Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Особенности свойств сталей

ОСОБЕННОСТИ СВОЙСТВ СТАЛЕЙ  [c.331]

Третий этап (завершающий) — раскисление стали — заключается в восстановлении оксида железа, растворенного в жидком металле. При плавке повышение содержания кислорода в металле необходимо для окисления примесей, но в готовой стали кислород — вредная примесь, так как понижает механические свойства стали, особенно при высоких температурах. Сталь раскисляют двумя способами осаждающим и диффузионным.  [c.31]


Механические свойства сталей и сплавов определяются их химическим составом, структурой и отсутствием или наличием различного типа дефектов. Вьппе бьши рассмотрены основные типы и виды дефектов, характерные для сварных соединений. В настоящем разделе остановимся на рассмотрении ряда особенностей, связанных с неоднородностью химического состава и структуры сварных соединений, которые определяют механические характеристики металла шва, зоны термического влияния, зоны сплавления и других локальных участков. При этом необходимо иметь в виду, что развитие дефектов происходит именно в данных участках, а работоспособность сварных соединений определяется комплексом сложных процессов, связанных с механическими характеристиками металла различных зон, геометрическими размерами последних, видом и условиями нагружения, типом дефекта и др.  [c.13]

Влияние различных факторов на механические свойства материалов. Экспериментами установлено, что при повышении скорости нагружения и скорости деформирования повышаются предел текучести и предел прочности. При повышении температуры особенно ощутимой является ползучесть (см. 3.9). При высоких температурах более явственными становятся вязкие (пластические) свойства, тогда как при пониженных температурах наблюдается охрупчивание. Существенно влияние на механические свойства металлов химического состава. Например, малые легирующие добавки (хром, никель, молибден и др.) изменяют механические свойства сталей, дают возможность создавать материалы с высокой проч-  [c.142]

В силу особенностей влияния на свойства стали, а также по технологическим соображениям наиболее перспективным промышленным способом использования ТМО для улучшения качества массовых конструкционных и строительных сталей, а также сталей и сплавов, работающих в условиях больших и сложных по схеме нагрузок, является ВТМО.  [c.536]

На рис. 62 показана зависимость от температуры модуля упругости , предела текучести о р, предела прочности а р и удлинения при разрыве S для малоуглеродистой стали в интервале О—500 °С. Как видно из приведенных кривых, модуль упругости в пределах изменения температуры до 300 °С практически не меняется. Более существенные изменения претерпевают величины ст р и, особенно, б, причем имеет место, как говорят, охрупчивание стали — удлинение при разрыве уменьшается. При дальнейшем увеличении температуры пластические свойства стали восстанавливаются, а прочностные показатели быстро падают.  [c.79]


Сернистые соединения сильно снижают механические свойства стали при статическом и циклическом нагружении, особенно вязкость, пластичность, предел выносливости. Сера является вредной примесью в сталях.  [c.81]

Углеродистые конструкционные стали высокой прочности и с высокими упругими свойствами содержат углерод от 0,6 до 0,8%. После закалки и отпуска детали из этих сталей могут работать в условиях трения при высоких статических и вибрационных нагрузках (опоры валов, направляющие, кулачковые механизмы и т.д.). Положительная особенность углеродистых сталей - достаточно высокий комплекс  [c.15]

Температура оказывает существенное влияние на механические свойства стали. С повышением температуры показатели прочности стали снижаются, а показатели пластичности возрастают. Характер изменения свойств определяется химическим составом и структурой стали. С понижением температуры пластичность и особенно ударная вязкость стали снижаются.  [c.221]

Понятие о выплавке и формировании качества чугуна и стали. Реальные свойства сталей и чугунов в значительной степени зависят от неизбежно попадающих в них при выплавке других элементов, которые могут или растворяться в феррите И цементите, или образовывать в сплавах твердые или газообразные неметаллические включения. Во всех этих случаях особенно сильно изменяются свойства сталей и надо четко себе представлять хотя бы схематично процесс выплавки стали. Основная масса производимой в стране стали получается из чугуна путем его переплавки. В свою очередь, чугун выплавляется из железной руды в специальных печных агрегатах, называемых доменными печами. Железная руда представляет собой сложный горный минерал, содержащий железо в количествах, обеспечивающих экономически рациональное ведение плавки.  [c.25]

Таким образом, комбинированной ТМО можно повысить ударную вязкость стали (по сравнению с ее значением при обычном режиме НТМО) более чем в три раза. Столь благоприятное влияние комбинированной обработки на свойства стали делает ее весьма перспективной для разработки новых режимов упрочнения конструкционных материалов, особенно таких, к которым предъявляются высокие требования по пластичности и вязкости.  [c.74]

Метод индукционного нагрева основан на использовании следующих законов и явлений 1) закон электромагнитной индукции 2) поверхностный эффект 3) эффект близости 4) изменение свойств стали в процессе нагрева. Последнее явление особенно существенно при поверхностной термообработке, на что впервые обратил внимание чл. кор. АН СССР проф. В. П. Вологдин, автор метода поверхностной индукционной закалки [7,8].  [c.6]

Пригодность стали к использованию в качестве материала пароперегревательных труб определяется ее жаростойкостью и стабильностью во времени при повышенных температурах, а также технологическими свойствами при изготовлении труб и пароперегревателей из них. В связи с перечисленными особенностями хромомарганцевые стали могут использоваться в качестве материала пароперегревателей при условии их дополнительного легирования (редкоземельными элементами либо молибденом, вольфрамом, бором) для удовлетворения перечисленных выше требований.  [c.247]

Механические свойства стали неоднозначно влияют на ее износостойкость при ударно-усталостном изнашивании. С увеличением прочностных характеристик (пределов прочности и текучести, твердости) износостойкость стали увеличивается. Однако зависимости износостойкости стали от каждой из этих характеристик имеют свои особенности. Для всех характеристик в обшей за-  [c.106]

Особенности анодного электрохимического поведения нержавеющей стали обусловлены различным значением химического потенциала металла на разных стадиях деформации, которые определяются дислокационной субструктурой, формируемой в процессе деформации и вызывающей деформационное упрочнение. Поскольку напряжение пластического течения металла является величиной доступной для простых измерений, установленная связь электрохимических свойств стали с сопротивлением деформации 86  [c.86]


Действительным методом защиты сталей от коррозионно-механического разрушения служит диффузионное цинкование. Цинкование не влияет на механические свойства сталей, но тормозит зарождение поверхностных трещин. Нанесение на поверхность стальных образцов цинкового диффузного покрытия ведет к значительному повышению сопротивления коррозионному растрескиванию и усталости. Диффузное цинкование применяется для увеличения срока службы насосных штанг, эксплуатируемых в нефтяных скважинах (срок их службы увеличивается с 2—3 месяцев до одного года, что обеспечивает весомый экономический эффект), Особенно эффективно сочетание диффузного цинкования поверхности и объемной закалки токами высокой частоты [21,71].  [c.122]

Детали машин, оборудование и сооружения, выполненные из стали, работают в различных средах — влажном воздухе, воде и водных растворах, смазочных маслах, жидких металлах, радиоактивных средах и др. Все среды могут иметь высокие или низкие температуры и давления, а также находиться в движении, что существенно при их воздействии на металл. Они могут влиять на механические свойства стали, особенно при продолжительной нагрузке, так как воздействие среды на металл обычно проявляется в течение продолжительного времени. Рабочие среды особенно сильно влияют на металл в процессе его деформации, но и до деформации некоторые среды при соприкосновении с металлом способны вызывать изменение его прочности, износоустойчивости и пластичности.  [c.101]

Изыскания в области броневой стали явились отличной школой по изучению путей достижения высокой прочности и особенностей поведения стали в процессе деформации и разрушения. Крупный вклад в этом направлении был внесен А. С. Завьяловым, Г. А. Капыриным, П. О. Пашковым и др. Работы над усовершенствованием брони показали также исключительное значение для высокопрочной стали технологических решений (о значении для авиационной брони изотермической закалки и закалки под штампом, являвшейся одним из вариантов высокотемпературной термомеханической обработки, уже было сказано выше). Весьма существенно, что в результате этих работ выявилась необходимость отказаться от показателя прочности как имманентного свойства материала, однозначно определяемого при испытании стандартных образцов, например на растяжение.  [c.194]

Резкое понижение пластических свойств стали или ее ударной вязкости в области отрицательных температур получило название хладноломкости. Различают верхнюю Г 1 и нижнюю Тк2 температуры хрупкости. Опыт эксплуатации машин при низких температурах позволил сделать вывод о целесообразности использования для характеристики металла верхней температуры хрупкости, так как при Гк1 на разрушение металла меньше влияют различные случайные факторы (например, особенности плавки, надрезы и т. п.). Температурные границы появления хладноломкости стали зависят от ряда внешних и внутренних факторов. К внутренним факторам относятся химический состав стали и ее структурное состояние, определяемое способами выплавки, механической и термической обработки, а к внешним — конструктивное оформление детали, условия деформирования, характер напряженного состояния.  [c.226]

ЛИЙ, цирконий, ниобий, церий, германий и др., позволяющие повысить прочность, ползучесть, упругость и другие свойства стали. Эти металлы особенно ценны тем, что они придают сплавам новые качества, будучи добавлены даже в небольших дозах.  [c.151]

В присутствии марганца карбид железа РедС сильно обогащается марганцем. Содержание марганца в карбиде железа определяется количеством марганца и углерода в стали. В низко-углеродистой стали содержание марганца в карбиде железа значительно выше, чем в высокоуглеродистой стали. Обычно марганец в карбидах и в твердом растворе распределен в отношении I 4. Марганец повышает устойчивость аустенита в перлитной и в промежуточной областях увеличивает степень его переохлаждения увеличивает межпластинчатое расстояние н перлите понижает температуру мартенситного превращения увеличивает прокаливаемость стали за счет снижения критической скорости закалки стабилизирует аустенит повыш аст механические свойства стали, особенно упругие свойства обладает незначительной склонностью к обезуглероживанию.  [c.17]

Отпуск в значительной степени изменяет структуру и свойства стали, особенно в том случае, когда превращение аустенита при закалке происходит в мартенситной области. Эти изменения существенно зависят от содержания углерода в стали и легирующих элементов, которые оказывают большое влияние на дисперсность структуры и поведение остаточного аустенита, а также и от режима отпуска, т. е. температуры и его продолжительности.  [c.82]

Силицирование отрицательно влияет на механические свойства стали оно понижает предел прочности и, особенно, относительное удлинение и ударную вязкость.  [c.134]

Присутствие повышенного содержания марганца существенно влияет на свойства стали понижает критические точки, увеличивает прокаливаемость позволяет производить закалку при более низких температурах и обеспечивает получение после высокого отпуска структуру сорбитообразного перлита повышает пределы текучести и прочность, твердость и износостойкость при небольшом снижении пластичности и вязкости, особенно в марках с повышенным содержанием углерода.  [c.252]

Следует обратить внимание также и на то, что стали различных марок имеют различный ресурс пластичности. Для одних сталей ресурс пластичности в 1% достаточен для обеспечения надежной эксплуатации, однако нельзя распространять этот вывод на все стали, используемые для изготовления паропроводов. На свойства металла труб ощутимо влияют колебания химического состава в допускаемых для данной стали пределах, а также металлургические особенности ее производства. Так, металл большинства плавок стали 15Х1М1Ф отличается высокой длительной пластичностью, однако встречаются плавки и с весьма низкой пластичностью. По (накопленным результатам опытов и эксплуатации допускаемый ресурс пластичности в 1% для труб паропроводов и коллекторов из сталей 16М, Г2МХ и 15ХМ обеспечивает надежность их в эксплуатации с достаточным запасом. При назначении допускаемого в эксплуатации ресурса пластичности необходимо учитывать особенности свойств стали, возможные колебания длительной пластичности в пределах марки, возможную неоднородность структуры и свойств по длине трубы, влияние концентраторов напряжений и других факторов.  [c.251]


ООО (частота 50 Н/) соответственно меньше на 15—20%. Технич. использование стали Госса возможно при том условии, что лист будет кроиться так, чтобы направление проката совпадало с осевой линией сердечника трансформатора. Методом максимального блеска было показано, что особенные свойства стали Госса обусловлены преиму-  [c.405]

Во многих случаях необходимо установить размер бывшего (т. е. су-щсстаовавшего при высокой температуре) аустенитного зерна ири фактически другой структуре стали, так как этот размер определяет многие свойства стали, особенно в закаленном состоянии.  [c.240]

Частицы карбидов в структуре троостита или сорбита отпуска в отличие от троостита и сорбита, полученных в результате распада переохлажденного аустенита, имеют зернистое, а не пластинчатое строение. Образование зернистых структур улучшает многие свойства стали, особенно пластичность и вязкость, а главное—сопротивление разруи1ению. При одинаковой твердости и временном сопротивлении сталь с зернистой структурой имеет более высокие значения предела текучести, относительного сужения и ударной вязкости, а также параметров вязкости разрушения,  [c.187]

Для определения оптимальных температур нагрева при получений аустенита необходимо сопоставить данные о росте зерна с диаграммой состояния Fe — F g (рис. 8.3). Рост зерна аустенита происходит особенно интенсивно у точек и Однако значительное повышение температуры приводит к существенному росту зерна и ухудшению свойств стали, поэтому допускается минимальный перегрев (выше критических температур), не более чем на 20—30° С. Оптимальные температуры нагрева для доэвтектоидной стали  [c.92]

Хром ока.чывает существенное влияние на механические, физические и химические свойства стали. Добавка хрома повышает твердость и прочность, не снижая пластичности стали. Однако увеличение содержания хрома выше 1,0 - 1,5% снижает ударную вязкость, но мало влияет на поперечное сужение и относительное удлинение. Особенно резко хром повышает твердость и прочность мартенсита. Увеличение содержания хрома до 4 -. 5% наиболее резко повышает твердость закаленной стали, в то время как свойства отожженной стали изменяются незначительно.  [c.86]

Эффективными методами 1юв1.ииения износостойкости и механических свойств сталей и чугунов являются термическая и химикотермическая обработка(цементация, азотирование, нитроцементация, цианирование, сульфидирование, борирование), легирование хромом, никелем, марганцем, вольфрамом, молибденом, ванадием. Применение названных методов позволяет существенно изменять структуру, а следовательно, и свойства сплавов, особенно свойства (юверхностных слове, в желаемом направлении.  [c.14]

В условиях трения и изнашивания, сопровождаемых большими удельными динамическими нафузками, высокой износостойкостью отличается высокомарганцовистая сталь марки Г13. Эта сталь имеет в своем составе 1,0-1,4% углерода и 12,7-14% марганца, обладает аустенитной структурой и относительно невысокой твердостью (200-250 НВ). В процессе эксплуатации, когда на деталь узла трения действуют высокие нафузки, которые вызывают в материале деформацию и напряжения, превосходящие предел текучести, происходит интенсивное наклепывание стали Г13 и увеличение твердости и износостойкости. После наклепа сталь сохраняет высокую ударную вязкость. Благодаря этим свойствам сталь Г13 широко используется для изготовления корпусов шаровых мельниц, щек камнедробилок, крестовин рельсов, гусеничных траков, козырьков землечерпалок и т.д. Необходимо отметить, что склонность к интенсивному наклепу является характерной особенностью сталей аустенитного класса, поэтому их широко ис1юльзуют для изготовления деталей, работающих в условиях трения с динамическими, ударными воздействиями сопряженных деталей или рабочего тела (среды).  [c.18]

Нержавеющие стали. Основной легирующий элемент нержавеющих сталей — хром, который повышает механические свойства стали и способствует образованию на ее поверхности тонкого слоя окислов, облагораживающего электродный потенциал стали и повышающего ее коррозионную стойкость. Она повышается не монотонно, а скачкообразно. Первый порог коррозионной стойкости достигается при концентрации хрома, равной 12,8 %. При увеличении содержания хрома до 18 или до 25—28 % достигается второй порог коррозионной стойкости и наблюдается дальнейшее повышение коррозионной стойкости стали. Однако повышение содержания хрома приводит к понижению механических свойств стали, особенно ударной вязкости, а также затрудняет сварку, вызывая хрупкость сварного шва. Стали с высоким содержанием хрома после сварки требуют термической обработки. Повышение содержания углерода в нержавеющих сталях понижает их коррозионную стойкость, что связано с уменьшением содержания хрома в твердом растворе вследствие образования карбидов. Поэтому повышение содержания углерода в стали вызывает сдвиг порога коррозионной стойкости в область более высокой концентрации хрома. Понижение содержания углерода ниже 0,02% делает сталь стойкой против карбидообразо-вания.  [c.31]

Описана теория легирования стали. Показано влияние легирующих элементов на структуру и свойства стали. Приведены технологические особенности обработки легированных сталей. Рассмотрены принципы легирования и термической обработки легированных сталей различного назначения конструкционных, коррозионностойких, теплостойких, жаропрочных, окалиностонких и инструментальных.  [c.26]

Механизм ударно-абразивного изнашивания стали при динамическом взаимодействии с монолитным абразивом имеет свои особености, прежде всего это возможность развития наклепа в приповерхностном слое на образце. Приповерхностный слой образца в результате многократного соударения с монолитом абразива подвергается деформированию, наклепу и охрупчиванию. В этих условиях исходные структура и свойства стали меняются. В момент внедрения твердых абразивных частиц в поверхность изнашивания металл имеет уже низкие механические характеристики, т. е. изнашивание облегчается.  [c.91]

Особенности анодного электрохимического поведения нержавеющей стали обусловлены различным значением химического потенциала металла на разных стадиях деформации, которые определяются дислокационной, субструктурой, формируемой в процессе деформации и вызывающей деформационное упрочнение. Поскольку напряжение пластического течения металла является величиной доступной для простых измерений, установленная связь электрохимических свойств стали с сопротивлением деформации позволяет в некоторой мере оценивать механохими-ческую коррозию по физико-механическим свойствам стали.  [c.86]

Хромоникелевые стали. Характерными особенностями хромопикелевых сталей являются их хорошая про-каливаемость и высокие механические свойства, поэтому они применяются для изготовления крупных ответственных деталей (коленчатых валов, шатунов, зубчатых колес, роторных частей цилиндров низкого давления и т. д.). Недостатком хромоиикелевой стали является ее сравнительно плохая обрабатываемость режущим инструментом. Хромоникелевая сталь обладает сильно выраженной отпускной хрупкостью, устранение которой требует быстрого охлаждения после высокого отпуска.  [c.82]


Сравнение типичных деформационных микрорельефов, возникающих в зоне сопряжения слоев биметалла СтЗ -f Х18Н10Т, позволяет отметить, что микроструктурные особенности двухслойной стали, изготовленной с использованием высокоскоростной деформации, оказывают существенное влияние на механизм деформации композиции. Изменение деформационного микрорельефа, отражающее характер механизма деформации биметалла, должно быть связано с изменением уровня прочностных и пластических свойств биметаллического соединения.  [c.233]

В условиях малоциклового нагружения старение протекает на фоне повторного деформирования за пределами упругости. Последнее обстоятельство определяет повышенную интенсивность процессов, сопровождаюш их остаривание, так что за времена порядка 5—10 мин в основном происходит снижение пластических свойств. В качестве примера в табл. 1 приведены данные о статической прочности и пластичности малоуглеродистой низколегированной стали при температуре 270° С, полученные при длительностях нагружения до разрушения в диапазоне 1,5— 105 мин. Можно отметить весьма слабую зависимость прочностных характеристик и особенно свойств пластичности от времени нагружения. Для подтверждения полученного результата проведены испытания той же стали при малоцикловом жестком нагружении при частотах нагружения порядка 1 и 0,1 цикла мин.  [c.41]

В общем случае большинство механических свойств стали можно улучшить, удаляя остаточные примеси или регулирзш их содержание. Это, по-видимому, справедливо и в отношении охрупчивания при воздействии окружающей среды. Например, вакуумный переплав повышал стойкость мартенситной стали 410 к водородному растрескиванию [7] и увеличивал долговечность 30%-ной хромистой стали при коррозионной усталости в условиях статического нагружения. Особенно вредными примесями являются сера и фосфор [9, 10], что может иметь отношение к тесной связи между водородным охрупчиванием и хрупкостью, вызванной отпуском [11, 12].  [c.53]

Учитывая влияние процесса гидрополирования на эксплуатационные свойства стали и технологические особенности его, рекомендуется обработку гидрополированием применять после шлифования, чтобы удалить дефектный слой и получить высо-  [c.398]

Особенно велика разница в свойствах стали в продольном и поперечном направлениях с вoзpa тaниe . количества неметаллических включений. Увеличение количества включений в конструкционной углеродистой стали всего на один балл снижает поперечное сжатие на 10%. Анизотропия свойств кованой стали является следствием вытянутости неметаллических включений и структурной полосчатости, обусловленной дендритной ликвацией литой стали.  [c.57]


Смотреть страницы где упоминается термин Особенности свойств сталей : [c.256]    [c.273]    [c.70]    [c.48]    [c.101]    [c.234]    [c.119]    [c.486]   
Смотреть главы в:

Машиностроительное стали Издание 3  -> Особенности свойств сталей



ПОИСК



Главатретья Особенности поведения сталей при высоких температурах 3- 1. Влияние высоких температур на механические свойства сталей

Особенности сварки сталей, цветных металлов и сплавов, сварочные материалы и свойства сварных соединений

Особенности свойств и классификация сталей для отливок

Сталь Свойства



© 2025 Mash-xxl.info Реклама на сайте