коэффициентом трения, высокой устойчивостью против задиров, заедания и схватывания. Эти способы (особенно сульфидирование и обработка дисульфидом молибдена) увеличивают износостойкость стальных деталей в 10 — 20 раз. применяют и сочетание обоих методов (например, сульфо-цианирование, повышающее одновременно твердость и скользкость поверхностей).  [c.30]

Для серого чугуна характерна средняя прочность, меныиая, чем у стали, из-за графитовых вклЕочений, со,злаю1Дих концентрацию напряжений. Он обладает удовлетворительной износостойкостью вследствие смазывающего действия графита и повышенным внутренним трением.  [c.26]

Как уже отмечалось, износостойкость валков определяется твердостью от(эслснно-го слоя, максимальное значение которой при использовании келегированных чугу-нов достигает 70 HR . Такую твердость можно получить у валков, диаметр бочки которых не превышает 500 мм. В связи с совершенствованием станов непрерывной и полунепрерывной прокатки потребовались более долговечные валки высокой твердости (90 - 95 HSD). Двухслойные валки для этих станов получают литьем. Наружный слой формируется из чугуна, легированного хромом, молибденом, а центральная зона -из серого чугуна. Получение двухслойных валков потребовало разработки специальной технологии (рис. 157).  [c.332]

Отбеленные чугуны используют для изготовления отливок, поверхность которых состоит из белого чугуна, а внутренняя область - из серого или н1,1сокопрочн6го чугуна. Отбеленные чугуны содержат 2,8-3,6% углерода и пониженное содержание кремния - 0,5-0,8%. Отбеленные чугуны имеют высокую поверхностную твердость (950-1000 НВ) (ср. с данными табл. 1.4) и очень высокую износостойкость. Их иегюльзуют для изготовления прокатных валков, вагонных колес с отбеленным ободом, шаров для niapoBbix мельниц и других деталей, работающих в тяжелых условиях высоких динамических нагрузок с трением качения и скольжения.  [c.20]

Примерно 5 % чугунных заготовок производят из ковкого чугуна. Наиболее холодными марками ковкого чугуна являются КЧ37-12, КЧ35-10, КЧЗЗ-8, КЧЗО-6. Ковкий чугуй обладает высокой прочностью и износостойкостью, занимая по механическим свойствам промежуточное положение между серым чугуном и сталью. Следует отметить, что процесс изготовления отливок из  [c.47]

Испытания Ni—Р покрытий, содержащих 10 % фосфора толщиной 100 мкм термообработанных в течение 1 ч при различных температурах 300—600 С, при трении в паре с колодками серого чугуна с НВ 2600 МПа на машине трения типа МИ с вращательным движением при скорости скольжения О 47 м/с, нагрузке 2 5 МПа и смазывании автолом AK-IO, показати, что сопряженная пара быстро прирабатывается и наименьший износ наблюдается у Ni—Р-покрытий термообработанных при 350—400 °С Износостойкость термообработанных при 350—400 °С никель-фосфорных покрытий в паре с серым чугуном в 22 раза меньше чем у хрома или закаленной стали 45 (рис 7 а) Износостойкости Ni—Р покрытий в паре со свинцовистой бронзой (рис 7 б) и баббитом (рис 7 в] соизмеримы  [c.16]

При трении в паре с бронзой БрС 30 и баббитом Б-83 по износостоикости Nt—Р покрытия сравнимы с хромовыми покры тиями, износостойкость у них почти вдвое выше чем у закаленной стали В то же время наименьший износ контробразцов нз серого  [c.16]

Материалы фрикционных катков должны обладать высоким коэффициентом трения, что уменьшает требуемую силу прижатия высоким модулем упругости, что уменьшает потери на трение, связанные с размерами площадки контакта контактной выносливостью износостойкостью и хорошей теплопроводностью. Последние два свойства особенно важны для передач, работающих всухую. Обычно один из катков изготовляют из качественной закаленной стали (например, ШХ15), а другой - из стали, серого чугуна.  [c.296]


В настоящее время большое количество работ посвящено применению меркаптосодержащих (Н) и аминосодержащих (О) силанов в более сложных по составу эластомерах, вулканизованных серой, для повышения их модуля упругости и прочности на растяжение и уменьшения остаточной деформации. Использование этих силанов в шинах позволяет значительно уменьшить разогрев при деформации, повысить сопротивление абразивному износу и износостойкость протектора. В работе Вагнера 44] показана возможность введения на поверхность наполнителя (окиси кремния) одной  [c.167]

Усвоение ванадия из мазутного золошлака при выплавке стали 110Г13Л в электродуговой печи ДСП-3 в условиях завода составляет 45—60%. Установлено, что сера не переходит в металл, содержание ее в опытных плавках составляет 0,017—0,022%, т е. на том же уровне, что и в серийных плавках. Разработанная технология позволяет повысить износостойкость бронеплит мельниц.  [c.240]

Испытанием стали с сульфоцианированным слоем при ударноконтактных нагрузках установлено, что в первый момент происходит интенсивный износ наиболее мягкой по сравнению с другими зонами слоя сульфидной пленки и вмазывание сернистых соединений в микронеровности поверхности находящейся под ней карбо-нитридной зоны [20]. Дальнейшее воздействие нагрузок и теплоты, выделяющейся на контактирующих поверхностях, способствует миграции серы в более глубокие зоны слоя, что обеспечивает повышение его износостойкости.  [c.10]

В. К. Галаев, А. И. Лукьяница и В. Н. Меньшов провели исследование сталей ЗОХГСА и 38Х2МЮА после борирования при сухом трении скольжения по диску из серого чугуна СЧ 21—40 [21]. Установлено, что борирование сталей значительно повышает их износостойкость. Увеличение поверхностной твердости и изменение структуры приводят к тому, что явления износа развиваются в тонких поверхностных слоях глубиной в сотые и тысячные доли миллиметра. Изучение износостойкости по глубине борированных слоем показало отсутствие строгой зависимости между твердостью и изно состойкостью.  [c.49]

Кальций и железо взаимно нерастворимы ни в жидком, ни в твердом состоянии. Незначительные количества кальция, содержащегося в стали или чугуне, по-видимому, присутствуют в виде неметаллических включений. Многочисленными исследованиями установлено, что кальпий является эффектным раскислителем. Его присадка в серый чугун снижает также содержание серы и улучшает механические свойства. Совместное модифицирование чугуна силикокальцием и ферросилицием повышает износостойкость благодаря преобладанию в его структуре перлита. При наличии смазки износ мягкой составляющей (феррита) создает каналы, удерживающие смазку, а твердая составляющая (цементит) воспринимает на себя давление.  [c.78]

Присадка серы не влияет на микротвердость эвтектоида и цементита, а также на твердость чугуна. Удароустойчивость чугуна очень низкая, а износостойкость с повышением содержания серы катастрофически падает.  [c.81]

Для связывания отдельных компонентов фрикционных материалов в одно целое во фрикционные материалы добавляют органические связующие вещества, к которым относятся естественные и синтетические каучуки, смолы, различного вида пеки, битуминозные вещества и т. п. По типу связующего асбофрикционные материалы делятся на материалы на каучуковом, смоляном и комбинированном связующем. Изделия на каучуковом связующем имеют относительно высокий и устойчивый коэффициент трения при нагреве до 220—250° С и отличаются невысокой твердостью. Для возможности вулканизации в эти фрикционные материалы добавляется сера. Путем изменения количества каучука и серы или путем добавления специальных мягчителей можно получить эластичные фрикционные материалы, применяемые в таких узлах, где происходит значительная деформация накладок (например, в ленточных тормозах). При температурах 250—300° С каучук начинает деструктировать, что приводит к снижению износостойкости фрикционного материала и уменьшению его механической прочности. Поэтому в ряде типов фрикционных материалов на каучуковом связующем применяют армирование накладок для увеличения их механической прочности.  [c.529]

С целью определения режимов металлизации, а также проверки износостойкости восстановленных деталей в эксплуатационных условиях И. А. Довгич [63] провел серию опытов. Износостойкость покрытия определялась путем истирания образцов в абразивной среде и по металлу при граничной смазке. В качестве покрытия была взята углеродистая проволока с различным содержанием углерода 0,19 0,42 и 0,78%. Напыление образцов проводилось при различных режимах менялось расстояние от сопла, напряжение тока, давление сжатого воздуха.  [c.96]

Сульфидирование и сульфоцианирование — процессы насыщения поверхностного слоя серой и одновременно серой, углеродом и азотом (сульфоцианирование), применяются для повышения износостойкости трущихся поверхностей в 1,5—5 раз, увеличивая противозадирные свойства и сопротивление металлов схватыванию. Применяются для обработки валиков, втулок, гаек, 1юршневых колец и некоторых режущих инструментов — метчиков, долбяков и др.  [c.184]

При определении срока службы цепных передач и изучении их износостойкости в мацшнах, выпускаемых больпшми партиями и сериями, а также в особо ответственных случаях целесообразно использование этого метода для экспресс-испытаний. На необходимость и важность таких испытаний указано в решении Всесоюзного координационного совещания 115].  [c.244]

Современные СК обладают свойствами не ниже, чем НК, а по некоторым (термостойкость, износостойкость, сопротивляемость агрессивным средам и т. д.) превосходят их. При изготовлении резиновых изделий из СК наряду с серой в качестве вулканизаторов применяют вещества, позволяющие синтезировать резины с избирательно-повышенными свойствами. Также широко применяют легирующие добавки. К стандартным видам синтетических каучуков относятся натрий бутадиеновый (ГОСТ 2188—51) бута-диен-нитрильный (ГОСТ 7738—65) бута-диен-стирольный и бутадиен-альфа-метилсти-рольный (ГОСТ 6074—57) дивинилметил-стирольный и дивинилстирольный (ГОСТ 11138—65) полисульфидный каучук или тиокол (ГОСТ 12812—67) обладает чрезвычайно высокой стойкостью к растворителям (например, после 30-дневного выдерживания в бензине набухание выражается 1%). На основе тиоколов изготовляют герметизирующие замазки и защитные покрытия, изделия для работы в агрессивных средах и латексы синтетические — ДВХБ-70 (ГОСТ  [c.243]

Каменное литье получают переплавкой (1350—1550° С) базальтов, диабазов и других горных пород, а также металлургических шлаков и топливной золы с соответствующей подшихтовкой, заливкой расплава в разовые или постоянные формы с последующим строгим режимом охлаждения для обеспечения бездефектного затвердевания отливок. Каменное литье обладает высокой химической стойкостью и износостойкостью и поэтому является незаменимым материалом для химического, горнообогатительного и другого машиностроения, где машины подвержены воздействию химических сред и разрушающему действию материалов, обладающих абразивными свойствами. Каменное литье, в связи с освоением метода отливки по выплавляемым моделям, обладает достаточно высокой точностью, хотя основную массу каменного литья выпускают в виде футеровочных плит и других изделий несложной формы. Из брака каменных отли-вок, а также из специальных шихт изготовляют каменный порошок для кислотоупорных замазок. Каменное литье подразделяют на черное (вернее, серое) и белокаменное, хотя и обладающее несколько пониженными свойствами (табл. 7), но позволяющее путем добавки в шихту (кварц, известняк, доломит) окислов получать каменное литье различной окраски приятных тонов.  [c.270]


Церий — мягкий металл серо-стального цвета. Плотность 6,76 г/см температура плавления 804° С, температура кипения 3600° С. Окисляется во влажном воздухе, при 160—180° С воспламеняется и горит ослепительным пламенем. Основной компонент мишыеталла. Применяется для повышения долговечности сплавов с высоким омическим сопротивлением, износостойкости электрокон-тактных сплавов, для повышения качества алюминиевых (в том числе вторичных), магниевых и других сплавов, для образования чугуна с шаровидным графитом и т. д. Выпускается в слитках массой 2—5 кг (РЭТУ 1014—62) двух марок (содержание, %) Се-Э-1 (Се не менее 98,98 и 1,0 сумма РЗМ) Се-Э-2 соответственно 97,97 и 2,0.  [c.197]


Смотреть страницы где упоминается термин Серый Износостойкость : [c.146]    [c.374]    [c.58]    [c.228]    [c.168]    [c.87]    [c.319]   
Материалы в машиностроении Выбор и применение Том 4 (1989) -- [ c.93 , c.100 ]



ПОИСК



Износостойкость

Ч износостойкий



© 2025 Mash-xxl.info Реклама на сайте