Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Твердость как характеристика свойств материалов

I. ТВЕРДОСТЬ КАК характеристика свойств МАТЕРИАЛОВ  [c.167]

В предыдущих главах был рассмотрен вопрос о различных видах деформаций бруса было выяснено, возникновением каких напряжений сопровождается каждый вид деформации и, наконец, были получены формулы, позволяющие вычислять напряжения в любой точке поперечного сечения нагруженного бруса. Однако, для того, чтобы ответить на главный вопрос сопротивления материалов, прочна или не прочна рассчитываемая деталь, недостаточно знать только лишь численное значение максимальных напряжений, возникающих в опасном сечении рассчитываемого элемента конструкции, необходимо также знать прочностные характеристики того материала, из которого изготовлен данный элемент. Механические свойства, т. е. свойства, характеризующие прочность, упругость, пластичность и твердость материалов, определяются экспериментальным путем при проведении механических испытаний материалов под нагрузкой. Следовательно, цель механических испытаний материалов — определение опытным путем механических характеристик различных материалов.  [c.273]


Измерение твердости полимерных материалов дает меньше информации об их свойствах, так как между твердостью и прочностью этих материалов нет определенной зависимости. Результаты таких измерений служат лишь дополнительной характеристикой свойств указанных материалов.  [c.25]

Многочисленные попытки установления связи между кавитационной стойкостью и какими-либо механическими, физическими и химическими свойствами успеха не имели, хотя в рамках определенных групп материалов и удавалось получить определенные зависимости между кавитационной стойкостью в воде и такими характеристиками, как упругие свойства, твердость, временное сопротивление, предел текучести, пластичность или их производные [15, 16, 50].  [c.265]

В связи с этим к подшипниковым сталям предъявляется ряд специфических требований, основное из которых — наличие высокой твердости. Твердость колец и тел качения подшипников как правило должна находиться в пределах 59-60 НКСэ и выше. В ряде случаев для специфических условий применения, когда нагрузки на подшипники малы, допускается использование сталей и сплавов, имеющих твердость в пределах 45—50 НКСэ. Однако в подавляющем большинстве случаев требуется высокая твердость. Кроме того, подшипниковые материалы должны обладать высокими прочностными характеристиками, сопротивлением износу, удовлетворительными усталостными свойствами, вязкостью (сопротивлением хрупкому разрушению) и, что особенно важно, способностью выдерживать высокие контактные нагрузки. Для определенной группы подшипников необходимо, чтобы материалы могли противостоять воздействию повышенных температур и агрессивных сред (тепло- и коррозионностойкие подшипниковые материалы).  [c.771]

Чтобы объяснить парадоксальные данные по разрушению резин и очень твердых и прочных материалов, помимо параметра, связывающего свойства жидкости и материала, по-видимому, необходимо, чтобы соотношение между механическими свойствами материалов и кавитационным разрушением учитывало комбинацию таких свойств, как твердость, или прочность, с какой-либо характеристикой, учитывающей упругость или пластичность материала. Было также замечено, что пластичные материалы заданной твердости, как правило, обладают большей сопротивляемостью кавитационному разрушению, чем более хрупкие такой же твердости. Это можно показать на примере упрочненных алюминиевых сплавов, прочность которых близка к прочности аустенитной нержавеющей стали, но которые обладают гораздо меньшей сопротивляемостью кавитации.  [c.441]


Самым распространенным видом испытаний при определении физико-механических свойств материалов являются испытания на твердость. Под твердостью подразумевают характеристику сопротивляемости материала местному, сосредоточенному на его внешней поверхности напряжению [19]. Таким образом, испытание на твердость всегда производится на поверхности и носит характер внедрения в материал какого-либо другого тела. Твердость всегда определяют в результате сообщения материалу некоторой пластической деформации в пределах весьма небольшого объема. При этом возникают высокие напряжения. Только этим можно объяснить возможность получения пластических состояний при определении твердости любых, даже вовсе не пластичных материалов (стекло, алмаз и т. д.). Последнее дает возможность применять испытания на твердость там, где другие испытания не применимы.  [c.164]

Очевидно, ни один из металлов в чистом виде не годится в качестве материала для электрических контактов. Разработанные для контактов сплавы, такие, как серебро — медь, серебро — кадмий и др., имеют по сравнению с металлами повышенную прочность и твердость, поверхность их не тускнеет, но их электро- и теплопроводность значительно ниже. Для получения требуемых характеристик контактов в сильноточных цепях разрабатываются композиционные материалы, которые сочетают высокую электро- и теплопроводность с высокими температурами плавления и кипения, или обладают ни.зкой смачиваемостью и низкими фрикционными свойствами, и т д. Свойства типичных композиционных материа-  [c.418]

Комбинированными связующими являются различные виды смесей каучуков и смол. Фрикционные материалы на комбинированном связующем обладают качествами, присущими материалам на смоляном и каучуковом связующем. Соотношение между частями комбинированного связующего определяет характеристику асбофрикционного изделия — его физико-механические свойства, износостойкость, значение и стабильность коэффициента трения. Увеличение смолы ведет к увеличению твердости, хрупкости, термостойкости и износоустойчивости изделия. Увеличение количества каучука снижает твердость и увеличивает величину и стабильность коэффициента трения. Формованные фрикционные материалы на каучуковом связующем могут изготовляться как холодным, так и горячим формованием, а фрикционные материалы на смоляном и комбинированном связующем — только горячим формованием. Применение комбинированного связующего открывает широкие возможности создания теплостойких и износоустойчивых фрикционных материалов с высоким значением коэффициента трения.  [c.530]

Возьмем для примера такой обычный предмет, как стекло автомобиля. Казалось бы, вполне достаточно к этому материалу предъявить требование прозрачности. Однако этого мало. Стекло должно быть не только прозрачно, но и прочно, так как при эксплуатации автомобиля оно может получать сильные удары. Даже если оно разобьется, осколки его не должны разлетаться, иначе от них пострадают пассажиры, едущие в автомобиле. Кроме того, стекло должно хорошо обрабатываться, противостоять обледенению, не давать слишком ярких, ослепляющих бликов. Мы перечислили ряд свойств, которыми должно обладать стекло автомобиля, а ведь это — не самая ответственная деталь машины. Для других деталей требуется материал, обладающий не только прочностью, но и износостойкостью, твердостью, пластичностью, упругостью и т. д. Все специфические качества материала необходимо учитывать при создании деталей машины, поэтому конструктор должен иметь на каждый материал точную характеристику.  [c.137]

Разработанные методы описания структуры фрактальных кластеров и основных процессов их агрегации могут быть использованы для построения теории структурно — механических свойств дисперсных систем как основы их физико-химической механики. Ключевой характеристикой теорий такого рода являются модули упругости, поскольку они определяют не только жесткость и деформативность дисперсных систем и материалов, но также их вязко— и термоупругое поведение, прочность и твердость. Существующие асимптотические оценки поведения модулей упругости в области перколяционных фазовых переходов [76] мало пригодны для конкретных расчетов напряженных состояний при различных видах нагружений.  [c.42]


В отличие от компактных тел консолидированные дисперсные материалы характеризуются ярко выраженным непостоянством объема, и в еще большей мере непостоянством степени контакта между структурными элементами, и непостоянством свойств при механической деформации и термической обработке. Так, например, исходный объем, занимаемый таким материалом, в результате механической деформации и термической обработки может уменьшиться в несколько раз, а поверхность контактных участков между частицами, сопротивление деформации и электропроводность могут при этом увеличиться в десятки и сотни тысяч раз. Модуль упругости, который у компактных тел имеет практически постоянное значение, у консолидированных тел изменяется так же, как степень контакта, твердость и прочностные характеристики.  [c.54]

К числу свойств, легко устанавливаемых и потому пригодных для опенки определенных материалов, а также для более детального определения их качественных характеристик, кроме цвета, удельного веса, кристаллической формы и т. д., относится также и твердость. Для распознавания различных минералов, встречающихся в природе, минералоги составили шкалу твердости , в которой алмазу, как самому твердому из всех исследованных минералов, приписывается твердость 10, а ряду других минералов приписывают твердость от 1 до 9. Установление твердости любого тела производится путем нанесения царапин, т. е. при помощи механического испытания простейшего вида для этого устанавливают, какой из минералов шкалы твердости еще оставляет царапины на испытуемом материале и какой уже не дает царапин или иначе, на каком из минералов исследуемый оставляет царапины. На основании результатов такого испытания и определяют место исследуемого материала в этой условной шкале твердости.  [c.217]

С помощью термообработки можно в широких пределах изменять структурное состояние и механические свойства металлических материалов. При отсутствии четко выраженных аномалий, как правило, термообработка оказывает на усталостную прочность примерно такое же влияние, как на предел прочности и твердость, при этом отношение предела вьшосливости к пределу прочности имеет линейную зависимость и зависит от структуры. Отклонения от этого правила наблюдаются у высокопрочных материалов их можно, вероятно, объяснить влиянием остаточных напряжений, концентраторов напряжений, возникших при обработке поверхности, и неблагоприятными структурными изменениями. У углеродистой стали наиболее высокая усталостная прочность наблюдается у образцов со структурой мартенсита отпуска, а характеристики усталости мартенситной структуры с доэвтектоидным ферритом уступают характеристикам циклической прочности нормализованных образцов. Термическая обработка, изменяя  [c.228]

По таким важным параметрам, как твердость, предел прочности на сжатие, температуро- и износостойкость, твердые сплавы превосходят быстрорежущие стали. Металлорежущие инструменты, оснащенные твердосплавными пластинками, могут обрабатывать стали и чугуны со скоростями, в 2...3 раза превосходящими скорости доступные инструментам из быстрорежущих сталей. Снова возникла ситуация, когда парк металлорежущих станков, рассчитанный на работу с быстрорежущим инструментом, сдерживал использование высоких режущих свойств твердосплавных инструментов. Таким образом, появление новых инструментальных материалов — твердых сплавов — вновь явилось причиной очередного скачка в области станкостроения и механической обработки деталей машин. Вновь возросли скоростные и мощност-ные характеристики станков. Частота вращения шпинделей станков повысилась до 2000 об/мин. Мощность, например, токарных станков достигла 13... 15 кВт. Рациональное использование нового станочного оборудования и твердосплавных инструментов привело к повышению производительности труда и экономичности обработки металлов резанием.  [c.16]

В зависимости от технологии выращиваемые кристаллы алмаза имеют различное строение (балласы, карбонадо) и соответственно различные физико-механические свойства. Как инструментальные материалы синтетические алмазы типа карбонадо лучше, чем алмазы типа бал-лас. По твердости синтетические поликристаллы лишь незначительно уступают природным монокристаллам алмаза. Прочностные характеристики поликри-сталлических алмазных вставок позволяют успешно выдерживать значительные безударные нагрузки, имеющие место как при обработке резанием вязких и пластичных материалов, так и при выглаживании закаленных стальных поверхностей. Температуростойкость алмазов сравнительно низка — она составляет около 650 °С.  [c.27]

Основными характеристиками, которые обычно определяют на углеродистых сталях, являются критический диаметр (метод торцовой закалки), глубина прокаливаемости (по излому образцов, прошедших обработку в соответствии с требованиями ГОСТ 1435—74) и твердость после закалки и последующего отпуска. Определение прочностных свойств рассматриваемых материалов, так же как и для других групп высокотвердых сталей, целесообразно проводить при испытаниях на изгиб в условиях сосредоточенного нагружения (во избежание смятия на опорах) и образцов сравнительно малых сечений, При этом следует помнить, что получаемые результаты имеют довольно условный характер применительно к инструменту диаметром более 10—15 мм в связи с образованием структурной неоднородности по сечению.  [c.5]

Тип наплавленного металла выбирают на основе анализа условий службы рабочих поверхностей наплавляемой детали. Поэтому важнейшим свойством наплавленного металла является способность его сопротивляться определенным видам изнашивания. Однако пока не существует стандартных методов определения износостойкости материалов, подобных тем, при помощи которых определяют такие характеристики, как предел прочности, ударную вязкость, твердость и т. п. Изнашивание как процесс постепенного изменения размеров детали очень чувствителен к изменению условий внешнего воздействия, т. е. к условиям испытаний. Поэтому в литературе по вопросам износостойкости различных материалов содержится большое количество несопоставимых и противоречивых данных. Кроме того, условия службы различных деталей весьма разнообразны, часто одна и та же деталь подвергается одновременно нескольким видам изнашивания.  [c.696]


Выбор способа восстановления зависит от конструктивно-технологических особенностей и условий работы деталей, величины их износов, эксплуатационных свойств самих способов, определяющих долговечность отремонтированных деталей, и стоимости их восстановления. Конструктивно-технологические особенности деталей определяются их структурными характеристиками — геометрической формой и размерами, материалом и термообработкой, поверхностной твердостью, точностью изготовления и шероховатостью поверхности характером сопряжения (типом посадки) условиями работы — характером нагрузки, родом и видом трения, величиной износа за эксплуатационный период. Знание структурных характеристик деталей, условий их работы и эксплуатационных свойств способов позволяет в первом приближении решить вопрос о применимости того или иного нз них для восстановления отдельных деталей. При помощи такого анализа можно установить, какие из деталей могут восстанавливаться всеми или несколькими способами и какие по своим структурным характеристикам допускаю только один способ восстановления.  [c.330]

Износоустойчивость металлов, как правило, тем выше, чем больше его твердость, поэтому износоустойчивость часто сопоставляют с твердостью. Это обусловлено в значительной степени тем, что твердость часто используют в машиностроении в качестве косвенной характеристики прочностных свойств и износоустойчивости конструкционных материалов. Однако между твердостью и износоустойчивостью прямой связи нет.  [c.397]

Действие излучения на материалы. При оценке действия радиации на твердое тело констатируется изменение какого-либо свойства или ряда свойств тела, соответствующее определенной степени воздействия излучения, которую характеризуют дозой облучения. Доза — количество энергии, полученное единицей массы вещества в результате облучения. Взаимодействие излучений с твердым телом представляет собой сложное явление, которое в общем случае сводится к следующему возбуждение электронов, возбуждение атомов и молекул, ионизация атомов и молекул, смещение атомов и молекул с образованием парных дефектов Френкеля. Кроме того, в результате воздействия излучений возможны ядерные и химические превращения, а также протекание фотолити-ческих реакций. Все это приводит к уменьшению плотности, изменению размеров, увеличению твердости, повышению предела текучести, уменьшению электросопротивления, изменению оптических характеристик тела. Знание изменений свойств под действием облучений особенно важно при создании ядерно-энергетических установок, ряда устройств космических аппаратов [52]. Покрытия в космическом пространстве испытывают воздействие радиации, состоящей из электромагнитного излучения и потока частиц. Каждое  [c.181]

Чугун является своеобразным композитным материалом, механические и эксплуатационные свойства которого Зависят от характеристик металлической основы (прочность, пластичность, твердость и др.), а также формы, размеров, количества и распределения Графитовых включений. При этом решающее зиачеиие в ряде случаев Имеет либо графит, либо металлическая основа. Наиример, модуль упругости чугуна в решающей степени Зависит от формы и величины графитовых включений, а твердость в основном определяется свойствами металлическом основы. Такие свойства, как временное сопротивление разрыву, ударная вязкость, длительная проч-иость, зависят как от свойств металли-еской основы, так и от формы или  [c.69]

Установив основное уравнение (i), Кулон углубляется в более тщательное изучение механических свойств материалов, из которых изготовляется проволока. Для каждого типа проволоки об находит предел упругости при кручении, превышение которого приводит к появлению некоторой остаточной деформации. Точно так же он показывает, что если проволока подвергнута предварительно первоначальному закручиванию далеко за предел упругости, то материал в дальнейшем становится более твердым и его предел упругости повышается, между тем как входящая в уравнение (i) величина i остается неизменной. С другой сторны, путем отжига он получает возможность снизить твердость, вызванную пластическим деформированием. Опираясь на эти опыты, Кулон утверждает, что для того, чтобы характеризовать механические свойства материала, необходимы две численные характеристики, а именно число i, определяющее упругое свойство материала, и число, указывающее предел упругости, который зависит от величины сил сцепления. Холодной обработкой или быстрой закалкой можно увеличить эти силы сцепления и таким путем повысить предел упругости, но в нашем распоряжении нет средств, способных изменить упругую характеристику материала, определяемую постоянной 1. Для того чтобы доказать, что это заключение распространяется также и на другие виды деформирования. Кулон проводит испытания на изгиб со стальными брусками, отличающимися один от другого лишь характером термической обработки, и показывает, что под малыми нагрузками они дают тот же прогиб (независимо от своей термической истории), но что предел упругости брусьев, подвергшихся отжигу, получается значительно более низким, чем тех, которые подвергались закалке. В связи с этим под большими нагрузками бруски, подвергшиеся отжигу, обнаруживают значительную остаточную деформацию, между тем как термически обработанный металл продолжает оставаться совершенно упругим, поскольку термическая обработка повышает предел упругости, не оказывая никакого влияния на его упругие свойства. Кулон вводит гипотезу, согласно которой всякому упругому материалу свойственно определенное характерное для него размещение молекул, не нарушаемое малыми упругими деформациями. При превышении предела упругости происходит какое-то остаточное скольжение молекул, результатом чего является увеличение сил сцепления, хотя упругая способность материала сохраняется при этом прежней.  [c.69]

В общем случае усталостного изнашивания необходиьюсть достижения высокой твердости поверхностей проблематична. Увеличение твердости, как правило, сопровождается исчерпанием запаса пластичности и способности дальнейшего накопления деформации [84]. Не случайно практически одновременно с теорией усталостного изнашивания в триботехнику было введено правило положительного градиента механических свойств [83]. Суть правила сводится к необходимости снижения прочностных характеристик материалов по мере приближе-  [c.8]

Поскольку механические характеристики композиционных материалов являются аддитивными, то протекание превращения в связке, сопровождающееся понижением модуля ее упругости, неизбежно приводит к снижению жесткости композита. Обычно увеличения жесткости добиваются добавлением твердого наполнителя, однако при этом снижается предел прочности. Последнего не наблюдается в случае сплавов Ti — NiTi, так как повышенная демпфирующая способность связи приводит к сдвигу максимума прочностных свойств в сторону большего содержания твердой фазы [26]. Таким образом, за счет контролируемого снижения жесткости при использовании структурно-неустойчивой связки можно существенно повысить вязкость твердого сплава при сохранении прочности и твердости. Испьггания показали, что разработанный сплав может успешно работать в условиях интенсивного износа и высоких ударных нагрузок.  [c.204]


Механические свойства Д., характеризующие ее способность сопротивляться механич. воздействиям, м б. под[1азделены на 1) крепость, или способность сопротивляться разрушению от действия механических усилий -) упругость, или способность принимать первоначальную форму и размеры после прекращения действия сил 3) ж е с т к о с т ь, или способность сопротивляться деформированию 4) твердость, или способность сопротивляться внедрению другого твердог о тела (для большинства методов ее определения). Свойства, определяющие низкую степень перечисленных основны.х свойств, или иначе обратные и.м, м. б. соответственно названы слабость, пластичность, податлив о с т ь и мягкость. Первые три свойства могут проявляться при разных видах напряжений, из которых простыми видами являются растяжение, сжатие и сдвиг (скалывание) изгиб и кручение заключают в себе у ке нек-рый комплекс простых видов напрягкений. По характеру действия сил различают нагрузки статические при плавном медленном действии сил и дина м и ч е с к и е при действии сил со значительной ско])остью в момент соприкосновения с тч лом (удар) или со значительным ускорением. Динамич. нагрузки прп испытании материалов м. б. однократные ударные, при к-рых тело разрушается от одного удара, и вибрационные, вызывающие разрушение при многократном возде11ствии динамич. нагрузок, с ударом или без него, но с большим ускорением. Крепость ири ударной нагрузке иногда называется в п з к о с т ь ю, а крепость при вибрационной нагрузке получила название вынос л и в о с т и. Кроме перечисленных видов действия внешних сил нужно отличать еще случай весьма длительного действия статич. нагрузки, а также силы трения, вызывающие медленное разрушение (истирание) и характеризуемые величиной изнашивания. Так как Д. является материалом анизотропным, то при характеристике действия сил на нее необходимо указывать еще их направление по отношению к направлению волокон (вдоль и поперек волокон) и годовых слоев (радиальное и тангентальное направление). Механич. свойства Д. определяются путем механич. испытаний ее в большинстве случаев на малых чистых (без пороков) образцах. Получаемые в результатах таких испытаний цифры характеризуют Д. с точки зрения ее доброкачественности, но не всегда могут  [c.102]

Отличительной особенностью сварных соединений оболочковых конструкций является наличие в них механической неоднородности, проявляющейся в различии свойств металлов отдельных учкстков и зон соединений. Последнее является, с одной стороны, следствием структурно-химических изменений материала под воздействием термодеформационного цикла сварки и, с другой стороны, применением для сварки материалов с различным уровнем механических характеристик. Участки (зоны) соединений, металл которых имеет пониженные по сравнению с основным металлом конструкции прочностные характеристики (предел текучести а,, временное сопротивление, твердость НУ и др.), как отмечалось во введении, принято называть мягкими прослойками, а N ia TKH, металл которых имеет более высокие характеристики  [c.73]

Карбидные материалы обладают совокупностью механических и физико-химических свойств, которая позволяет широко использовать их в технике. Особое место среди карбидных материалов занимают карбидокремниевые керамики, как спеченные (Si ), так и реакци-онно-связанные (Si/Si ), обладающие низкой плотностью, высокими прочностью при повышенных температурах, твердостью и износостойкостью, низким температурным коэффициентом линейного расширения (ТКЛР), химической стойкостью к агрессивным средам, устойчивостью на воздухе при высоких температурах. Такое сочетание свойств карбидокремниевых керамик обеспечивает им заметное улучшение удельных механических характеристик. Дальнейшее улучшение свойств Si -Kepa iHK идет по пути их армирования, например, нитевидными кристаллами, волокнами и алмазными частицами (табл. 8.1). Низкие технологические свойства Si -керамик (плохая прессуемость, спекание при температуре свыше 2000 °С) требуют применения технологий, в которых предусматривается активация поверхности порошка термомеханической обработкой или объемная активация взрывной обработкой, введение в шихту активирующих процесс спекания добавок (2...8 мае. %), в том числе активных наноструктурных по-  [c.138]

Высокопрочные и высокомодульные углеродные волокна изготовляют из пысокоуглеродистых исходных волокнистых материалов на основе полимеров, натуральных ненов или модифицированной целлюлозы методом термического пиролиза, обеспечивающего карбонизацию исходного сырья. Так как углерод может существовать в различных переходных формах от алмазоподобных, отличающихся высокими твердостью, хрупкостью и жесткостью, до мягких и менее жестких графитоподобных форм, и поскольку летучие компоненты при карбонизации удаляются из волокна, перемещаясь от его центра к периферии, все механические характеристики углеродного волокна и его плотность определяются совокупностью форм углерода, полученных в волокне при карбонизации. В связи с этим углеродные волокна часто бывают весьма неоднородными по своим свойствам. Результаты обстоятельных исследований изменения свойств углеродных волокон в зависимости от состава и свойств исходного сырья, а также параметров технологического процесса получения волокон приведены в работах [6, 23, 14, 93].  [c.341]

В производственных условиях перед контролером часто возникает вопрос о возможности применения того или иного ш,упового прибора для измерения шероховатости поверхности изделий из мягких материалов. Профилометрам и профилографам присущи определенные погрешности, объясняемые природой контактного метода измерений. Основными пара-.метрами прибора, которые в первую очередь определяют величину искажений при ощупывании поверхности, являются, как указывалось выше, радиус закругления щупа г и усилие Р. Если радиус закругления иглы. можно рассматривать на определенном отрезке времени как величину постоянную для данного прибора, то измерительное усилие, в зависимости от динамических характеристик ощупывающей системы, скорости ощупывания и характера профиля контролируемой поверхности, может сильно изменяться- Это обстоятельство учитывается при конструировании приборов, В современных профилометрах и профилографах, благодаря рациональной конструкции датчиков, а также уменьшению скорости ощупывания добиваются значительного снижения доли динамической составляющей Р,) в общей величине усилия Р. Если радиус закругления иглы у большинства профилометров принят равным 10—15 мк. то измерительное усилие колеблется в весьма широких пределах и достигает в некоторых конструкциях 1—2 гс. Естественно, что при таких уси- лиях на поверхности контролируемого изде.лия, в зависимости от меха нических свойств, и в первую очередь, от твердости материала, будут оставаться более или менее глубокие царапины. Царапание, как следует из анализа, приводимого в главе VI, может по-разному сказаться на показаниях щуповых приборов. Когда размеры впадин велики по сравнению с размерами щупа (при пологом профиле с большим шагом неровностей), а перепад усилия ощупывания на дне впадины и на выступе характеризуется небольшой величиной, погрешности измерения незначительны. При узких микронеровностях, вследствие различных условий деформаций материала на гребешке и во впадине, происходит сглаживание профиля и соответствующее уменьшение измеренной высоты. Это уменьшение тем значительней, чем мягче материал контролируемого изделия и чище его поверхность. На фиг. 115 схематически показаны общие соотношения мелкду данными, получающимися при ощупывании, поверхности иглами с радиусами закруглений г= 10 мк при измерительных усилиях — 2 с С и показаниями оптических бесконтактных приборов. По оси абсцисс графика отложены классы чистоты, установленные с помощью оптических приборов по оси ординат — классы, получающиеся при ощупывании иглами, имеющими указанные выше г и Р. Кривая Т относится к теоретической поверхности абсолютно твердого тела с весь ма пологими неровностями кривая Л4 —- к поверхности изделий с твердостью Ял <20 кгс1мм и углом раскрытия впадин 100°. Между этими двумя кривыми располагаются кривые, относящиеся к поверхностям изделий из стали (С), бронзы (б) и т. п. При контроле профилометрами, имеющими значительные усилия ощупывания чистых поверх-  [c.154]

Механические свойства стекла характеризуются высоким сопротивлением сжатию (50 — 200 кгс/мм ), низким пределом прошюсти при растяжении (3 — 9 кгс/мм ) и изгибе (5 —15 кгс/мм ).. Модуль упругости высокий (4500 до 10" кгс/мм ), коэффициент Пуассона = 0,184 ч- 0,26. Твердость стекла, как и других неорганических материалов, часто определяется приближенным методом царапания по мгшералотической шкале Мооса и равна 5—7 единицам (за 10 едхшиц принята твердость алмаза, за единицу - талька). Ударная вязкость стекла низкая, оно хрупкое (а = 1,5 2,5 кгс-см/см ). Более высокие механические характеристики имеют стёкла бесщелочного состава и кварцевые.  [c.465]

Сплавы для элементов памяти систем управления, автоматизации и связи используют в качестве так называемых полупостоянных или переменных магнитов, подвергаемых в процессе эксплуатации большому числу циклов перемагничивания (10 -10 °). Магнитное состояние таких материалов изменяется под воздействием кратковременных изменений тока в управляющих катушках и описывается параметрами полной рабочей петли гистерезиса, соответствующей принятой стандартной максимальной напряженности намагничивающего поля равной 8 или 16 кА/м. Основными магнитными характеристиками таких сплавов при указанном являются заданное в интервале от 1,5 до 5 кА/м значение коэрцитивной силы, высокие значения остаточной индукции и коэффициента прямоугольности, с которым связано малое время перемагничивания порядка микросекунд. Специфика требований, предъявляемых к материалам этого назначения, обусловила выделение их в особую фуппу полутвердых магнитных сплавов. Магнитные свойства всех магнитно-полутвердых сплавов формируются в процессе холодной деформации с высокой степенью обжатия более 80 % и последующего отпуска в интервале 500—700 °С. Сплавы поставляют в холоднодеформированном состоянии. Операции, необходимые для изготовления деталей, проводятся до отпуска, так как после него сплавы теряют пластичность и их твердость увеличивается. Сплавы для элементов памяти можно разделить на две подфуппы а) сплавы на основе систем Ре—Со—Сг и Ре—N1 (для элементов с внешней памятью) б) сплавы на основе системы Ре—Со—N1 (для элементов с внутренней памятью).  [c.550]



Смотреть страницы где упоминается термин Твердость как характеристика свойств материалов : [c.67]    [c.549]    [c.217]    [c.591]    [c.481]    [c.18]    [c.15]    [c.68]    [c.336]   
Смотреть главы в:

Материаловедение  -> Твердость как характеристика свойств материалов



ПОИСК



434, 436 — Характеристики свойств

434, 436 — Характеристики свойств свойств

Бор — Свойства 2 — Твердость

Материалы — Характеристики

Свойства материалов



© 2025 Mash-xxl.info Реклама на сайте