Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства сварных соединений и конструкций

Цель первых двух видов контроля — предупредить образование дефектов. С помощью третьего вида контроля устанавливают дефекты, определяют необходимые характеристики и свойства сварных соединений и конструкций.  [c.336]

Контроль качества сварных соединений проводят для определения различными способами дефектов сварных швов, прочности, плотности и физико-химических свойств сварного соединения и конструкции. Контроль качества сварных соединений и конструкций складывается из методов контроля, предупреждающих образование дефектов и методов контроля, выявляющих дефекты.  [c.212]


Для обеспечения необходимых свойств сварных соединений и конструкций решающее значение имеет выбор материала. Правильным выбором основного металла можно обеспечить не только необходимую прочность несущих элементов в конструкции, но также и прочность околошовных зон. Прочностные свойства металла определяются его механическими характеристиками (табл. 167). Одним из основных условий, определяющих выбор материала для сварных конструкций, является свариваемость материала. При прочих равных условиях предпочтение следует отдавать материалам, имеющим наиболее хорошую свариваемость.  [c.319]

Основной задачей термической обработки является достижение уровня требуемых механических свойств сварных соединений и специфических свойств, определяемых назначением конструкции (ударных, знакопеременных, коррозионных, низкотемпературных). Термическую обработку применяют по полному циклу (закалка с отпуском), обычно назначаемому по марке свариваемой стали, и только отпуску (для снятия напряжений) — высокому (600—650° С) или низкому (200—300° С).  [c.142]

В соответствии с указанной концепцией местный высокий отпуск сварных соединений в некоторых конструкциях должен выполнять свое назначение. Он не устраняет полностью в изделиях остаточных напряжений, но возвращает сварным соединениям и конструкциям необходимые пластические свойства, что и требуется для устранения образования хрупких разрушений.  [c.138]

Все эти дефекты ухудшают механические свойства сварных соединений и, следовательно, работоспособность конструкций. Часть из них, такие, как наружная пористость и наружные включения, прожоги, не-  [c.289]

Аустенитные стали значительно отличаются от обычных углеродистых сталей по своим теплофизическим и механическим свойствам. Сварные конструкции из коррозионностойких сталей эксплуатируются обычно в контакте с агрессивными средами, при повышенных температурах, в усложненных условиях осмотра и ремонта. Все перечисленные факторы обусловливают специфичность технологии сварки хромоникелевых аустенитных сталей по сравнению со сваркой обычных углеродистых сталей. При изготовлении и монтаже конструкций и трубопроводов из нержавеющих сталей могут быть использованы различные методы сварки, каждый из которых также имеет свои особенности и специфику. Основная задача любого метода и любой технологии сварки — обеспечение необходимой эксплуатационной надежности сварных соединений и конструкции в целом. Обычно сварные швы должны быть коррозионностойкими, плотными и прочными, с этой точки зрения целесообразно рассмотреть наиболее общие особенности, затруднения и способы их преодоления при сварке аустенитных хромоникелевых сталей, в той или иной мере присущие всем методам сварки.  [c.60]


Оценка свойств тонколистового металла при двухосном растяжении. С. А. Куркин, В. Ф. -Лукьянов Надежность сварных соединений и конструкций , 1967, 23—32  [c.261]

Низколегированные стали содержат небольшое количество углерода, и поэтому он не влияет на свариваемость. Свариваемость зависит здесь от тех добавок, которые введены в сталь для повышения ее механических и физических свойств. В качестве легирующих добавок, улучшающих свойства сталей, используются хром, никель, медь, марганец, кремний, молибден. Для изготовления сварных соединений и конструкций применяются следующие стали никелевые, содержащие 0,25—0,35 /о углерода и 2—3 /о никеля, хромо-никелевые (1—1,95 /о хрома и 2—4 /о никеля), хромо-молибденовые (0,15— 0,35% углерода, 0,8—1% хрома, 0,15—0,25% молибдена), хромистые, содержащие 0,1—0,5 /о углерода и I—1,5 /о хрома.  [c.9]

Металлические электроды для дуговой сварки должны обеспечить высокие механические свойства сварного соединения и высокую производительность сварки. Электроды представляют собой прутки диаметром 1—12 мм и длиной 250—450 мм. Электродами диаметром до 2 мм сваривают детали толщиной др 2 мм, диаметром 3 мм — детали толщиной 2—5 мм, диаметром 4—5 мм — детали толщиной свыше 10 мм. Поверхность электродов покрывают специальными обмазками для защиты ванны расплавленного металла от соприкосновения с кислородом и азотом воздуха, для повышения устойчивости горения электрической дуги, для легирования металла шва и раскисления. Для электродов разных марок применяют обмазки различного состава. Наиболее часто для сварки малоуглеродистых сталей используют электроды ОЛШ-5, ЦМ-7, УОНИ-13. Электроды ОММ-5 обеспечивают получение сварного шва с высокими механическими свойствами. Электроды УОНИ-13 предназначены для сварки стальных конструкций. При применении электродов ЦМ-7 повышается скорость сварки.  [c.256]

МИС рекомендует некоторые методы расчета прочности сварных соединений и конструкций. Расчеты составлены на основе экспериментов, проведенных главным образом голландскими учеными по изучению механических свойств швов под действием нормальных и касательных напряжений. Построены диаграммы, характеризующие прочностные свойства при нормальных сжимающих, срезывающих и нормальных растягивающих напряжениях. Особое внимание при этом уделено расчету угловых швов.  [c.102]

ВЛИЯНИЕ ТЕРМИЧЕСКОЙ ОБРАБОТКИ СВАРНЫХ СОЕДИНЕНИЙ И КОНСТРУКЦИЙ НА ИХ СВОЙСТВА  [c.109]

Углерод — важнейший элемент, определяющий структуру и свойства сварных соединений и поведение при эксплуатации. Вместе с тем углерод оказывает резко отрицательное влияние на стойкость металла шва против кристаллизационных трещин. При сварке углеродистых и низколегированных сталей углерод усиливает вредное действие серы. При сварке высоколегированных сталей углерод способствует образованию по границам кристаллитов легкоплавких эвтектик карбидного происхождения, что также снижает стойкость швов против кристаллизационных трещин. Критическое содержание углерода зависит от конструкции узла, наличия или отсутствия предварительного подогрева, формы швов и содержания в стали других элементов, в первую очередь серы.  [c.70]

В книге описаны электрические, магнитные и тепловые свойства сварочной дуги изложены данные о конструкциях современных сварочных автоматов и полуавтоматов для сварки под флюсом и в атмосфере защитных газов приведены краткие сведения по устройству и обслуживанию источников питания дуговой сварки освещены вопросы сварки цветных металлов и сплавов описаны методы контроля и испытания сварных соединений и конструкций.  [c.223]

Назначение этих методов испытаний состоит в определении механических свойств, которые используются для количественной и качественной оценки работоспособности сварных соединений и конструкций, а также для сравнения механических свойств основного металла и металла сварных соединений с целью оценки соответствия принятой технологии сварки тем требованиям, которые предъявлены к сварной конструкции. Рассмотрим основные требования к образцам и условиям проведения стандартных испытаний сварных соединений.  [c.88]


В монографии рассмотрены вопросы теории фазовых превращений в сталях и сплавах титана в неравновесных условиях, характерных для сварки, а также ряд процессов термической и термопластической обработки,, осуществляемых при непрерывном изменении температуры. Дан анализ механизма задержанного разрушения закаленной стали и сплавов титана с различным пределом текучести и условий образования холодных трещин в сварных соединениях этих материалов. Систематизировать и предложены новые меры предупреждения трещин путем рационального легирования и применения технологических средств сварки термической и термомеханической обработки. Разработана система критериев расчетного выбора параметров режимов и технологии сварки и последующей термообработки, обеспечивающих оптимальные свойства и структуру сварных соединений. Рассмотрены новые пути повышения прочности сварных соединений и конструкций с помощью термомеханической и механико-термической обработки.  [c.4]

Новейшие представления в области физического металловедения, теории дислокаций, механики материалов и теории тепловых процессов при сварке позволили автору дать современную физическую трактовку процессов, определяющих структуру и свойства сварных соединений, а также предложить ряд новых методов их исследования и регулирования. Практическая ценность монографии заключается в том, что она обосновывает расчетный выбор технологии сварки сталей и сплавов титана и пролагает новые пути повышения прочности сварных соединений и конструкций из этих материалов.  [c.7]

Местный отпуск применяют для снятия пиковых величин остаточных напряжений и восстановления пластических свойств сварных соединений. При местном отпуске нагревают до заданной температуры лишь часть конструкции.  [c.35]

Конечная цель сварочного производства — выпуск экономичных сварных конструкций, отвечающих по своим конструктивным формам, механическим и физическим свойствам тому эксплуатационному назначению и условиям работы, для которых они создаются. Обеспечение рациональных форм и определение оптимальных сечений элементов конструкций относится к задачам проектирования. Получение необходимых механических и физических свойств сварных соединений — главная задача, решение которой должны обеспечить технологические процессы сварки. Теория сварочных процессов призвана давать правильное описание совокупности явлений, которые составляют сущность процесса сварки.  [c.5]

Надежность конструкции при заданных значениях рабочего давления транспортируемой среды определяется работоспособностью сварных соединений, стенок конструкции, пораженных коррозией, наводороженного металла с внутренними расслоениями. Прочность и работоспособность конструкции может быть обеспечена при соблюдении соответствующих нормативов [53, 54] и учете силовых факторов, свойств материалов и условий работы.  [c.126]

Ультразвуковая дефектоскопия сварных соединений и наплавок основана на способности упругих колебаний отражаться от границы двух сред с различными физическими свойствами и выполняется в соответствии с ГОСТ 14782—69 и другими нормативными материалами. С помощью ультразвуковой дефектоскопии выявляются внутренние возможные дефекты сварного соединения трещины, непровары, шлаковые включения, несплавление наплавленного слоя с основным металлом и т. п. Объем ультразвуковой дефектоскопии устанавливается Правилами [9] и может быть уменьшен по согласованию с проектной организацией, материаловедческой организацией, ответственной за выбор материала для данной конструкции, с местными органами Госгортехнадзора в случае серийного изготовления предприятием однотипных изделий при неизменном технологическом процессе, специализации сварщиков на отдельных видах работ и высоком качестве сварных соединений, подтвержденном результатами контроля за период не менее одного года. При ультразвуковой дефектоскопии о наличии дефектов судят по расположению, затуханию или скорости импульсных сигналов.  [c.214]

В международной и отечественной практике сварочного производства дефектом принято называть любое несоответствие свойств объекта тем заданным или принятым свойствам, которые определены нормативно-технической документацией. В качестве такой документации могут выступать нормы дефектности, установленные государственными стандартами (например, ГОСТ 23055-78), отраслевыми стандартами (например, СНиП III 18-75), либо техническими условиями на поставку и эксплуатацию продукции. То есть термин дефект свидетельсл вует о наличии брака. В то же время в научно-технической и учебной литературе все технологические отклонения принято определять термином дефект , что безусловно удобно с точки зрения анализа работоспособности сварных соединений и конструкций.  [c.6]

Технологические операции, применяемые в процессе изготовления изделия, могут существенно снизить начальную термодинамическую и электрохимическую устойчивость металла в связи с возникшей неоднородностью его структуры, из-за упругопластического состояния, изменения физических и других свойств. Например, для сварных соединений и конструкций определяющими являются теплофизическое и химико-металлургическое воздействие сварки. Как показали исследования д-ра техн. наук  [c.440]

Большой комплекс исследований выполнен проф., докт. техн. наук М. Н. Гапченко по изучению влияния технологических факторов (неоднородности металла, технологических напряжений и дефектов) на свойства сварных соединений. В результате исследований установлены закономерности влияния этих факторов и предложены рекомендации по повышению несущей способности сварных соединений и конструкций, снижению чувствительности сварных конструкций к хрупкому разрушению. Показана возможность регулирования в больших пределах агрегатной прочности и энергоемкости сварных соединений из высокопрочных материалов путем изменения объема мягкой прослойки. Показано, что термическое упрочнение является эффективным средством снижения чувствительности металла шва к концентраторам напряжений. Изучено влияние скорости приложения нагрузки на проч-  [c.24]


Низколегированные низкоуглеродистые стали хорошо свариваются. Это значит, что они не образуют при сварке холодных и горячих трещин, и свойства сварного соединения и участков, прилегающих к нему (зоны термического влияния), близки к свойства-м основного металла. Стали, предназначенныедля сварных конструкций, дополнительно раскисляют алюминием или титаном, чтобы предотвратить укрупнение зерна в околошовной зоне в процессе сварки. Введение меди, никеля или одновременно меди и фосфора увеличивает коррозионную стойкость стали в атмосферных условиях (стали ЮХСНД, ЮХНДП, 15ХСНД).  [c.291]

При статической нагрузке остаточные сварочные напряжения не влияют на прочность сварных соединений и конструкций, когда металл сохраняет способность пластически деформироваться. Если напряжения от внешней нагрузки складываются с остаточными напряжениями, наступает местная пластическая деформация, в результате которой увеличение напряжений выше предела текучести не происходит. Местная текучесть обычно захватывает небольшие участки сварного соединения и не исчерпывает пластических свойств металла. В результате местной текучести прочность, а также геометрические размеры соединения илн конструкции не изменяются или изменяются незначите-чьно, однако это явление не желательно в конструкциях точных станков и приборов.  [c.355]

Точность подготовки деталей к сварке, их чистота и качество сборки оказывают весьма существенное влияние на несущую способность и экономичность сварной конструкции Недостаточно тщательное выполнение заготовительных и сбороч ных операций приводит к резкому возра(станию вероятности появ ления дефектов в сварных соединениях и в конструкции в целом Анализ дефектов, возникающих при сварке, однозначно показы вает, что значительную долю брака следует отнести за счет пло хого качества подготовки и сборки. Исправление брака в готовом изделии не всегда приводит к полному восстановлению заданных свойств сварного соединения и является трудоемкой и технически сложновьшолнимой операцией.  [c.179]

Целью испытаний является определение прочности и пластичности сварных соединений. Однако подобные механические испытания вообще не могут в достаточной мере характеризовать качество сварных соединений и конструкции в целом. Например, испытания на растяжение почти никогда не служат основанием для браковки конструкции. Единственньш поводом для браковки является неудовлетворительный результат испытаний образцов на загиб, т. е. тогда, когда получают меньший угол загиба, чем требуется. Но испытания на загиб не позволяют определить свойства металла сварного соединения, так как они характеризуют лишь соотношение свойств основного и наплавленного металла. Это соотношение зависит, прежде всего, от предела текучести основного металла и металла шва. Уменьшение предела текучести металла шва по сравнению с пределом текучести основного металла всегда сопровождается уменьшением угла загиба, и наоборот. Следовательно, на практике необходимо стремиться к тому, чтобы предел текучести металла шва был бы равен пределу текучести основного металла или несколько вьппе его. Соотношение же свойств основного металла и наплавленного должно определяться в процессе разработки технологии сварки путем выбора и назначения соответствующих сварочных материалов (электродов, сварочной проволоки, флюсов и т. п.). Если эти соотношения установлены, то нет никакой необходимости в последующих механических испытаниях.  [c.146]

Низкоуглеродистые стали с содержанием углерода до 0,22% свариваются хорошо и не требуют какой-либо особой технологии. Сварка этих сталей производится электродами Э42 и Э42А с покрытиями ОММ-5, ЦМ-7, МЭЗ-04 н УОНИ-13/45. Сварку электродами с меловым покрытием можно применять только при изготовлении неответственных конструкций. Термическая обработка этих сталей после сварки производится в тех случаях, когда необходимо повысить пластические свойства сварных соединений и снять внутренние напряжения.  [c.154]

Исследования (Николаса, Уэллса, Ирвина и др.) упруго-пластических разрушений заставляют переходить от оценки целой конструкции к локальной оценке прочности. Устанавливаются методы (Бирет, Рюль и др.), рекомендующие применение тех или других марок сталей в зависимости от их склонности к локальным разрушениям. Настойчиво рекомендуются всевозможные физические методы контроля сварных соединений и конструкций, обеспечивающих однородность их свойств. Исследуется прочность сварных соединений с учетом имеющейся в них неоднородности (химической, физической, структурной, механической и т. д.).  [c.15]

В зависимости от протяженности шва, то.ищины и марки металла, жесткости конструкции и т. д. применяют различные приемы последовательности сварки швов и заполнения разделки (рис. 20). Сварку напроход обычно применяют при сварке коротких швов (до 500 мм). Швы длиной до 1000 мм лучше сваривать от середины к концам или обратноступенчатым методом. При последнем способе весь шов разбивают на участки по 150—200 мм, которые должны быть кратны длине участка, наплавляемого одним электродом. Сварку швов в ответственных конструкциях большой толщины выполняют блоками, каскадом или горкой, что позволяет влиять на структуру металла шва и сварного соединения и его механические свойства.  [c.27]

В iieivOTopbix случаях конкретные условия работы конструкций допускают снижение отдельных показателей механических свойств сварного соединения. Однако во всех случаях, особенно Hjin сва )ке ответственных конструкций, швы не должны иметь трещин, пепроваров, пор, подрезов. Геометрические размеры и форма HI ВОВ долиты соответствовать требуемым. Сварное соединение доли но быть стойким против перехода в хрупкое состояние. Иногда к сва )иому соединению предъявляют дополнительные требования (работоспособность при вибрационных и ударных нагрузках, пониженных температурах и т. д.). Технология должна обеспечивать максимальную производительность и окоиомичность процесса сварки при требуемой надежности конструкции.  [c.215]

Электрошлаковую сварку широко применяют при изготовлении конструкций из толстолистовых низкоуглеродистых и низколегированных сталей. При этом равнопрочпость сварного соединения достигается за счет легирования металла шва через электродную проволоку и перехода элементов из расплавляелшго металла кромок основного металла. Последующая термообработка, помимо снижения остаточных напряжений, благоприятно влияет и на структуру и свойства сварных соединений.  [c.228]

Если сталь перед сваркой подвергают термообработке, но после сварки отпуск певозможен из-за крупных размеров конструкции, то сталь данной марки можпо использовать для изготовления такой конструкции только в том случае, если не предъявляется жестких требований к равнопрочности сварного соеди-иеиия и основного металла в условиях статического нагружения. Для обеспечения свойств сварного соединения, гарантирующих требуемую его работоспособность, критерием необходимой температуры подогрева будет диапазон скоростей охлаждения Аи опт, обеспечивающий необходимый уровень механических свойств в околошовной зоне.  [c.251]


Электронно-лучевая сварка — одно из самых распространенных технологических применений электронного луча. Поскольку сварка — процесс, связанный с локальным плавлением и последующей кристаллизацией расплавленного металла, ширина зоны расплавленного металла имеет при сварке важное значение. Кристаллизация металла в сварочной ванне в значительной мере определяет свойства металла шва и изменение ширины зоны проплавления при сварке сТановитс.я важным фактором воздействия на свойства сварного соединения. Кроме того, от объема расплавленного металла зависят деформ ции и напряжения, возникающие после сварки в сварных конструкциях, что также требует регулирования объема сварочной ванны.  [c.113]

Отличительной особенностью сварных соединений оболочковых конструкций является наличие в них механической неоднородности, проявляющейся в различии свойств металлов отдельных учкстков и зон соединений. Последнее является, с одной стороны, следствием структурно-химических изменений материала под воздействием термодеформационного цикла сварки и, с другой стороны, применением для сварки материалов с различным уровнем механических характеристик. Участки (зоны) соединений, металл которых имеет пониженные по сравнению с основным металлом конструкции прочностные характеристики (предел текучести а,, временное сопротивление, твердость НУ и др.), как отмечалось во введении, принято называть мягкими прослойками, а N ia TKH, металл которых имеет более высокие характеристики  [c.73]

Существующее многообразие распределения механических свойств (например, твердосги HV) по объему мягких прослоек и их геометрических форм можно свести к схемам, приведенным на рис 2.6 и 2.7, которые охвапъгвают наиболее часто встречаемые на практике вида механической неоднородности сварных соединений оболочковых конструкций Для оценки размеров и свойств различные зон соединений наряд> с экспериментальными /43/ существуют и расчетные методы /44, 45/. Используя данные подходы и методики можно в целом ряде случаев оценить вид и степень неоднородности сварных соединений и размеры мягких и твердых прослоек.  [c.77]

Следует отметить, что гфи проектировании конструкции и их сварных соединений практически остались без внимания вопросы учета характера распределения механических свойств по объему разупрочнен-ных (мягких) участков (см. рис. 2.6). Достаточно подробно проработаны аспекты оптимального проектирования сварных соединений на примере рассмотрения простой условной схемы распределения свойств (в предположении об однородности свойств в мягких прослойках, см. рис. 2.6.Й (1)). В связи с этим остаются открытыми вопросы конструктивно технологического n K eKTHpoBaHHM сварных соединений оболочковых конструкций с более сложной картиной механической неоднородности.  [c.88]

Следует о етить, что приведенный выше перечень методов и технических средств их реализации /103, 108 — 110, 112/, разработанных для повышения степени достоверности полу чаемых результатов по оценке механических свойств неоднородных соединений оболочковых конструкций, не является исчерпывающим. В этом направлении установленные закономерности по влиянию конструктивно-геометрических параметров соединений и схем напря жения на их механические свойства. а также полученные на данной основе расчетные зависимости являются необходимым базисом для дальнейшего развития методов испытаний сварных соединений оболочковых конструкций.  [c.164]

Отмеченные особенности конструкции и свойств сварных соединений определяют различные методические решения их дефектоскопии. Поэтому ниже рассмотрены методические приемы при контроле сварных соединений разных типов, на дефектоско-пичность которых влияют один или несколько факторов. Разная кривизна поверхности сосудов (практически плоские поверхности) и труб малого и среднего диаметра (менее 500 мм) в определенной мере обусловливает различия в методиках их контроля. Ограниченная площадь сечения шва, большая кривизна поверхности и неровностей периодического профиля арматуры железобетона предопределяют нетрадиционную методику их контроля. Крупный размер зерна и высокая анизотропия механических свойств ау-стенитных швов существенно затрудняют проведение УЗ К, поэтому для повышения достоверности контроля таких швов применяют специальные преобразователи и дефектоскопы, обеспечивающие повышение амплитуды полезного сигнала. Трудность УЗК сварных швов, выполненных контактной, диффузионной сваркой и сваркой трением, заключается в различии дефекта типа слипания, прозрачного для ультразвука. Особую группу конструкций составляют угловые, тавровые и нахлесточные соединения, в которых иногда ограничен доступ к месту контроля, а возможное расположение опасных дефектов в шве затрудняют их обнаружение.  [c.316]

Задача настоящей работы заключалась в разработке технологии и исследования свойств сварных соединений сталей ЭП410, ЭП222, ЭИ878 применительно к тонколистовым конструкциям.  [c.118]


Смотреть страницы где упоминается термин Свойства сварных соединений и конструкций : [c.493]    [c.522]    [c.111]    [c.147]    [c.9]    [c.28]    [c.219]    [c.101]    [c.12]   
Смотреть главы в:

Справочник по сварке Том 3  -> Свойства сварных соединений и конструкций



ПОИСК



Влияние неравномерности распределения механических свойств металлов различных тон сварных соединений на их напряженное состояние и несущую способность и ее учет при оценке прочности конструкций

Влияние термической обработки сварных соединений и конструкций на их свойства

Оборудование для правки сварных конструкций и улучшения механических свойств сварных соединений

Сварные конструкции

Сварные конструкции — Соединения

Свойства сварных соединений

Соединения Свойства



© 2025 Mash-xxl.info Реклама на сайте