Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Применение химически осажденных покрытий

ПРИМЕНЕНИЕ ХИМИЧЕСКИ ОСАЖДЕННЫХ ПОКРЫТИЙ  [c.400]

Оба свойства (высокая коррозионная стойкость и меньшая пористость) предполагают эффективное применение химически осажденного никеля в качестве защитного покрытия.  [c.73]

Рассматриваются некоторые свойства, определяющие области применения различных тугоплавких покрытий, нанесенных на углеродные материалы плазменным напылением, газофазным, химическим и электрохимическим методами. Показано, что покрытие из двуокиси циркония, получаемое путем нанесения на графит методом аргоно-дуговой наплавки циркония и окислением последнего в кислороде, отличается высокой термостойкостью, определяемой металлическими прожилками циркония в двуокиси, а также наличием пластичного металлического слоя, демпфирующего напряжения, возникающие в окисной плевке при эксплуатации. Метод газофазного осаждения может быть использован для нанесения различных тугоплавких покрытий как на графитовые изделия, так и в качестве барьерных на углеродные волокна при этом толщина покрытия определяется его назначением. Путем химического и последующего электрохимического наращивания, например меди на углеродные волокна, возможно получение композиции медь—углеродное волокно с содержанием волоков 20—50 об.%.  [c.264]


Часть книги посвящена обзору работ по нанесению молибденовых покрытий, также важному вопросу с точки зрения технологии ТЭП — нанесению вольфрамовых покрытий на молибден. Рассматриваются требования к покрытиям ТЭП, дается оценка эффективности различных методов нанесения покрытий. Особое внимание уделено методам химического осаждения молибдена, а также осаждения вольфрама на молибден из газовой фазы хлоридов и фторидов, которые являются, основными и получили широкое применение в технологии ТЭП.  [c.5]

Основой процесса химического никелирования является реакция восстановления никеля из водных растворов его солей гипофосфитом натрия. Промышленное применение получили способы осаждения никеля из щелочных и кислых растворов. Осажденное покрытие имеет полублестящий металлический вид, аморфную структуру и является сплавом никеля с фосфором. При этом содержание фосфора в покрытии зависит от состава раствора и колеблется от 4—6% для щелочных, до 8—10% для кислых растворов.  [c.144]

Свойства покрытий и области их применения. Электролитически осажденный хром обладает рядом ценных свойств высокой твердостью, износоустойчивостью, термостойкостью и химической устойчивостью. Все эти качества хромового покрытия обусловили широкую область его применения в технике.  [c.147]

Покрытия, осаждаемые из газовой и паровой фазы, в настоящее время все шире исследуются и применяются в практике. Если парофазный метод распространяется главным образом на металлы и те немногие соединения, которые испаряются без изменения химического состава, то газофазный метод позволяет получать покрытия из широкого круга неорганических тугоплавких соединений, причем осаждаемые соединения отличаются высокой чистотой. Несмотря на то что первые работы в области осаждения металлов и соединений из газовой фазы выполнены более сорока лет назад [131, 132], этот метод получил достаточное развитие и применение только в последнее десятилетие. Исследованию закономерностей процессов, происходящих при осаждении покрытий из газовой фазы, аппаратурному оформлению различных технологических вариантов, исследованию свойств получаемых покрытий посвящены многочисленные работы, обобщенные и проанализированные в монографии [11]. Некоторые материалы, не включенные в эту работу и представляющие теоретический и практический интерес, будут рассмотрены в гл. V.  [c.131]

Химическое осаждение металлопокрытий на подготовленную поверхность неметаллов осуществляют погружением в раствор металлизации или обрызгиванием поверхности (аэрозольная металлизация). Погружаемые детали укрепляют на подвесках или загружают в барабаны, корзины, колокола. При металлизации на подвесках необходимо, чтобы отношение площади покрываемой поверхности к объему раствора было в пределах 2—4 дм /л. При металлизации насыпью, особенно порошковых материалов, это соотношение увеличивают до 100 дм /л. При этом используют растворы одноразового применения, из которых металл осаждают полностью и вследствие этого не проводят корректирования раствора для повторного его применения. Используя растворы травления — активирования до полного истощения и совмещая акселерацию с химической металлизацией, можно процесс нанесения металлического покрытия сократить до двух стадий, осу-  [c.524]


Химическое полирование целесообразно использовать для декоративной отделки поверхности деталей, в особенности небольших размеров, и подготовки перед осаждением покрытий. Оно менее трудоемко, чем анодная обработка, не требует энергозатрат и применения специальных подвесных приспособлений, но не лишено недостатков, прежде всего — это малый срок службы растворов, трудность их корректирования, а также невозможность регулировать толщину снимаемого металла. Область применения электрохимического полирования значительно шире, так как этот процесс позволяет не только достигнуть высокого блеска и некоторого сглаживания поверхности деталей, но и улучшить ряд важных их эксплуатационных характеристик.  [c.71]

Преимущества метода ионного осаждения по сравнению с термическим напылением в вакууме заключаются в следующем имеется возможность обрабатывать ионной бомбардировкой подложку и поддерживать ее чистой до момента осаждения покрытия хорошая адгезия покрытия может быть получена и без предварительного нагрева подложки (за счет высокой энергии конденсирующихся атомов и интенсификации процесса диффузии и химических реакций) достигается высокая степень равномерности покрытия по толщине и увеличивается коэффициент использования паров металла. Недостатком метода ионного осаждения является необходимость мощной электронно-лучевой пушки, способной долгое время стабильно работать в условиях тлеющего разряда, а также более сложное оборудование вакуумной установки по сравнению с обычным методом термического напыления в вакууме (вакуумное оборудование для создания предварительного разрежения порядка 10 —Па, необходимость применения инертного газа и т. п.).  [c.14]

Во многих работах, например [155, 186, 187, 233 и др.], рассмотрен процесс химического осаждения никеля на магниевые сплавы. В статье [175] отмечены преимущества этого процесса по сравнению с гальваническим (высокая твердость и износостойкость покрытия, равномерность по толщине в углублениях и на выпуклых участках поверхности и др.), вместе с тем конкретных сведений о промышленном применении этого процесса нет.  [c.63]

В настоящее время серебрение используется для металлизации различных диэлектриков в функциональных целях — в производстве зеркал, в гальванопластике, для осаждения подслоя при получении покрытий другими металлами. Однако применение химического серебрения ограничено высокой стоимостью серебра, малой стабильностью традиционных растворов серебрения, возможностью образования взрывчатых веществ в аммиачных растворах серебра, а также миграцией металлического серебра на поверхпости пластмасс.  [c.156]

Химическое осаждение кобальта в общих чертах аналогично химическому никелированию. Вместе с тем имеется одно различие — при восстановлении гипофосфитом трудно получить кобальтовые покрытия из кислых растворов. Покрытия Со, содержащие фосфор или бор, отличаются ценными магнитными свойствами (например, высокой коэрцитивностью) и поэтому могут найти применение, особенно в вычислительной технике для изготовления элементов памяти. Для этого покрытия обычно наносят на гибкие пластмассовые ленты (полиэтилентерефталатные), диски из стекла или пластмассы и т. д. Возможно использование кобальтовых покрытий при изготовлении цветных кинескопов. Процесс химического кобальтирования детально описан в монографии [71].  [c.114]

Следовательно, цветные и черные металлы и даже коррозионно-стойкая сталь не могут быть использованы в качестве материалов для ванн из-за осаждения химического покрытия на металлических поверхностях Применение свинца также нежелательно, так как ионы свинца оказывают отрицательное влияние на процесс Поэтому наиболее приемлемыми материалами являются фарфор, эмали стекло, полиэтилен  [c.94]

Важным преимуществом многих ингибиторов второго типа является их низкая стоимость и доступность сырья. Поэтому для крупно-тоннажного травления сталей ингибиторы второго типа нашли наибольшее применение. По эффективности и технологичности они уступают синтетическим ингибиторам и обладают рядом недостатков,, которые в меньшей степени присущи ингибиторам первого типа. К ним относятся непостоянство состава, из-за чего их защитное действие колеблется в широких пределах, что осложняет их практическое использование способность в процессе применения подвергаться нежелательным химическим превращениям (разложению, осмолению и т. п.), снижающим эффективность защиты особенно при повышенных температурах. При использовании ингибиторов второго типа существует возможность осаждения отдельных составных частей ингибитора по мере изменения состава коррозионной среды,, например при накоплении солей железа и снижении концентрации кислоты в процессе травления металлов, а также возможность загрязнения протравленной поверхности металла, что препятствует дальнейшим технологическим операциям (холодной деформации,, нанесению металлических и лакокрасочных покрытий).  [c.81]


В общем случае структура восстановленного слоя может быть гомогенной и композиционной. Гомогенные покрытия представляют собой однофазную систему. Это могут быть боридные фазы, полученные в результате химико-термической обработки, слои твердого раствора хрома, гальванически осажденного на восстанавливаемую поверхность, однородное керамическое или полимерное покрытие и т.д. Гомогенные покрытия находят широкое применение в ремонтном производстве. Их высокая однородность обусловливает высокую химическую стойкость. Ряд гомогенных покрытий, например напыленные керамические покрытия и диффузионные слои, обладают высокой твердостью и обеспечивают высокую износостойкость.  [c.145]

Неблагоприятные последствия непосредственного химического воздействия могут быть уменьшены или предотвращены одним способом или совокупностью их подбором соответствующих окружающей среде материалов применением гальванопокрытий, опрыскивания пламенем, плакирования, горячего погружения, осаждения пара, нанесения покрытий (в том числе органических) или покраски  [c.593]

При гальваническом осаждении сплавов перемешивание электролита оказывает влияние на химический состав катодного осадка. Как указывают В. И. Лайнер-и Н. Т. Кудрявцев [21], перемешивание электролита способствует преимущественно выделению на катоде более благородного металла. При электролизе сернокислых растворов цинка и кадмия с достаточно сильным перемешиванием электролита можно получить покрытия из одного кадмия даже при незначительной концентрации ионов кадмия в электролите. В цианистых электролитах серебра и золота без перемешивания электролита на катоде осаждаются покрытия, богатые золотом. В тех же электролитах с применением перемешивания выделяются осадки, богатые серебром.  [c.68]

При контроле толщины слоя покрытия наиболее важным является определение местной ее величины, например в углублениях, где осаждение металла было затруднено.. Методы химического контроля толщины покрытий основаны на растворении покрытия на выбранных участках поверхности под действием специально приготовленных растворов. Толщина покрытия рассчитывается либо по времени воздействия раствора до полного разрушения (удаления) покрытия на данном участке, либо по объему раствора, затраченному на его удаление. Для этих целей в цеховой практике применяют сравнительно простые методы контроля местной толщины покрытия — струйный или капельный. Применение струйного или капельного методов предусмотрено ГОСТ 3003—58 для определения толщины цинковых, кадмиевых, никелевых и многослойных покрытий и ГОСТ 3263—46 для оловянных покрытий.  [c.226]

По литературным данным [375], на начало 1958 г. в мире насчитывалось примерно 30 промышленных установок химического никелирования. Никелирование с применением гипофосфита возможно лишь при покрытии некоторых металлов никеля, палладия, кобальта, железа и алюминия. При осаждении никеля на медь, латунь и другие металлы необходим контакт их с более отрицательным, чем никель, металлом алюминием или  [c.106]

Методы осаждения металлов путем восстановления имеют большое распространение. Они достигли большого технического значения благодаря химическому никелированию. Путем химического восстановления может быть осажден целый ряд. металлов серебро, золото, медь, палладий, никель и хром. Легированные покрытия могут быть нанесены путем применения смешанных солевых растворов. Для создания электропроводности в практике используют чаще всего серебрение или меднение. Ниже приводятся только некоторые указания по осаждению металлов без применения постороннего источника тока, важные для металлизации непроводников.  [c.407]

Определенные требования предъявляют к физико-химическим свойствам и размеру частиц вещества дисперсной фазы. Размер частиц обычно составляет 1—20 мкм, и чем он меньше, тем лучше осаждение и равномернее распределение порошка в покрытии. Применение частиц размером меньше 1 мкм вплоть до 0,01 мкм улучшает качество покрытий такие частицы имеют тенденцию  [c.379]

Процесс получения гальванических покрытий заключается в выделении металлов, обладающих повышенной химической стойкостью (хрома, никеля и др.), из водных растворов их солей в результате прохождения через раствор постоянного электрического тока и осаждении этих металлов на поверхности защищаемых деталей. В химической промышленности нашли применение главным образом свинцовые гальванические покрытия для защиты деталей и аппаратов от. действия серной или сернистой кислоты, сернистых соединений и растворов хлористых солей.  [c.4]

Однако, физико-химические условия протекания химических реакций при осаждении покрытий на частицах из парогазовой фазы в псевдоожиженном слое недостаточно изучены. Аппараты с псевдооишженным слоем не нашли широкого применения ввиду недостаточной изученности гидравлики и теплообмена в них [4].  [c.141]

Химическое осаждение можно получить автокаталитически, когда металлическое покрытие осаждается на металлической или активированной металлом поверхности, а его толщина увеличивается более или менее линейно до тех пор, пока поддерживается равновесное по составу состояние раствора. Растворы этого вида обычно называют растворами химического восстановления. К металлам, которые могут осаждаться автокаталитически, относятся медь, никель, железо, кобальт, серебро, золото, платина и палладий. Из этих металлов наиболее широкое распространение (в технике и электронике или для металлизации пластмасс при подготовке к электроосаждению) получили, пожалуй, медь и никель. Серебро и золото имеют более ограниченное применение и используются в некоторых электронных приборах.  [c.83]


Возможность применения того или иного способа нанесения покрытий должна быть определена конструктором также с учетом размеров и геометрических параметров деталей. За исключением окраски с последующей сушкой или отжигом, плазменного напыления, аащнтные покрытия другими методами могут быть нанесены на детали мелких и средних размеров. При большинстве способов, кроме порошкового, циркуляционного и химического осаждения, получение равномерных покрытий в отиерстиях, внутренних полостях, на наружных поверхностях сплошной формы невозможно или технически затруднено.  [c.475]

С помощью высокотемпературного спекания образцов с предварительно нанесенным на них методами набрызгивания или окунания жидким металлосодержащим шликером получают покрытия, сходные по качеству с покрытиями, наносимыми методами диффузионного насыщения из засыпок и химического осаждения из паровой фазы. Для нанесения гальванических покрытий на детали сложной формы на них предварительно с помощью процесса электрофореза осаждают слой мелких металлических частиц нужного состава, а затем проводят его спекание [Ю]. В литературе сообщается о применении сходной методики, получившей название сорбционной металлизации, для нанесения Me rAlY оверлейных покрытий [11].  [c.99]

Восстановительные покрытия наносят наплавкой, приваркой, напылением, плакированием, химическим осаждением из растворов, электролизом, осаждением из газовой или парогазовой фазы и др. В ремонтном производстве нашли наибольшее применение электродуговая наплавка, газотермическое напыление, нанесение гальванических покрытий, элек-троконтактная приварка металлического слоя, пластическое деформирование материала, нанесение полимерных покрытий, закрепление дополнительных ремонтных деталей - ДРД (табл. 3.1).  [c.141]

Основные трудности, которые пока препятствуют более широкому применению химического никелирования, это изменение состава раствора во время работы, в результате чего уменьшается концентрация солей никеля и гипофосфита, накопление фосфита никеля и выпадение его в осадок, что вызывает возрастание кислотности раствора и снижение скорости выделения никеля вплоть до полного прекращения процесса. Если не принимать специальных мер по корректированию и регенерации раствора для никелирования, то после каждой загрузки его следует заменять свежим. На каждый грамм осажденного никеля расходуется 5—6 г гипофосфита. На некоторых заводах [389] Б ванну добавляют определенное количество 1,5%-ного раствора NaOH через каждые 20—25 мин. работы. Для получения толстых покрытий (25 мк и выше) никель осаждают последовательно в нескольких ваннах.  [c.110]

Химическое меднение находит особенно широкое применение для мета дйизации диэлектрических материалов с целью декоративной отделки в системе многослойных покрытий, создания слоя против электромагнитного излучения, ухудшающего работу радио-и телевизионных установок. Исследование экранирующего действия в области частот 0,1 — 1000 МГц на АБС-пластиках химических покрытий N1—Р, N1—В, Си, двуслойных N1 и Си, Си и N1 показало, что слой химически осажденной меди, по сравнению с химическим никелем, обладает в 1000—100 000 раз более высокой защитной способностью от электромагнитного излучения [147]. Особенно широко процесс меднения используют в производстве печатных плат. Обстоятельные сведения о химической металлизации пластмасс и способах активации их поверхности можно найти в работе 139]. Значительно меньше рассматриваемый процесс применяют для получения медного покрытия на металлических деталях.  [c.218]

Такие простые восстановители, как ионы металлов (Fe +, Sn2+, Ti +, Сг +), не нашли широкого применения для получения покрытий, поскольку процессы с их участием обычно не обладают достаточной степенью автокатализа. Лишь в одном варианте химического серебрения — при так называемом физическом проявлении фотоматериалов — используют систему Fe (II) — Ре (111), а в последнее время разработан метод осаждения олова [4], основанный на диспропорционировании Sn (И) в щелочной среде — т. е. восстановителем при этом служат сами ионы HSnOi. Кроме того, восстанавливающие свойства ионов Си (1) используются в сорбционно-контактном способе металлизации, с помощью которого осаждают сплав Си — Pd. Этот способ является как бы гибридом иммерсионного и химического методов — Си (I) образуется у металлизируемой поверхности при растворении медной фольги, а покрытие Си — Pd осаждается лишь вблизи ее.  [c.77]

Основное внимание в брошюре уделяется химическому никелированию, которое является наиболее распространенным способом нанесения покрытий, а также химическому меднению являюш.емуся основным процессом при металлизации пластмасс В последнее время практическое применение получили химическое кобальтирова ние и осаждение некоторых драгоценных металлов Суш.ествуют также многочислениь е рекомендации составов растворов для нанесения химических покрытий олова, хрома, свинца и некоторых сплавов  [c.3]

Широкое применение, особенно в машиностроении, для защиты от атмосферной коррозии находят гальванические покрытия, которые получаются катодным осаждением заш,ищающего металла или сплава из водных растворов, содержащих катионы металла — покрытия. Металлические покрытия получают также химическими методами путем восстановления ионов металла е помощью веществ-восстановителей, находящихся в растворе.  [c.49]

Для предотвращения водородной хрупкости рекомендуется вместо нанесения гальванических и химических металлопокрытий применять защиту методом вакуумного осаждения, металлизацию, облицовку металлом, нанесение органических покрытий или другие процессы, при которых не происходит выделения водорода. При этом для стальных сосудов, в которых возможно возникновение водородной хрупкости, применение металлических, органических и неорганических покрытий можно рекомендовать только при условии, если эти сосуды изготовлены не из высокопрочных сталей, сооружения не находятся под создающими высокие напряжения нагрузками, покрытия не содержат химически активного цинка или другого металла, который в конкретных условиях среды способен электрохйми-  [c.46]

В настоящее время для повышения износостойкости и коррозионной стойкости получили применение пленочные покрытия (толщиной 2—10 мкм) из нитридов (TiN, Ti (N ), ZrN), карбидов (Ti ), оксидов (AI2O3 и др.), обладающих высокой твердостью. Существует много методов создания адгезионных пленочных покрытий. Нанесение покрытий осуществляется осаждением продуктов химических реакций между компонентами газовой среды (например, хлорида титана и метана) на поверхности детали (инструмента) при 1000—1200 °С (метод VD). Другие методы предполагают реактивное или конденсационное осаждение в вакууме при более низкой температуре 450—500 °С, Формирование покрытия в вакууме осуществляется в три стадии I) получение материала покрытия в парообразном состоянии 2) перенос материала покрытия от испарителя к детали 3) осаждение (конденсация) молекул (ионов) материала покрытия на поверхности детали. Чаще применяют следующие методы нанесения покрытия конденсацию из плазменной фазы в условиях ионной бомбардировки (КИБ) реактивное электронно-лучевое плазменное осаждение (РЭП) активированное реактивное напыление (ARE). Не-  [c.347]


Хотя сам технология плазменного напыления покрытий и не нова, однако ее применение в вакуумируемых камерах низкого давления является относительно новым. Для многих современных покрытий, в состав которых входят химически активные элементы, такие как алюминий и хром (например, покрытие Me rAlY), технология плазменного напыления при низком давлении окружающей среды позволяет свести к минимуму образование оксидных дефектов в структуре свеженапы-ленных покрытий. Преимущества такого процесса низкого давления также заключаются в более высоких скоростях разбрызгиваемых частиц порошка и расширенной области распыления [9]. Покрытия также могут наноситься в защитной атмосфере инертного газа. Основной целью любой технологии является получение чистых, бездефектных покрытий нужной толщины и хорошая воспроизводимость результатов. Как и в случае процесса физического осаждения из паровой фазы с электронно-лучевым испарением сцепление плазменно-напыленных покрытий с подложкой обеспечивается последующей термообработкой.  [c.96]

Следует вкратце указать на новый химический способ никелирования. По этому способу, основанному на восстановлении никелевых солей в растворе хлорида никеля, можно никелировать изделия простым погружением в горячий раствор без применения тока [25]. Этот способ известен под названием Каниген и Алькоплейт . Никелирование происходит очень равномерно, так что даже сильно профилированные детали получают равномерное по толщине покрытие. За 1 ч осаждается слой никеля толщиной 6 мк. Осаждение содержит 7% фосфора. При нагревании выше 400° С образуется смесь из кристаллического никеля и фосфида никеля N 3 . Эта смесь очень интересна с противокоррозионной точки 31рения (см. табл. 14.6).  [c.698]

Платина — серебристо-серый металл с уд. весом 21,4 и температурой плавления 1773,5° С. Применяется для получения покрытий с высокой химической стойкостью. Из электролитов для осаждения платины наибольшее применение получил фосфатный. Для его составления металлическую платину растворяют в царской водке. Образовавшуюся хлорную платину нейтрализуют едким натром, а полученный хлорплатинат натрия кипятят несколько часов с двузамещенными фосфатами натрия н аммония до исчезновения запаха аммиака, после чего электролит разбавля.ют водой до рабочего уровня. Для осаждения платины принят следующий состав электролита и режим работы  [c.184]

Осаждение платины. Платина — серебристо-серый металл с уд. весом 21,4 и температурой плавления 1773,5 С. Применяется для получения покрытий с высокой химической стойкостью. Из электролитов известны фосфатные, цис-диаминонйтритные и аммонийные, но наибольшее применение получил фосфатный. Для его составления растворяют металлическую платину в царской водке. Образовавшуюся хлорную платину нейтрализуют едким натром, а полученный хлорплатинат натрия кипятят несколько часов с двухзамещенными фосфатами натрия и аммония до исчезновения запаха аммиака, после чего разбавляют электролит водой до рабочего уровня. Принят следующий состав электролита (в г л) 24 хлор-платината натрия или 8,3 в пересчете на металл 120 двузамещенного фосфата натрия 24 двузамещенного фосфата аммония. Рабочая температура 20—25 С, плотность тока 0,1—0,2 а дм , выход по току 40—45%.  [c.166]


Смотреть страницы где упоминается термин Применение химически осажденных покрытий : [c.55]    [c.479]    [c.220]    [c.224]    [c.4]    [c.134]    [c.417]    [c.51]    [c.239]   
Смотреть главы в:

Гальванотехника справочник  -> Применение химически осажденных покрытий



ПОИСК



Применение покрытия

Химические покрытия



© 2025 Mash-xxl.info Реклама на сайте