Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тепловые свойства сварочной дуги

Тепловые свойства сварочной дуги определяются при рассмотрении ее в качестве источника тепловой энергии, эффективная тепловая мощность которого q есть количество теплоты, введенное за единицу времени в металл изделия и затраченное на его нагрев, т. е.  [c.8]

Тепловые свойства сварочной дуги  [c.13]

В книге описаны электрические, магнитные и тепловые свойства сварочной дуги изложены данные о конструкциях современных сварочных автоматов и полуавтоматов для сварки под флюсом и в атмосфере защитных газов приведены краткие сведения по устройству и обслуживанию источников питания дуговой сварки освещены вопросы сварки цветных металлов и сплавов описаны методы контроля и испытания сварных соединений и конструкций.  [c.223]


Наиболее важным свойством для сварки являются тепловые свойства дуги. Температура сварочной дуги очень высокая — около 5500 °С и зависит от диаметра электрода, плотности тока, материала электродов и состава газовой среды. На катоде она более низкая, чем на аноде, и максимального значения достигает в столбе дуги. При ручной сварке на постоянном токе разница температур на катоде и аноде используется для увеличения расплавления электрода или изделия. Тепловые возможности сварочной дуги измеряются ее тец-ловой мощностью. Полная тепловая мощность дуги 6 , количество теплоты в Дж/с, выделяемое дугой в единицу времени, может быть выражена как эквивалент электрических характеристик произведением сварочного тока 7 на напряжение дуги 7д  [c.38]

На эти процессы влияют следующие основные факторы а) размеры и форма свариваемых изделий, теплофизические свойства металла б) эффективная тепловая мощность сварочной дуги и характер ее перемещения по изделию.  [c.44]

В связи с различием в свойствах аргона и азота тепловая мощность сварочной дуги в среде азота выше, чем в аргоне. Опытным путем установлено, что при сварке меди в струе азота режим по сравнению с аргоно-дуговой сваркой должен быть изменен следующим образом сила сварочного тока снижается примерно на 10—15% напряжение на дуге увеличивается примерно на 20% давление азота по сравнению с давлением аргона при одинаковом диаметре вольфрамового электрода и сопла электрододержателя повышается примерно в полтора раза.  [c.281]

Под технологическими свойствами сварочной дуги понимают совокупность ее теплового, механического и физико-химического воздействия на свариваемый материал, определяющую интенсивность плавления электрода, характер переноса электродного металла, проплавление основного металла, формирование и качество шва. К технологическим свойствам дуги относят также ее пространственную устойчивость и эластичность. Технологические свойства дуги взаимосвязаны и зависят от параметров режима сварки.  [c.32]

При необходимости учесть распределенность теплоты, например, от сварочной дуги, по глубине металла можно принять нормальный закон распределения по аналогии с формулой (5.33). В общем случае использования различных сварочных источников теплоты вопрос о распределенности теплового потока по толщине металла должен решаться каждый раз конкретно в зависимости от свойств самого источника и его взаимодействия со свариваемым металлом. В первом приближении о характере распределения вводимой энергии можно судить по форме проплавления. На рис. 5.14, а. б. в показаны формы провара в электрошлако-вых сварных соединениях в зависимости от расположения и характера перемещения сварочных проволок в зазоре. Случай  [c.156]


Кристаллизация металла шва. Кристаллизация жидкого металла при охлаждении начинается с не полностью оплавленных зерен основного металла, расположенных на границе расплавления, к решетке которых и пристраиваются атомы кристаллизующейся фазы. После затвердения металла шва (кристаллизации) на участках расплавления образуются зерна, состоящие частично из основного металла и металла шва, обеспечивающие в сварном соединении непрерывную металлическую связь основной металл —шов — основной металл . При движении сварочной дуги вдоль свариваемых кромок в передней части ванны происходит процесс плавления, а в тыльной — процесс кристаллизации. Таким образом происходит формирование сварного шва. Протяженность сварочной ванны зависит от типа источника тепла, ero тепловой мощности, режимов сварки и теплофизических свойств свариваемого материала.  [c.52]

Газовая сварка является универсальным методом сварки, пригодным для соединения всех цветных металлов, используемых в машиностроении. Однако этот способ является достаточно дорогим и малопроизводительным. В ряде случаев, особенно при сварке больших толщин, снижаются механические свойства наплавленного металла вследствие влияния перегрева, включений окислов, пористости швов и прочих причин, связанных с тепловыми и металлургическими особенностями процесса газовой сварки. Поэтому в сварочной технике непрерывно ведутся работы по изысканию новых, более эффективных технологических методов сварки цветных металлов, основанных на использовании электрической сварочной дуги под флюсом и в атмосфере инертных газов. Эти способы имеют также и то преимущество перед газовой сваркой, что позволяют легче решать задачи механизации и авто.матизации процесса сварки. Тем не менее еще до настоящего времени методы газовой сварки находят широкое применение в промышленности, преи-16  [c.227]

При сварке меди необходимо учитывать специфические свойства этого металла, из которых главными являются высокая теплопроводность, большая жидкотекучесть и значительная активность металла при взаимодействии с кислородом и водородом в расплавленном состоянии. Вследствие высокой теплопроводности меди (почти в 6 раз большей, чем у стали) для сварки плавлением необходимо применять источники нагрева с большой тепловой мощностью, а также повышенную по сравнению со сталью погонную энергию. Высокие тепло- и температуропроводность приводят также к существенным скоростям охлаждения металла шва и околошовной зоны и малому времени пребывания сварочной ванны в жидком состоянии. Это ухудшает формирование шва и вызывает затруднения при металлургической обработке ванны. Улучшение формирования шва можно обеспечить с помощью предварительного подогрева. Предварительный и сопутствующий подогрев основного металла улучшает условия кристаллизации сварного шва, снижает внутренние напряжения и устраняет склонность металла шва к образованию трещин. Изделия толщиной более 10-15 мм подогревают газовым пламенем, рассредоточенной дугой и другими способами до следующей температуры из меди - 250-300 °С, латуни - 300-350 °С, бронзы - 500-600 °С.  [c.120]

При наплавке газовым пламенем нагрев и плавление металла происходят значительно медленнее, чем при дуговом процессе, так как тепловой поток, создаваемый ацетилено-кислородным пламенем, в 8—12 раз меньше теплового потока от открытой сварочной дуги. Эффективная тепловая мощность пламени — количество теплоты, введенное в металл в единицу времени и затраченное на его нагрев, — зависит от расхода газа, соотношения кислорода и горючего газа в пламени, от угла наклона оси пламени к поверхности металла, скорости наплавки, массы изделия и его теплофизических свойств. С увеличением расхода газа эффективная тепловая мощность пламени возрастает. Расход газа изменяют путем применения наконечников с различным диаметром сопла мундштука.  [c.31]


Основные методы вспытавий. При функционировании робота определяются точностные, кинематические, динамические, виброакустические, тепловые параметры и мощность. Данные табл. 6.2 свидетельствуют о том, что для этих испытаний при их унификации необходим сравнительно небольшой набор датчиков. Дополнительные испытания проводятся в связи с технологическим назначением робота и более подробным исследованием его свойств [28]. Они включают измерение электрических параметров и температуры сварочных головок, кабелей и дуги, контроль качества контактной и дуговой сварки, окраски, лазерной обработки и т. п., контроль надежности захватывания и удерживания заготовок и инструмента. Наиболее трудоемки точностные испытания, так как они проводятся многократно (10 —25 раз и более) при движении захвата в двух направлениях и при различных начальных й конечных положениях, различной траектории движения при совместной работе ряда двигателей, а также длительно, с определенной периодичностью для изучения влияния прогрева и других медленно изменяющихся факторов.  [c.80]

Применение инертных газов существенно повышает стабильность дуги. Значительное различие теплофизических свойств защитных газов и применение их смесей, изменяя тепловую эффективность дуги и условия ввода теплоты в свариваемые кромки, значительно расширяют технологические возможности дуги. При сварке в инертных газах наблюдается минимальный угар легирующих элементов, что важно при сварке высоколегированных сталей. При сварке в защитных газах возможности изменения химического состава металла шва более Офаничены по сравнению с другими способами сварки и возможны за счет изменения состава сварочной (присадочной) проволоки или изменения доли участия основного металла в образовании металла шва (режим сварки), когда составы основного и электродного металлов значительно различаются.  [c.374]

При производстве, дюнтаже и ремонте паровых котлов, трубопроводов и сосудов применяют электродуговую, газовую н контактную сварку металлов [36]. Процесс сварки сопровождается изменением структуры и свойств в зоне соединения и возникновением поля остаточных напряжений [12]. Для большинства методов сварки характерным является приложение концентрированных электрически.х, газовых или механических источников энергии непосредственно в зоне соединения. При электродуговой марке необходимая для нагрева и расплавления тепловая энергия обеспечивается электрической дугой при контактной сварке — выделяется за счет электросопротивления свариваемых деталей или зоны контакта деталей. Применяют также индукционный нагрев токами высокой частоты. При газовой сварке металл нагревается пламенем горючего газа (или паров ке-)осина), сжигаемого в кислороде при помощи сварочной горелки, (аждый способ сварки имеет много разновидностей [35, 36].  [c.145]

Дуговая сварка плавлением при помощи электрической дуги или других источников тепловой энергии широко распространена благодаря простоте соединения частей металла путем местного расплавления соединяемых поверхностей. Расплавление основного и присадочного металла облегчает их физические контакты, обеспечивает подобно жидкостям смешивание металлов в жидкой сварочной ванне, одновременно удаляя оксиды и другие загрязнения. Происходят металлургическая обработка расплавленного металла и его затвердевание, образуются новые межатомные связи. В кристаллизуемом металле образуется сварной шов (рис. 1.2, в). Свойства сварного шва и соединения в целом регулируются технологией расплавления металла, процессом его обработки и кристаллизации. Взаимная растворимость в л<идком состоянии и образование сварного шва характерны для однородных металлов, например для стали, меди, алюминия и др. Более сложным оказывается соединение разнородных материалов и металлов. Это объясняется большой разницей их физико-химических свойств температуры плавления, теплопроводимости и др., а также несходством атомного строения. Некоторые металлы, например железо и свинец и др., не смешиваются при расплавлении и не образуют сварного соединения другие — железо и медь, железо и, никель, никель и медь хорошо смешиваются при сварке образуют твердые растворы. Для соединения металлов, не поддающихся смешиванию при расплавлении, применяют особые виды сварки и методы ее выполнения.  [c.8]

Протяженность сварочной ванны. В вависимости от природы источника тепла (дуги газовое пламя электрошлаковый нагрев и др.) его тепловой мощности в технологических режимов сварки, свойств свариваемого материала и других факторпр ра меры сварочной вянны могут существенно изменяться.  [c.52]

Азот при сварке меди может применяться как инертный газ, (он не растворяется в меди и не реагирует с ней). Тепловая мощность дуги при защите азотом значительно больше, чем при защите дуги аргоном. Однако следует учитывать, что вольфрамовые электроды являются нестойкими в атмосфере технического азота, поставляемого промышленностью и содержащего до 3—4% Оа-Такое ко.тчссгао кислорода при сваркс медных сплавов плавящимся электролом не вызывает недопустимого ухудшения свойств металла швов, но при сварке вольфрамовым электродом приводит к его окислению, плавлению и попаданию в ванну включений вольфрама. Стойкость вольфрамовых электродов с торием значительно выше, чем чисто вольфрамовых, но тоже недостаточна. В этих случаях требуется либо дополнительная очистка азота от кислорода, либо применение специальных горелок с комбинированной газовой защитой. При такой защите вольфрамовый электрод омывается маломощной струей аргона, предохраняющего его от непосредственного контакта с азотом, а основная защитная струя, защищающая сварочную ванну и нагретый конец присадочного металла, формируется из азота. Такая защита целесообразна и по техническим, и по экономическим соображениям.  [c.247]



Смотреть страницы где упоминается термин Тепловые свойства сварочной дуги : [c.341]    [c.303]    [c.25]    [c.87]    [c.241]   
Смотреть главы в:

Основы сварочного дела Издание 4  -> Тепловые свойства сварочной дуги



ПОИСК



Вес дуги

Пар Тепловые свойства

Сварочная дуга

Сварочные Свойства

Сварочные свойства дуги

Тепловые свойства дуги



© 2025 Mash-xxl.info Реклама на сайте