Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Чугун Вязкость

Детали из ковкого чугуна получаются путем отжига отливок белого чугуна. Ковкий чугун имеет повышенную сравнительно с серым чугуном вязкость и прочность, близкую к стали. Из ковкого чугуна изготовляют кронштейны, картеры, коробки дифференциала, педали сцепления и тормоза, тормозные колодки, ступицы и т. д. Из специального ковкого чугуна изготовляют поршни, втулки поршня и верхней головки шатуна двигателей ЯАЗ-204 и ЯАЗ-206, втулки рессор и другие детали, работающие на износ.  [c.268]


Высокопрочный чугун. Серый чугун с округлой (глобулярной) формой графита, получаемый при модификации Mg или Сг, называют высокопрочным чугуном. Такая форма графита определяет наибольшую сплошность металлической основы, а следовательно, высокую прочность, повышенную пластичность и ударную вязкость.  [c.76]

Серые чугуны благодаря дешевизне, хорошим литейным качествам, легкой обрабатываемости и высокой циклической вязкости широко применяют для изготовления корпусных деталей стационарных, а также транспортных машин. Недостатками серых чугунов (табл. 10)  [c.168]

Следует иметь в виду, что высокопрочные чугуны значительно уступают серым чугунам по величине циклической вязкости.  [c.170]

На рис. 81 приведены величины коэффициента гистерезиса для чугунов и сталей в функции амплитуды X колебания напряжении за цикл деформации. Циклическая вязкость серых чугунов в 5-6 раз больше, чем углеродистых сталей и в 10-20 раз. чем легированных  [c.170]

Предварительное напряжение растяжения в арматуре доводят до 150 — 250 кгс/см . Допускаемые напряжения растяжения в предварительно напряженном железобетоне составляют в среднем 100 — 150 кгс/см , допустимые напряжения сжатия 300 — 500 кгс/см . Железобетон обладает высокой циклической вязкостью, примерно в 2 раза превосходящей вязкость серого чугуна. Это свойство обусловливает повышенную способность виброгашения у железобетонных деталей.  [c.194]

Построить график зависимости коэффициента гидравлического трения X от числа Рейнольдса в водопроводной трубе D = 150 мм при расходе, изменяющемся в пределах Q = 1 ч- 30 л/с, кинематическом коэффициенте вязкости v = 0,013 см с, если трубы а) асбестоцементные б) неновые стальные в) новые стальные г) новые чугунные д) полиэтиленовые.  [c.51]

Фосфор. Железные руды, топливо, флюсы содержат какое-то количество фосфора, которое в процессе производства чугуна остается в нем в той или иной степени и затем переходит в сталь. Фосфор хорошо растворяется в феррите и аустените, а при высоком содержании образует фосфид Ре (15,62% Р). Растворяясь в феррите, фосфор искажает кристаллическую решетку и увеличивает пределы прочности и текучести стали, сильно уменьшает пластичность и вязкость каждые 0,0 % Р повышают порог хладноломкости на 20.. 25 с. Фосфор является вредной примесью в сталях.  [c.81]


Высокопрочный чугун с шаровидным фафитом и перлитной металлической основой отличается высокой прочностью при меньшем значении пластичности по сравнению с ферритными чугунами (см. табл. 1.4). Высокопрочные чугуны обладают высоким пределом текучести (300-420 МПа, что выше предела текучести стали), достаточно высокой ударной вязкостью и усталостной прочностью.  [c.19]

Углеродистые стали. Углеродистые стали занимают левую часть диаграммы состояний на рис. 1.12. Пользуясь этой диаграммой для оценки свойств отожженных, т. е. находящихся в равновесном фазовом состоянии сталей, надо помнить отличия химического состава их фаз — феррита и цементита — и металлургические дефекты, которые привносятся в них при выплавке и которые влияют на их механические и другие свойства. Марганец и кремний, попадающие в сталь из чугуна, а также вводимые в нее дополнительно при раскислении, растворяются в феррите, а марганец — в цементите. Благодаря этому при сохраняющейся пластичности несколько возрастают прочность и твердость стали (пластичность и вязкость снижаются при более высоком, чем примесное, содержании Мп и Si).  [c.29]

Серые чугуны обладают средней прочностью, малой ударной вязкостью, наилучшими литейными свойствами, хорошо обрабатываются резанием, хорошо демпфируют колебания и поэтому получили наибольшее распространение. Механические характеристики серых чугунов приведены в табл. 3.1.  [c.211]

Настоящий стандарт распространяется на отливки ковкого чугуна, изготовленные из белого чугуна и подвергнутые отжигу (томлению) для устранения хрупкости и придания им вязкости и ковкости  [c.180]

Для изготовления многих деталей машин применяется ковкий чугун (КЧ), предусмотренный ГОСТ 1215—59. Этот чугун вследствие большой вязкости отличается способностью подвергаться значительным деформациям. Ковкий чугун, как и другие его разновидности, не обладает пластичностью (не поддается ковке даже при высокой температуре), но он менее хрупок, чем серый чугун его также применяют только для отливок.  [c.240]

Структура белых чугунов с высоким содержанием хрома состоит из разобщенных тригональных карбидов (Сг, Ре)7Сз, поэте му чугуны такого типа обладают значительно большей вязкостью, чем низколегированные с карбидами (Fe, Сг)зС, образующими не прерывную карбидную фазу.  [c.57]

В последние годы церий применяют для получения высокопрочного чугуна. При производстве ковкого чугуна церий наряду со сфероидизацией графита повышает ударную вязкость.  [c.72]

Кальций применяют как модификатор для повышения качества литых отбеленных валков. Его присадка в ковкий чугун снижает ударную вязкость.  [c.78]

Кислотостойкие чугуны с высокими литейными свойствами, низкая ударная вязкость.  [c.46]

Высокая циклическая вязкость (благодаря наличию в структуре чугуна графита), мало чувствительны к концентрации напряжений, ударная вязкость возрастает при температуре выше 200° С, Обрабатываемость резанием удовлетворительная, свариваемость плохая. При малых скоростях охлаждения отливки (толстостенной) прочность снижается. Требования к прочности обуславливаются в ТУ.  [c.46]

Марка чугуна Временное сопротивление разрыву 13 кГ/мм Предел текучести в кГ/мм Относительное удлинение 6а в % Ударная вязкость в кГ-м/см Твердость нв  [c.52]

Особую остроту приобретает вопрос о критериях оценки поведения чугуна с шаровидным графитом в условиях ударной нагрузки. Можно считать очевидным, что ударная вязкость — сила сопротивлению разрушению при однократно приложенной ударной нагрузке — не выявляет особенностей чугуна и не дает количественной характеристики, которую можно было бы использовать при расчетах на прочность. Между тем повышенная циклическая вязкость дает основание считать, что циклическая нагрузка воспринимается большим объемом металла, в результате чего повышается надежность работы чугуна но сравнению со сталью. Эти положения проверены и подтверждены ЦНИИТМАШем на установке для испытаний ударно-циклической прочности материалов [261].  [c.208]


Поведение чугуна при ударных нагрузках в реальных условиях следует оценивать не по ударной вязкости, а по показателям ударно-циклической прочности.  [c.210]

С понижением содержания углерода в чугуне механические свойства отливок повышаются. Повышенное содержание марганца уве-личирает длительность отжига, понижает пластичность и повышает временное сопротивление. Сера и фосфор понижают пластичность и ударную вязкость ковкого чугуна. Поэтому их содержание не должно превыи]ать 0,12 %.  [c.163]

Металлическая основа в сером чугуне обеспечивает наибольшую прочность и износостойкость, если она имеет перлитную структуру (см. рис. 91, б). Присутствие в структуре феррита, не увеличивая пластичность м вязкость чугуна, снижает его прочность и износо ToiiKo Tb. Наименьн1ей прочностью обладает ферритный серьп т чугун.  [c.146]

Р почти не влияет на структуру чугуна, так как не ускоряет и не замедляет графитообразования. Твердость чугуна от присутствия Р в твердом растворе повышается, а вязкость значительно понижается. Следовательно, Р ухудшает механические свойства чугуна, однако улучшает литейные свойства, понижает температуру плавления, увеличивает жидкотекучесть и способствует хорошему заполнению формы. В обычном литье содержится 0,1—0,9% Р высококачественное литье должно содержать не более 0,4% Р.  [c.73]

Сочетание высокой прочности, вязкости, твердости, термо- и химо-стойкости, малой плотности, а также пшрокие возможности формоизменения и применения производительных методов формообразования — все это делает ситаллы перспективным конструкционным материалом. По механическим свойствам ситаллы близки к чугунам и могут во многих случаях заменить последние, выгодно отличаясь от них малой плотностью, гораздо более высокой твердостью и теплостойкостью. Однако следует учитывать их низкую теплопроводность.  [c.192]

Второму и четвертому условию не удовлетворяет чугун. По мере повышения содержания углерода в железе процесс резки значительно ухудшается из-за снижения температуры плавления и повышения температуры воспламенения. Чугун, содержапшй более 1,7% углерода, кислородной резкой не обрабатывается. Кроме того, вязкость шлака значительно возрастает при увеличении содержания кремния, который обязательно содержится в чугуне, что также является одной из причин невозможности вести кислородную резку чугуна.  [c.103]

Футероака индукционных печей. Футеровка индукционной печи может быть выполнена из кислых, ооюаных и нейтральных огнеупорных материалов (см. табл. 57). Кислая футеровка хорошо освоена, ее выполняют из кварцита, содержащего не менее 95% S1O2 и борной кислоты в качестве связующего. Гранулометрический состав кварцита 35% фракции от 1,5 до 3,5 мм и 65% - от О до 1,5 мм. К смеси добавляют 1,5% технической борной кислоты и ее применяют при плавке чугунов и стали. Стойкость кислой футеровки на печи емкостью 1,4 т составляет 150 плавок, а при основной футеровке - колеблется в пределах только 10 - 100 плавок. Недостатком является что при кислой футеровке невозможно получить вязкость горячих и подвижных шлаков, равную 0,1 -0,3 Па С, т.е. бороться с вредными примесями - серой и фосфором. В процессе плавки образуются длинные шлаки вязкостью 0,8 -  [c.251]

Достоинства чугуна с шаровидным графитом — это высокие предел прочности, отношение предела текучести к пределу прочности (ат/ав 0,8), предел усталости, однородность механических свойств, повышенная пластичность (удлинение и ударная вязкость), большая, чем у стали, циклическая вязкость. Все это позволяет получать из высокопрочного чугуна толстостенные отливки (коэффициент квазинзотропии составляет 0,04—0,17), прочность чугуна сохраняется до 500 °С. Благодаря своим ценным качествам высокопрочный чугун — полноценный заменитель стального литья, поковок, ковкого чугуна. Его используют при произ-  [c.30]

Ковкий чугун наиболее рационально применять там, где серый чугун, а иногда и сталь не позволяют получить изделия нужной конфигурации при высоких механических свойствах. Ковкнй чугун дает возможность отливать детали с довольно тонкой стенкой (3—6 мм) при хорошей чистоте поверхности отливок. Он характеризуется высоким отношением предела текучести к пределу прочности (около 67%), высоким пределом усталости, хорошей циклической вязкостью, высокой износоустойчивостью и др. (табл. 18).  [c.31]

Червячная передача заключается в корпус (изготавливаемый обычно из чугуна), в который заливается смазочное масло, пред-назначеннсе для уменьшения трения зубьев червяка и червячного колеса, а также для отвода теплоты, выделяемой при действии червячной передачи. Во избежание перегрева масла, который приводит к резкому понижению его вязкости, площадь F охлаждаемой поверхности корпуса червячного редуктора (без учета днища, через которое. обычно отводится малое количество выделяемой теплоты) должна быть достаточной для надлежащего отвода теплоты и поддержания температуры смазочного масла на уровне, не превышающем допустимую температуру [ 1 = = 704-90 С.  [c.338]

Износостойкость белого чугуна при абразивном воздействии зависит от его механических свойств и свойств отдельных структурных составляющих (микротвердости, прочности, вязкости, формы, взаимного расположения и связи, количественного соотношения). Основные структурные составляющие белого чугуна распола гаются по возрастанию микротвердости в следующем порядке эвтектоид (перлит, сорбит, троостит), аустенит, мартенсит, цементит, легированный цементит, карбиды хрома, воль ама, ванадия и других элементов, бориды.  [c.51]

Определение ударной вязкости белых чугунов не дает надежной информации об их работоспособности при абразивном износе в со- четании с ударами. Более рациональны испытания на многократный удар, а также оценка вязкости разрушения при плоской деформации.  [c.52]


Хорошие литейные свойства позволяют получать детали сложного профиля. Гомогенизирующий отжиг при 1050° С. Легирование марганцем увеличивает прочность и вязкость металла. Детали компрессоров для сжижения газов и запорной арматуры, работающей при низких температурах. До 700° С, чугун ЧН11Г7Х2Ш-ДО 750° С  [c.48]

В связи с тем, что как в состав сталей, так и в состав чугуна, кроме железа и углерода (и неизбежных примесей — Si, S, Р), могут входить и другие, специально добавленные, легирующие элементы, число всевозможных сталей и чугунов с различным химическим составом и различными свойствами огромно. Стали с содержанием легирующих элементов в количестве 3—5%, 5—10% и> 10% называются соответственно низко-, средне- и высоколегированными. Влияние важнейших легирующих элементов таково N1 повышает пластичность и вязкость, уменьшает склонность к росту зерна и к отпускной хрупкости (хрупкость после отпуска), при большом процентном содержании создает свойство пемагнитности Мп увеличивает прокали-ваемость, т. е. снижает критическую скорость закалки, что позволяет применять мягкие режимы закалки, в меньшей степени вызывающие начальные напряжения увеличивает износостойкость Сг упрочняег сталь, после цементации позволяет получать высокую твердость как недостаток отметим повышение отпускной хрупкости W увеличивает твердость, уменьшает склонность к росту зерна Мо повышает прочность, пластичность, а следовательно и вязкость, создает высокое сопротивление ползучести, уменьшает склонность к отпускной хрупкости  [c.319]

Рис. 6.23. Влияние содержания армирующего волокна на ударную вязкость по Шарпи — работа, поглощаемая за счет упругости / — твердая сталь 2 — хромомолибденовая сталь 3 — пружинная сталь 4 — полиэфирная смола, армированная стекловолокном (продольный удар) 5 — полиэфирная смола, армированная стеклотканью с атласным переплетением (вверху — плоскостное направление, внизу — краевое направление) 6 — эпоксидная смола, армированная волокном из коррозионностойкой стали 7 — чугун 5 — полиэфирная смола, армированная стекломатом 9 — эпоксидная смола, армированная углеродным волокном (ортотропная слоистая пластина) W — дерево И — слоистый материал с однонаправленной ориентацией волокон 12 — дюралюминий 13 — сталь 14 — полиэфир 15 — стекло. Рис. 6.23. Влияние содержания <a href="/info/152286">армирующего волокна</a> на <a href="/info/4821">ударную вязкость</a> по Шарпи — работа, поглощаемая за счет упругости / — <a href="/info/311084">твердая сталь</a> 2 — <a href="/info/59022">хромомолибденовая сталь</a> 3 — <a href="/info/258111">пружинная сталь</a> 4 — <a href="/info/33625">полиэфирная смола</a>, армированная стекловолокном (<a href="/info/21952">продольный удар</a>) 5 — <a href="/info/33625">полиэфирная смола</a>, армированная стеклотканью с <a href="/info/63230">атласным переплетением</a> (вверху — плоскостное направление, внизу — краевое направление) 6 — <a href="/info/33628">эпоксидная смола</a>, <a href="/info/560240">армированная волокном</a> из <a href="/info/116430">коррозионностойкой стали</a> 7 — чугун 5 — <a href="/info/33625">полиэфирная смола</a>, армированная стекломатом 9 — <a href="/info/33628">эпоксидная смола</a>, <a href="/info/280005">армированная углеродным волокном</a> (ортотропная <a href="/info/143009">слоистая пластина</a>) W — дерево И — <a href="/info/1733">слоистый материал</a> с однонаправленной ориентацией волокон 12 — дюралюминий 13 — сталь 14 — полиэфир 15 — стекло.
Твердость по Брине ЛЮ в кГ/лш . .... Коэффициент трения по чугуну...... Линейный износ по чугуну при постоянном моменте трения в мм, не более..... Ударная вязкость в кГ-см/см , не менее. Водопоглощаемость в %, не более..... Маолопоглощасмость в %, не более. ... 15-24 0,37-0,49 0,20 3,5 4 9, 21-45 0,325—0,36 0,18 7 3 2 20—35 0,44—0,52 0,34 12 2 2  [c.74]

При проектировании самотормозящей червячной передачи делительный угол подъема у следует выбирать приблизительно в 2 раза меньше угла трения р (табл. 138). Меньшие значения коэффициента трения соответствуют цементованным, шлифованным и полированным червякам при тщательной приработке и сборке передачи и обильной смазке маслом достаточной вязкости коэффициенты трения даны с учетом потерь в подшипниках валов червяка и червячного колеса в предположении, что оба вала смонтированы на подшипниках качения. Для обработанных чугунных червячных колес / = 0,06ч- 0,12 (меньшие знчения при иск > 2 м/с).  [c.407]

Исследования свойств модифицированного чугуна показали, что графит не ухудшает его свойств, но придает ему ряд новых специфических свойств. В работах В. С. Мильмапа, Н. Г. Гиршовича, К. И. Вап ,енко, А. Ф. Ланда и других выявлен ряд весьма важных положительных особенностей людифи-цированного чугуна, определяемых именно наличием графита. Такие его свойства, как циклическая вязкость и связанное с пей поведение материала при циклических нагрузках, выдвинули чугун на видное jm to среди конструкционных материалов, обеспечив получение из него деталей сложной конфигурации гораздо более доступными и дешевыми средствами, чем при старых технологических приемах (обработке давлением, резанием и т. п.).  [c.206]

Повышенная циклическая вязкость чугуна, обусловленная наличием в его структуре включений графита, увеличивает по сравнению с други ми конструкционными металлическими материалами чувствительность чугунных деталей в условиях циклических нагрузок к концентраторам напряжений [130, 260J. По этой же причине (наличие включений графита) чугун менее чувствителен, чем стали (особенно повышенной прочности) н к масштабному фактору, т. е. понижению усталостной прочности с повышением сечения испытательных образцов.  [c.206]

Повышающиеся требования к материалам машиностроения вызвали необходимость систематического изучения механических свойств чугуна различных марок в зависимости от вида нагружения п сечения отливки. В связи с этим в ЦНИИТМАШе были изучены структура и механические свойства шести марок модифицированного чугуна с пределом прочности при растяжении от 22 до 40 кПмм [260]. Для каждой из этих шести марок были исследованы зависимости между пределами прочности при растяжении, с одной стороны, и при изгибе, сжатии и кручении, с другой были также определены значения ударной вязкости, предела усталости (на гладких и надрезанных образцах) и циклической вязкости. Каждое из перечисленных испытаний проводилось на образцах, вырезанных из заготовок длиной 30, 50, 100 и 200 мм. Полученные данные впоследствии вошли в ГОСТ и используются в различных справочниках 1234] до настояш,его времени.  [c.207]


Смотреть страницы где упоминается термин Чугун Вязкость : [c.334]    [c.338]    [c.278]    [c.325]    [c.169]    [c.171]    [c.44]    [c.133]    [c.63]    [c.581]    [c.319]   
Машиностроение энциклопедия ТомII-2 Стали чугуны РазделII Материалы в машиностроении (2001) -- [ c.443 , c.574 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте